Aryl glycosidases from *Lactobacillus plantarum* increase antioxidant activity of phenolic compounds

José María Landete *, José Antonio Curiel, Héctor Rodríguez, Blanca de las Rivas, and Rosario Muñoz

Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de Alimentos y Nutrición, ICTAN-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain

*Corresponding author. Present Address: Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA). Carretera de la Coruña Km 7,5, 28040, Madrid (Spain).

E-mail address: landete.josem@inia.es
Abstract

Glycosidases have great relevance in polyphenols, since their bioavailability is enhanced by these enzymatic activities. Glycosylated phenolic compounds are deglycosylated either in tissues or by the colonic microbiota. *Lactobacillus plantarum* is a widespread lactic acid bacteria commonly found in many fermented food products and in the gastrointestinal tract, some strains of which are employed as probiotics. The presence of glycosidase activities was assayed in *L. plantarum* strains isolated from different origins. The analyzed strains presented hydrolytic activity against α- and β-D-glucopyranoside and β-D galactopyranoside. The latter activity could be related to the presence of a β-galactosidase encoding-gene present in all the *L. plantarum* strains analyzed. Glycosylated food phenolics, such as quercetin glucoside, phloridzin, esculin, salicin, and daidzin were deglycosylated by cell cultures or by cell extracts from *L. plantarum* CECT 748^T as demonstrated by HPLC analysis. In this study was clearly demonstrated for the first time that the deglycosylation of specific aryl glycosides by *L. plantarum* was associated with an increase in their antioxidant activity measured by DPPH and SOD methods. Therefore, in addition to the improvement of their bioavailability, the presence of glycosidase activities on *L. plantarum* strains increase the antioxidant activity of glycosylated phenolic compounds.

Keywords: *Lactobacillus plantarum*, aryl glycosides, glycosidases, antioxidant activity, bioavailable.
1. Introduction

Phenolic compounds are traditionally associated with the sensory quality of fresh and processed plant foods. However, phenolic compounds are currently receiving much attention because of their beneficial health effects related to their antioxidant (Vinson, Zibik, Bose, Samman & Proch, 2005; Dehkharghanian, Lacroix & Vijayalakshmi, 2009), anti-inflammatory (Nichols & Katiyar, 2010), cardio-protective (Zern & Fernandez, 2005), cancer chemo-preventive (Nichols & Katiyar, 2010), and neuro-protective properties (Aquilano, Baldelli, Rotilio & Ciriolo, 2008). Consequently, polyphenols can be considered healthy food, and claim to have health promoting or disease-preventing properties, that is, a so-called functional food. Phenolic compounds are the most abundant antioxidants in our diets. Several thousands of natural polyphenols have been identified in plants, although only a more limited number are at significant levels in most human diets (Manach et al., 2004). The considerable diversity of their structures makes them different from other antioxidants. The chemical structure of polyphenols will affect their properties such bioavailability, antioxidant activity, and their specific interactions with cell receptors and enzymes. Then, the transformation of polyphenols by glycosidases from intestinal microbiota could be important for polyphenol properties (Landete, 2012).

The absorption of food phenolics in humans, necessary for their beneficial effects, is determined primarily by their chemical structure, which depends on factors such as the degree of glycosylation, hydroxylation, acylation, conjugation with other phenolics, molecular size, degree of polymerization, and solubility (Karakaya, 2004). Glycosylated phenolic compounds, including tannins, ellagitanins, lignans, isoflavones, flavonols and...
69 anthocyanins are widespread among plant foods. Polyphenols are extensively
deglycosylated either in tissues, once they are absorbed through the gut barrier, or, for the
non-absorbed fraction and the fraction re-excreted in the bile, by the colonic microbiota.
72 Therefore, the glycoside hydrolases responsible for the metabolism of phenolics play a
central role in a large number of major biological processes (Sarry & Gùnata, 2004). The
74 O-glycoside hydrolases (EC 3.2.1.x) are a widespread group of enzymes which catalyze the
hydrolysis of the glycosidic bond between two or more carbohydrates or between a
carbohydrate and a non-carbohydrate moiety.
77 Among the glycosidases, β-glucosidases have been the subject of much work
because of their importance in numerous biological processes and in biotechnological
applications (Bhatia, Mishra & Bisaria, 2002), such as food detoxification (Birk, Bravdo &
Shoseyov, 1996), biomass conversion (Pemberton, Brown & Emert, 1980), or flavour
enhancement in beverages (Gùnata, Bayonove, Cordonnier, Arnaud, & Galzy, 1990). In
addition, glucosidases are relevant enzymes in functional foods since biological properties
of glucosylated polyphenols (e.g. soy isoflavones) are affected by glucosidase action
(Zubik & Meydani, 2003; Krisch et al., 2012; de Silva et al., 2013).
79 \textit{Lactobacillus plantarum} is commonly found in many fermented food products as
well as in the human gastrointestinal tract. The aim of this work was to analyze the
presence of aryl-glycosidase activities in \textit{L. plantarum} and their influence on the
antioxidant activity of glycosylated phenolic compounds.
The *L. plantarum* strains used in this work are listed in Table 1. *L. plantarum* WCFS1 was kindly provided by M. Kleerebezem (NIZO Food Research, Kernhemseweg, The Netherlands). The strain is a single-colony isolate of *L. plantarum* NCIMB 8826 that was isolated from human saliva. The strain survives passage through the human stomach (Vesa, Pochart, & Marteau, 2000) and persist in the digestive tracts of mice and humans (Pavan, Desreumaux, & Mercenier, 2003). The strains *L. plantarum* CECT 220 (ATCC 8014), CECT 221 (ATCC 14431), CECT 223, CECT 224, CECT 748\(^T\) (ATCC 14917\(^T\)), CECT 749 (ATCC 10241), CECT 4185, and CECT 4645 were purchased from the Spanish Type Culture Collection (CECT). *L. plantarum* strains (*L. plantarum* RM28, RM31, RM34, RM35, RM38, RM39, RM40, RM41, RM71, RM72, and RM73) were isolated from wine samples (de las Rivas, Rodríguez, Curiel, Landete & Muñoz, 2009). *L. plantarum* strains are routinely grown in MRS medium adjusted to pH 6.5 and incubated at 30 °C. For deglycosylation assays, *L. plantarum* strains were cultivated in a modified basal and defined medium described previously for *L. plantarum* (Rozès & Peres, 1998). This defined medium was used to avoid the presence of phenolic compounds included in non-defined media.

2.2. Determination of glycosidase activities in *L. plantarum* cultures

Culture biomass was assessed for type and degree of glycosidase activity as described in previous work (Grimaldi, Bartowsky, & Jiranek, 2005) with some modifications. Briefly, *L. plantarum* strains grown in MRS overnight at 30 °C were harvested by centrifugation (20000 g, 5 min) and washed twice with 145 mM NaCl in distilled water. Assays (400 μl)
were performed in eppendorf tubes and comprised 200 μl of 0.2 M McIlvane buffer (0.1 M citric acid and 0.2 M K₂HPO₄, pH 5.0, unless otherwise stated) and 100 μl of a suspension of the appropriate bacterial strain prepared in 145 mM NaCl and standardized to yield a 0.5 final OD₆₀₀ in the assay. Substrate solutions (100 μl) were then added to give a final concentration of 10 mM. Different ρ-nitrophenyl (ρ-NP) derivatives were used as substrates, ρ-NB-β-D-glucopyranoside (ρ-NP-β-D-Glu), ρ-NP-α-D-glucopyranoside (ρ-NP-α-D-Glu), ρ-NP-β-D-galactopyranoside (ρ-NP-β-D-Gal), ρ-NP-β-D-fucopyranoside (ρ-NP-β-D-Fuc), ρ-NP-β-D-xylopyranoside (ρ-NP-β-D-Xyl), and ρ-NP-α-D-rhamnopyranoside (ρ-NP-α-D-Rham). Assays were incubated at 37 ºC (unless otherwise stated) for 1 h, stopped by the addition of 800 μl of 0.5 M Na₂CO₃ and clarified by centrifugation (10000 g, 3 min). Supernatants (1000 μl) were transferred to a cuvette (1 ml) and the absorbance at 400 nm was determined using a spectrophotometer (LQuant, Bio-Tek Instruments Inc., Winooski, VT, USA) set to automatic path-length correction. Blanks were prepared without bacterial cells but otherwise treated in the same manner. All reactions were performed in triplicate. One unit of glycosidase activity was defined as the amount of enzyme that released 1 μmol of ρ-nitrophenol from substrate per minute under the conditions specified.

2.3. Determination of glycosidase activities in L. plantarum cell extracts

To determine if L. plantarum possess enzymes with glycosidase activity, cell extracts containing all soluble proteins (supernatant) and cell-associated fractions (pellet) were prepared. L. plantarum strains (RM34, RM38, RM41, RM72 and CECT 4645) were grown in MRS medium at 30 ºC until a late exponential phase. The cells were harvested by
centrifugation and washed three times with phosphate buffer (50 mM, pH 6.5), and subsequently resuspended in the same buffer for cell rupture. This suspension was disintegrated by using the French Press at 1500 psi pressure (Thermo FRENCH® Press, Thermo Electron, Waltham, MA, USA). The cell disruption steps were carried out on ice to ensure low temperature conditions required for most enzymes. The disintegrated cell suspension was centrifuged at 12000 g for 20 min at 4 °C. Protein concentration in the supernatant was determined using the Bio-Rad protein assay (Bio-Rad, München, Germany). From cell extracts obtained (supernatant and pellet), glycosidase activity analyses were performed as mentioned above. Glycosidic activities from cell extracts were measured as µmol p-nitrophenyl released per mg of protein.

2.4. Presence of a β-galactosidase gene in L. plantarum strains

Genomic DNA was isolated from overnight L. plantarum cultures according to the method of Ruiz-Barba, Maldonado & Jiménez-Díaz (2005). The lp_3629 gene was PCR amplified by using the specific primers 371 (5`-GTAGAGTTTCCGGAAGGCTTTG-3`) and 372 (5`-TATCAAAACCCATTCCGTTCCCAGC-3`). These primers were deduced from the nucleotide sequences of a putative β-glucosidase gene (lp_3629) previously identified on L. plantarum WCFS1 (GenBank accession number 004567). PCR reactions were performed in 0.2 ml microcentrifuge tubes in a total volume of 25 μl containing 1 μl of template DNA (approximately 100 ng), 20 mM Tris–HCl, pH 8.0, 50 mM KCl, 2.5 mM MgCl₂, 200 μM of each dNTP, primer 371 (1 μM), primer 372 (1 μM) and 1 U of AmpliTaq DNA polymerase. The reaction was performed in a GeneAmp PCR System 2400 (Perkin Elmer, Norwalk, CT, USA) using the following cycling parameters: initial 5 min denaturation at
94 °C followed by 35 cycles of 1 min at 94 °C, 1 min at 50 °C and 30 s at 72 °C. Amplified products were analyzed by 0.7 % agarose gel electrophoresis in TAE buffer (Sambrook, Fritsch, & Maniatis, 1989). The gel was stained with ethidium bromide and the bands were visualized under UV illumination.

2.5. Deglycosylation of food phenolics by *L. plantarum* CECT 748T

L. plantarum CECT 748T cultures and cell extracts were assayed for the deglycosylation of several glucosylated food phenolics, such as quercetin glucoside, phloridzin, esculin, daidzin, and salicin. For the deglycosylation assays by *L. plantarum* CECT 748T culture, the sterilized defined basal medium was supplemented with the filter-sterilized glucosylated phenolic compound dissolved in ethanol at 10 mM final concentration. The media were inoculated with *L. plantarum* (1%) previously grown in modified basal media (Rozès & Peres, 1998) and incubated in darkness without shaking, at 30 °C for 10 days. Incubated media with cells and without phenolic compound and incubated media without cells and with phenolic compounds were used as controls.

For the deglycosylation assay by cell extracts, extracts of *L. plantarum* CECT 748T in phosphate buffer (25 mM, pH 6.5) were incubated during 1 or 18 h at 30 °C in the presence of the phenolic compound. As control, phosphate buffer containing the phenolic compound was incubated under the same conditions.

2.6. HPLC analysis of the deglycosylation of food phenolics
The reaction products from the deglycosylation reactions were extracted twice with one-third of the reaction volume of ethyl acetate (Labscan, Gliwice, Poland). The solvent fractions were filtered through a 0.45 μm-pore-size polyvinylidene fluoride filter (PVDF) (Teknokroma, Barcelona, Spain) and subsequently injected onto the column and analyzed by HPLC. A Thermo (Thermo Electron) chromatograph equipped with a P400 SpectraSystem pump, and AS3000 autosampler, and a UV6000LP photodiode array detector were used. A gradient of solvent A (water/acetic acid, 98:2, v/v) and solvent B (water/acetonitrile/acetonic acid, 78:20:2, v/v/v) was applied to a reversed-phase Nova-pack C₁₈ (25 cm x 4.0 mm i.d.) 4.6 μm particle size, cartridge at room temperature as follows: 0–55 min, 80% B linear, 1.1 ml/min; 55–57 min, 90% B linear, 1.2 ml/min; 57–70 min, 90% B isocratic, 1.2 ml/min; 70–80 min, 95% B linear, 1.2 ml/min; 80–90 min, 100% linear, 1.2 ml/min; 100–120 min, washing 1.0 ml/min, and reequilibration of the column under initial gradient conditions. Detection was performed by scanning from 220 to 380 nm. Samples were injected onto the cartridge after being filtered through a 0.45 μm PVDF filter. The identification of degradation compounds was carried out by comparing the retention times and spectral data of each peak with those of standards from commercial suppliers.

2.7. Determination of antioxidant activity by DPPH and SOD methods

The free radical scavenging capacity of the phenolic compounds was determined using the method of Brand-Williams, Cuvelier and Berset (1995) with some modification. A 0.1 mM solution of 1,1-diphenyl-2-picrylhydrazyl (DPPH) in ethanol was prepared and to 2 ml of this solution was added 0.1 ml of each one of the compounds studied. This solution was incubated with L. plantarum CECT 748ᵀ cells at 37 °C during 1 h, and the absorbance...
change at 515 nm was measured 10 min later with a spectrophotometer (Uvikon 940, Kontron, Zurich, Switzerland). Solution incubated with L. plantarum CECT 748\(^\top\) but without the phenolic compound added, and incubated media without L. plantarum CECT 748\(^\top\) cells but containing the phenolic compound were used as controls. Measurements were performed in triplicate. Inhibition of coloration was expressed as a percentage, scavenging activity (%) was measured as \(\left(\frac{A_0-A_1}{A_0}\right) \times 100\), where \(A_0\) is the absorbance of the blank and \(A_1\) is the absorbance of the sample.

Superoxide radicals were generated by reaction of the hypoxanthine-xanthine oxidase (SOD) system. The assay mixture contained, in a final volume of 1 ml, 50 mM saline phosphate buffer pH 7.8, 25 mM solution of xanthine, 0.24 mM nitro blue tetrazolium chloride (NBT) and 24 mU xanthine oxidase (specific activity 1 U/mg of protein), and 1 mM of glycosylated phenolic substrate. The substrates were incubated in presence of L. plantarum CECT 748\(^\top\) during 1 h at 37 °C before the addition of the xanthine oxidase enzyme. The inhibition of xanthine oxidase was measured in a spectrophotometer (550 nm) during 30 sec and 3 min. Incubated media with L. plantarum CECT 748\(^\top\) and without phenolic compound, and incubated media without L. plantarum CECT 748\(^\top\) and with phenolic compounds were used as controls. The results were expressed as percentage of enzyme activity inhibition. Measurements were performed in triplicate. Scavenging activity (%) = \(\left(\frac{A_0-A_1}{A_0}\right) \times 100\), where \(A_0\) is the absorbance of the blank and \(A_1\) is the absorbance of the sample.

3. Results
3.1. Glycosidase activities in \textit{L. plantarum} strains

\textit{L. plantarum} strains were assayed against \textit{p}-nitrophenyl forms of some key glycosides relevant in food products, such as \textit{p}-NP-\(\beta\)-D-Glu, \textit{p}-NP-\(\alpha\)-D-Glu, \textit{p}-NP-\(\beta\)-D-Gal, \textit{p}-NP-\(\beta\)-D-Fuc, \textit{p}-NP-\(\beta\)-D-Xyl, and \textit{p}-NP-\(\alpha\)-D-Rham. All analyzed strains possessed high detectable \(\beta\)-glucosidase, \(\alpha\)-glucosidase and \(\beta\)-galactosidase activities against \textit{p}-NP-\(\beta\)-D-Glu, \textit{p}-NP-\(\alpha\)-D-Glu and \textit{p}-NP-\(\beta\)-D-Gal, respectively (Table 1). The absorbance values showed glycosidase activities higher than 100 units in all cases. However, \textit{L. plantarum} strains did not show detectable activity against \textit{p}-NP-\(\beta\)-D-Fuc, \textit{p}-NP-\(\beta\)-D-Xyl and \textit{p}-NP-\(\alpha\)-D-Rham (Table 1).

These glycosidase activities were also assayed in cell extracts (supernatant and pellet) from five strains of \textit{L. plantarum} (Table 2). High \(\beta\)-glucosidase, \(\alpha\)-glucosidase and \(\beta\)-galactosidase activities from the five strains were observed in the pellet fraction. Similarly, the five strains showed high \(\alpha\)-glucosidase activity in the supernatant. However, the \(\beta\)-glucosidase and \(\beta\)-galactosidase activities from the supernatant were low or null in the five strains studied. Table 2 also shows that \(\beta\)-galactosidase activity was the lower glycosidic activity showed by all the \textit{L. plantarum} strains analyzed. In relation to the subcellular location of glycosidase activities, the obtained results clearly showed that \(\beta\)-glucosidase and \(\beta\)-galactosidase activities seems to be membrane-bound, whereas \(\alpha\)-glucosidase activity appeared to be soluble as well as membrane-bound in the insoluble fraction.

All the assayed strains showed \(\beta\)-galactosidase activity on their insoluble fraction. In agreement with this result, all strains amplified the \textit{lp_3629} gene, encoding a \(\beta\)-galactosidase enzyme (Figure 1). The analyzed strains produced a 1400 bp amplicon when
DNA extracted from them was used as template in PCR reactions with oligonucleotides 371 and 372 to amplify \textit{lp}_3629 gene. These results indicated the widespread presence of a \(\beta \)-galactosidase enzyme in \textit{L. plantarum}.

3.2. \(\beta \)-glucosidase activity against glycosylated food phenolics

Deglycosylation assays detected by HPLC showed that \textit{L. plantarum} CECT 748T cultures transformed food aryl glycosides (quercetin glucoside, phloridzin, esculin, daidzin, and salicin) into their corresponding aryl aglycones (quercetin, phloretin, esculetin, daidzein, and saligenin) (Figure 2). However, when \textit{L. plantarum} extracts were used, deglycosylation was only observed after prolonged incubation times (18 h). All the assayed glycosylated phenolic compounds were transformed to their aglycones by extract, except quercetin glucoside which remains glycosylated after incubation (Figure 2).

3.3. Antioxidant activity of food phenolics deglycosylated by \textit{L. plantarum} CECT 748T

Antioxidant activity was determined by DPPH and SOD methods in food aryl glycosides, before and after their incubation with \textit{L. plantarum} CECT 748T. As observed in Figure 3, the antioxidant activity increased after incubation with \textit{L. plantarum} CECT 748T in the substrates assayed (quercetin glucoside, phloridzin, and esculin). The deglycosylation of these compounds yield quercetin, phloretin, and esculetin, respectively. By using the DPPH assay, it could be deduced that the antioxidant activity of quercetin increased almost 200% in relation to the antioxidant activity showed by their corresponding glycoside, quercetin.
glucoside. The increase showed by esculetin and phloretin is 75 and 60% as compared to
esculin and phloridzin, respectively.

By the SOD method, the antioxidant activity of esculin after *L. plantarum*
incubation increased 70%, similar to the increase detected by the DPPH method. However,
by the SOD assay, quercetin glucoside and phloridzin showed only a low increase (lower
than 10%) on their antioxidant activity when incubated with *L. plantarum*.

Figure 3 clearly shows that aglycones from the food phenolics assayed exhibited
higher antioxidant activity than their corresponding glycosylated forms. Therefore, these
results suggested that *L. plantarum* incubation is an appropriate method to increase the
antioxidant activity of glycosylated food phenolics.

4. Discussion

The bioavailability of food glycosylated polyphenols is improved by glycosidase
action. Several studies have been carried out to analyze the ability of lactic acid bacteria to
produce glycosidase enzymes. Grimaldi, McLean & Jiranec (2000) and Grimaldi et al.
(2005) observed as *Lactobacillus* spp., *Pediococcus* spp. and *Oenococcus oeni* isolated
from wine possess variable β- and α-glucosidase activities. Also, β-glucosidase activities
were found in *Lactobacillus* and *Enterococcus* strains isolated from the faeces of healthy
children and adults (Mroczynsk & Libudzisz, 2010). In *L. plantarum* strains, β-glucosidase
activity have previously been described (Fernández, Margolles, Suárez, & Mayo, 1999;
Sestelo, Poza, & Villa, 2004). However, the knowledge on other glycosidase activities is
scarce. In this work, for the first time, the glycosidase activity against seven model
substrates was assayed in *L. plantarum* strains isolated from various origins. All the strains exhibited α- and β-D-glucosidase, and β-D-galactosidase activities. No detectable β-D-fucosidase, β-D-xylosidase, and β-D-rhamnosidase activity was found, in spite that the presence of α-L-rhamnosidases has been described in some *L. plantarum* strains (Ávila, Jaquet, Moine, Requena, Peláez, Arigoni & Jankovic, 2009).

To our knowledge, there are no report describing the genetic and biochemical identification of α- and β-D-glucosidase enzymes in *L. plantarum* strains. Contrarily, the identification of β-galactosidases has previously been reported in *L. plantarum*. Fernández et al. (1999) described the duplication of a β-galactosidase gene in some *L. plantarum* strains. Moreover, Spano, Rinaldi, Ugliano, Moio, Beneduce and Massa (2005) characterized a gene codifying a putative β-glucosidase enzyme from a *L. plantarum* strain isolated from wine. Later, Acebrón, Curiel, de las Rivas, Muñoz and Mancheño (2009) proved experimentally that the putative β-glucosidase (*Lp_3629* in *L. plantarum* WCFS1) encodes a functional β-galactosidase, but not a β-glucosidase, as formerly described. Currently, *Lp_3629* protein is reannotated as β-galactosidase (Siezen, Francke, Renckens, Boekhorst, Wells, Kleerebezem, & van Hijum, 2012). Several putative transmembrane domains were found in *Lp_3629* amino acid sequence (Spano et al., 2005). The presence of putative transmembrane domains may suggest that *Lp_3629* is membrane-bound in *L. plantarum*. This location is in agreement with the results found in this study as β-galactosidase activity, as well as β-glucosidase, was only present in the membrane-bound fraction. Contrarily, α-glucosidase, was present in both, the soluble and in the insoluble fractions of cell extracts. As far as we know, in this study it have been demonstrated for the first time that the widespread β-galactosidase activity could be related with the widespread presence on *Lp_3629* protein among *L. plantarum* strains. Moreover, Spano et al. (2005)
reported that similar proteins to Lp_3629 are widely present among several species of lactic acid bacteria.

Aryl glycosidase activity in *L. plantarum* have previously been described. Oleuropein, an secoiridoid glucoside commonly found in leaves of the olive tree as well as in olives, was found to be hydrolyzed by the β-glucosidase activity present in *L. plantarum* strains (Ciafardini, Marsilio, Lanza, & Pozzi, 1994). Later, the β-glucosidase BglT from *L. plantarum* was shown to be active on p-NP-β-D-glucoside and salicin, as revealed by enzymatic assays; however, no activity was detected on the arylglucoside arbutin (Marasco, Salatiello, De Felice, & Sacco, 2000).

Increase in the antioxidant activity of fermented food products containing glycosylated polyphenols have previously been described. Dehulled and cooked grains of five millet varieties subjected to in vitro enzymatic digestion and microbial fermentation produced and increase in the antioxidant activity and bioavailability of the millet grain phenolics (Chandrasekara and Shahidi, 2012). In addition, fermentation of soymilk by *Lactobacillus rhamnosus* CRL981 enhanced antioxidant activity and increased isoflavone aglycone content (Marazza et al., 2012). Pyo, Lee and Lee (2005) demonstrated that the antioxidant activity of soybean increase with lactic acid fermentation due to the increased content of aglycones. Despite the existence of reports describing the increase in the antioxidant activity of fermented glycosylated phenolics, in this study was clearly demonstrated for the first time that the deglycosylation of specific aryl glycosides by *L. plantarum* was associated with an increase in their antioxidant activity. In this work, *L. plantarum* CECT 748T was able to efficiently biotransform arylglucosides to their bioactive aglycones, thus could be used as functional starter culture to increase the antioxidant activity of plant foods during fermentation. Despite that differences were observed among
the two antioxidant detection methods used, the results obtained in this work showed that
the action of *L. plantarum* increase the antioxidant activity of food aryl glucosides. Thus,
plant extracts and preparations with *L. plantarum* may be regarded as effective natural and
functional dietary food supplement due to their remarkable content of bioactive aglycones
and to their significant radical scavenging capacity.

It is generally accepted that the bioavailability of phenolics is rather low and the
values of the relative urinary excretion of the intake range from 0.3% for anthocyanins to
43% for isoflavones such as daidzin (Manach, Williamson, Morand, Scalbert & Rémésy,
2005). This demonstrates the great variability in the bioavailability of the different
polyphenols. This bioavailability can be even lower when the food polyphenols have a
large molecular weight, as is the case of hydrolyzable and condensed tannins and complex
flavonoid conjugates with several sugars and acylated with hydroxycinnamic acids. The
content of these complex phenolics in food generally is higher than that of simpler
phenolics, and these complex molecules have been underestimated in many studies mainly
due to analytical problems. The microbiota metabolizes these complex polyphenols into
smaller molecules which are generally better absorbed in the intestine (Selma, Espin &
Tomás-Barberan, 2009). This indicates that the systemic effects of polyphenols can be
modulated by the microbial metabolism.

The hydrolysis of glycosides results in metabolites that are potentially more
biologically active than the parent compounds (Selma, Espin, & Tomás-Barberan, 2009).
Furthermore, the glucosides are known to be less bioactive than their respective aglycones
(Mariusz, Jun Yamakoshi, & Yukihiiko, 1999). It is well known that almost all soy
isoflavones exist as glycosides, which are less estrogenic than their respective aglycones, in
soy and unfermented soy foods.Isoflavone glycosides are not absorbed intact across the
enterocyte of healthy adults because of their higher hydrophilicity and molecular weights (Chang & Nair, 1995; Hur, Lay, Beger, Freeman, & Rafii, 2000). Their bioavailability requires the conversion of glycosides to aglycones via the action of β-glycosidase from tissue or bacteria that colonize the small intestine for uptake to the peripheral circulation (Setchell, Brown, Zimmer-Nechemias, Bradhear, Wolfe, Kirschner, & Heubi, 2002; Setchell, Brown, & Lydeking-Olsen, 2002). Glucosidases of intestinal microbiota, such those from L. plantarum, could hydrolyze the glucoside isoflavones to aglycones and promote their absorption (Zubik & Meydani, 2003). Therefore, L. plantarum and other bacteria possessing glucosidase activity, are relevant in the production of compounds with better absorption, better bioavailability, increased antioxidant activity.

In summary, aryl β-glucosides are abundant in food environments that naturally inhabit L. plantarum and the production of aryl β-glucosidases by L. plantarum originates an increase in the functionally (antioxidant activity and bioavailability) of glycosilated phenolic compounds.

References

Acknowledgements

This work was supported by grants AGL2008-01052, AGL2011-22745, Consolider INGENIO 2010 CSD2007-00063 FUN-C-FOOD (MINECO), RM2012-00004 (INIA), and S-0505/AGR/000153 (CAM). We are grateful to M. V. Santamaría and J.M. Barcenilla.

J.M. Landete has a postdoctoral contract from the research program “Ramón y Cajal” (MINECO, Spain).
Table 1. *L. plantarum* glycosidic activities against six synthetic glycosidic substrates.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Origin</th>
<th>p-NP-β-D-Fuc<sup>a</sup></th>
<th>p-NP-β-D-Xyl<sup>b</sup></th>
<th>p-NP-β-D-Glu<sup>c</sup></th>
<th>p-NP-α-D-Glu<sup>d</sup></th>
<th>p-NP-β-D-Rham<sup>e</sup></th>
<th>p-NP-β-D-Gal<sup>f</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>WCFS1</td>
<td>Human saliva</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CECT 220</td>
<td>Corn silage</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CECT 221</td>
<td>Grass silage</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CECT 223</td>
<td>ND<sup>g</sup></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CECT 224</td>
<td>ND</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CECT 748<sup>l</sup></td>
<td>Pickled cabbage</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CECT 749</td>
<td>Pickled cabbage</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CECT 4185</td>
<td>Ensilage</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CECT 4645</td>
<td>Cheese</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 28</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 31</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 34</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 35</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 38</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 39</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 40</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 41</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 71</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 72</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>RM 73</td>
<td>Wine</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Substrates analyzed: ^ap-NP-β-D-fucopyranoside (p-NP-β-D-Fuc), ^bp-NP-β-D-xylopyranoside (p-NP-β-D-Xyl), ^cp-NB-β-D-glucopyranoside (p-NP-β-D-Glu), ^dp-NP-α-D-glucopyranoside (p-NP-α-D-Glu), ^ep-NP-α-D-rhamnopyranoside (p-NP-α-D-Rham), and ^fp-NP-β-D-galactopyranoside (p-NP-β-D-Gal). ^gND, no data available.
Table 2. Glycosidic activities in *L. plantarum* cell extracts, in soluble fraction or supernatant (S), and in insoluble fraction or pellet (P), against six synthetic glycosidic substrates. Glycosidic activity was measured as µM p-nitrophenyl/mg of protein.

<table>
<thead>
<tr>
<th>Activity</th>
<th>RM34 S</th>
<th>RM34 P</th>
<th>RM38 S</th>
<th>RM38 P</th>
<th>RM41 S</th>
<th>RM41 P</th>
<th>RM72 S</th>
<th>RM72 P</th>
<th>CECT 4645 S</th>
<th>CECT 4645 P</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-NP-β-D-Fuc</td>
<td>0</td>
</tr>
<tr>
<td>p-NP-β-D-Xyl</td>
<td>0</td>
</tr>
<tr>
<td>p-NP-β-D-Glu</td>
<td>17</td>
<td>502</td>
<td>325</td>
<td>0</td>
<td>524</td>
<td>0</td>
<td>260</td>
<td>0</td>
<td>610</td>
<td></td>
</tr>
<tr>
<td>p-NP-α-D-Glu</td>
<td>116</td>
<td>432</td>
<td>412</td>
<td>611</td>
<td>480</td>
<td>313</td>
<td>525</td>
<td>36</td>
<td>458</td>
<td></td>
</tr>
<tr>
<td>p-NP-β-D-Rham</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p-NP-β-D-Gal</td>
<td>0</td>
<td>21</td>
<td>160</td>
<td>42</td>
<td>195</td>
<td>16</td>
<td>12</td>
<td>21</td>
<td>237</td>
<td></td>
</tr>
</tbody>
</table>
Figures legends

Figure 1. **PCR detection of Lp_3629 β-galactosidase in *L. plantarum* strains.** *Lb. plantarum* WCFS1 (a) CECT 220 (b), CECT 221 (c), CECT 223 (d), CECT 748^T (e), RM28 (f), RM31 (g), RM34 (h), RM40 (i), and RM71 (j). A DNA marker standard (*Eco*RI and *Hind*III digested λ DNA) was included in the left. The amplicon size (1400 bp) is indicated by an arrow.

Figure 2. *L. plantarum* deglycosilation of aryl glucosides by HPLC analysis. Chromatograms of supernatants from *L. plantarum* CECT CECT 748^T culture grown for 10 days in the presence of esculin (A), phloridzin (B), quercetin-glucoside (C) and p-NP-β-D-glucoside (D), or from cell extracts after 20 h incubation in the presence of the same aryl glucosides are shown. The HPLC chromatograms from the control samples are also indicated. The chromatograms were recorded at 280 nm.

Figure 3. Variation in the antioxidant activity of aryl-glucosides after incubation with *L. plantarum* CECT 748^T as measured by DPPH (grey) and SOD (black) methods. Values represent the means of three independent experiments; error bars represent the standard deviations.
Figure 1.