LA AGRICULTURA TRADICIONAL DE MONTAÑA Y SUS EFECTOS SOBRE LA DINÁMICA HIDROMORFOLÓGICA DE LADERAS Y CUENCAS

JOSÉ M. GARCÍA RUIZ
Instituto Pirenaico de Ecología (CSIC), Campus de Aula Dei,
Apartado 202, 50.080-Zaragoza

Resumen

Se exponen las consecuencias del aprovechamiento agrícola en laderas de fuerte pendiente durante el llamado sistema tradicional. En la mayor parte de los casos la ocupación de las laderas responde a momentos de crisis, por aumento demográfico o por tensiones sociales. Los resultados incluyen un incremento de la deforestación y de la producción de sedimentos, con importantes pérdidas de suelo. La información histórica y geomorfológica disponible, los resultados obtenidos en otros territorios sometidos a fuerte presión demográfica y el empleo de métodos experimentales de campo confirman el importante papel desempeñado por la agricultura tradicional en la transformación del paisaje y en las perturbaciones detectadas en la dinámica hidromorfológica de laderas y cuencas.

Palabras clave

Erosión, Agricultura tradicional, Deforestación, Dinámica geomorfológica.

Abstract

The consequences of agricultural uses in steep slopes during the so-called traditional system are presented. In most of the cases, cultivation of the slopes is a consequence of crisis periods, due to a demographic growth or to social tenseness. The results include an increase of deforestation and sediment yield, with important soil losses. The available historical and geomorphological information, the results obtained in other countries subject to a strong demographic pressure, and the use of field experimental methods confirm the decisive role played by the traditional farming systems in the transformation of the landscape and in the disturbances detected in the hydromorphological dynamics of hillslopes and catchments.

Key-words

Erosion, Traditional farming, Deforestation, Geomorphic processes.
1. Introducción

La literatura científica cuenta con numerosos estudios en los que, de manera directa o indirecta, se refleja la responsabilidad de las actividades humanas en la intensificación de los procesos de erosión del suelo. Es bien conocido el hecho de que la deforestación y la introducción de la agricultura en laderas provocan perturbaciones profundas en la textura, capacidad de resistencia de los suelos, tasa de infiltración y, en consecuencia, en el ciclo hidrológico a escala de laderas y cuencas. La ya clásica obra de Goudie (2ª edición, 1986) incluye información muy bien organizada sobre el impacto humano en la vegetación, los suelos, la evolución geomorfológica y las aguas.

Uno de los debates más interesantes por sus implicaciones económicas, sociales y ambientales, se refiere al papel de los sistemas agrícolas como desencadenantes de procesos erosivos. Los paisajes actuales son el resultado de la interacción compleja y mutuamente interdependiente de factores ambientales y gestión humana. Esta última ha dejado sus huellas a lo largo de siglos y explica gran parte de la estructura del paisaje y de los patrones que gobernan su funcionamiento hidromorfológico.

Un análisis, incluso superficial, de cualquier paisaje humanizado revela que muchas fuentes de sedimentos y algunas de las áreas más activas geomorfológicamente se hallan estrechamente relacionadas con actividades humanas. Se ha comprobado que el relleno de algunos fondos de valle ha tenido lugar en tiempo históricos, muy probablemente como consecuencia de un cambio inducido en la cubierta vegetal (Zuidam, 1975; Buriillo et al., 1985; Peña et al., 1993; Arauzo & Gutiérrez Elorza, 1994). Igualmente, se ha podido demostrar que muchas estructuras sedimentarias (conos de deyección, deltas) son el resultado de las alteraciones provocadas por el hombre en la dinámica geomorfológica (Gómez Villar, 1996; Gómez Villar & García Ruiz, en prensa).

En este trabajo se presentan los rasgos básicos del paisaje actual en ambientes mediterráneos y sus herencias históricas. Posteriormente se exponen las fuentes de información fundamentales para explicar la configuración antropogénica de ese paisaje.

2. El paisaje actual y sus herencias históricas

El paisaje mediterráneo, incluyendo las áreas de montaña, ha soportado una prolongada presión humana, aunque fluctuante en su intensidad. En el Mediterráneo Occidental las primeras evidencias de una actividad agrícola, muy limitada en el espacio, se remontan al 6.700 B.P. en las zonas costeras (Cova del Or y Cendres, País Valenciano: Fortea & Martí, 1987). En el interior, el Bajo Aragón contaba ya con comunidades agrícolas en el 6.500 B.P. (Lopez García & López Sáez, 1996), mientras que en la cueva de Chaves (al pie de la Sierra de Guara, en Huesca) hay agricultura bien
LA AGRICULTURA TRADICIONAL DE MONTAÑA

constatada y cerámica cardial hacia el 6.800 B.P., y el yacimiento de Olvena (valle del Escara, Pirineo Aragonés) tiene también indicios de agricultura en el 6.400 B.P. (Baldellou & Utrilla, 1994; Rodanés & Ramón, en prensa). Existen también evidencias de incendios intencionados hacia el 3.980 ± 50 B.P. (Montserrat 1991) con el fin de aclarar el bosque y favorecer la expansión de pastos subalpinos en el Pirineo. Esta última fecha estaría en relación con la presencia de poblamiento ocasional en la alta montaña pirenaica (dólmenes eneolíticos del 4000 B.P: Marsan & Utrilla, 1996; Andrés, 1992). Desde entonces hasta la actualidad, la elaboración del paisaje mediterráneo, con sus múltiples variedades, ha sido un proceso muy complejo en el que el crecimiento demográfico, los conflictos internos, las presiones externas y los modos de organización social han contribuido a transformar de manera muy discriminada las laderas y los fondos, modificando incluso la topografía por medio de bancales, desviando las escorrentías superficiales hacia los lugares donde podían afectar menos al espacio agrícola, reorganizando los flujos subsuperficiales y favoreciendo la concentración de nutrientes en unos sectores frente a otros. Se ha tratado, definitivamente, de un difícil proceso de adaptación a las dificultades ambientales y de carácter socioeconómico, imprescindible para asegurar, hasta cierto punto, la sostenibilidad del sistema. La ausencia de una adaptación cultural a las fuerzas pendientes y a la elevada intensidad de las precipitaciones hubiera conducido a una pérdida general de suelo, que en algunas regiones del mundo representa la principal causa de pobreza.

En el largo proceso de humanización de los paisajes mediterráneos se tiende a suponer que los primeros espacios ocupados por la agricultura son los que se consideran mejores desde la perspectiva agronómica actual. Sin embargo, esto no ha sido totalmente cierto. Es verdad que en las áreas de montaña los fondos de valle, especialmente las terrazas que escapaban a las avenidas fluviales, fueron los más atractivos para la localización de los primeros campos, junto con algunos rellanos colgados y quizás también algunas divisorias alomadas, protegidas de invasiones ocasionales. De hecho, en muchos valles de montaña los únicos pueblos se asientan en el fondo aluvial, las más de las veces en la confluencia con afluentes importantes, allí donde la anchura del valle potenciaba el aprovechamiento agrícola. En otros casos, sin embargo, en valles con importante desarrollo de morrenas laterales y de rellanos de origen glaciolacustre, un segundo conjunto de núcleos de población se localiza a media ladera (como en el valle de Benasque o en el valle del Gállego). Un tercer grupo, siempre de menor entidad y ocupando un espacio agrícola más reducido, se asienta sobre altas divisorias y hondoneras (Bergasa en el valle del Aragón, Cortillas en el Sobrepueblo). No resulta fácil, dentro de un valle que contenga los tres tipos de pueblos, identificar el orden de ocupación, pues aunque desde una perspectiva actual los fondos de valle fueran inicialmente los más
Por encima de 1600 m el bosque cubre el territorio de manera general hasta que a partir de 1800 m se inician los primeros pastos supraforestales, que en el piso subalpino (1800-2200 m) tienen un origen claramente antropogéneo.

La Foto 1 indica la existencia de varias unidades de paisaje, dentro de las cuales podrían distinguirse otras subunidades en función del grado de actividad humana y de la complejidad meso y micrótográfica: 1) Areas de bosque. 2) Areas de pastos supraforestales. 3) Laderas cultivadas. 4) Fondos de valle cultivados. Lo importante es la gran diferencia existente entre estas dos últimas unidades, en función de su potencialidad productiva y de los aportes de energía y de nutrientes por parte de los agricultores. Los campos llanos del fondo del valle no tenían más valor por ser más llanos —al menos hasta cierto umbral de pendiente— sino porque recibían agua y nutrientes desde las laderas y no tenían problemas de pérdida de suelo (salvo en los márgenes de los cauces), lo que aseguraba una mayor productividad con menor aporte de energía. Es aquí y en los mejores bancales, generalmente los más próximos a los pueblos, donde se fundamentaba la base agrícola de cada núcleo. El resto, ocupando laderas pendientes, formaba parte de un espacio agrícola más secundario, que en casos extremos podía llegar a ser verdaderamente marginal.

Existía, pues, una gradación —perceptible todavía hoy en el paisaje— entre los mejores enclaves agrícolas y los campos de uso ocasional. La inversión de trabaja-jo, los sistemas de cultivo, las relaciones con la ganadería y los procedimientos de conservación del suelo estaban relacionados directamente con el grado de dependencia que la población tenía respecto de cada enclave, es decir, respecto de la seguridad que proporcionaba su productividad potencial. De ahí que en un mismo valle, incluso dentro de un mismo municipio, puedan encontrarse sectores muy bien conservados, con complejos sistemas de drenaje para desviar la escorrentía, setos (Foto 2), bancales de delicada construcción y más difícil conservación, frente a otros con signos evidentes de deterioro.

Está claro que la gestión discriminada del espacio agropecuario tiene grandes repercusiones en los modos de circulación del agua en las laderas y en el transporte de sedimentos. La frecuencia con que se incendiaba el matorral, las características de los bancales o la superficie ocupada por la agricultura nómade (articas), por ejemplo, producen respuestas hidromorfológicas marcadamente diferentes y explican no sólo muchos rasgos del paisaje actual, configurado a lo largo de siglos anteriores, sino también su funcionamiento.

3. Las fuentes de información

El estudio de los efectos hidromorfológicos de la llamada agricultura tradicional se enfrenta a numerosas dificultades. En primer lugar, se trata de un conjunto de modelos de gestión ya desaparecidos, salvo en aspectos muy parcia-
Foto 1. Perspectiva del valle de Aisa, Pirineo aragonés, las laderas solanas muestran la huella de una intensa actividad humana, incluso décadas después de su abandono. El fondo de valle es el único espacio cultivado en la actualidad.

Foto 2. Chías, en el valle de Benasque, Pirineo aragonés. Los campos, destinados fundamentalmente a la producción de hierba, aparecen cercados por setos vivos que aumentan la complejidad del paisaje y reducen los riesgos erosivos.
les, y por lo tanto sus consecuencias no pueden ser analizadas directamente. En segundo lugar, la recolonización vegetal que afecta a las laderas antiguamente cultivadas enmascara los procesos geomorfológicos e hidrológicos derivados de aquella gestión. Ello no impide, sin embargo, disponer de información muy valiosa sobre erosión, sedimentación y evolución de movimientos en masa estrechamente vinculados a actividades humanas.

Esquematizando el problema pueden distinguirse tres tipos de métodos de aproximación. 1) El método geomorfológico e histórico. 2) El método comparativo. 3) El método experimental.

3.1 Las fuentes geomorfológicas e históricas

En realidad, en este subapartado se incluyen métodos muy dispares, pero todos ellos tienen en común el basarse en datos del pasado y, por lo tanto, interpretan las consecuencias hidromorfológicas de actividades humanas en siglos anteriores.

Es evidente que algunos procesos geomórficos tuvieron suficiente entidad en su momento como para dejar una huella duradera en el paisaje, tanto por la forma que puede haber quedado en la ladera (por ejemplo, cicatrices de movimientos en masa), como, más frecuentemente, por los depósitos correlativos (sedimentos en lagos, conos de deyección, llanuras aluviales).

Centrado el problema en el Pirineo Aragonés, existen numerosos indicios de una reactivación geomorfológica en tiempos históricos. Así, por ejemplo, a partir de los sedimentos acumulados en lagos de alta montaña, Montserrat (1992) identificó dos momentos con erosión más intensa, uno hacia el 3.950±50 B.P. y otro en los siglos XI y XII de nuestra era. En el primer caso los procesos erosivos se asocian a incendios forestales de cierta entidad, que pueden atribuirse a una deforestación consciente para ampliar la extensión de los pastos supraforestales; la recuperación del bosque fue rápida, como lo prueban los análisis polínicos, y no parece que fuera un fenómeno con especial trascendencia geológica. Para la misma época existe otra evidencia de incendio forestal en el valle de Bentue, en el Prepirineo central. Al pie de un esparre de calizas un derrubio de ladera muestra su estructura interna, con un claro nivel de cenizas y ramillas quemadas que separan dos niveles bien diferentes. La edad de las cenizas es 3340 ± 70 BP (radiocarbono calibrado, UBAR –447).

Muy más importante fue el segundo de los episodios: paralelamente a la expansión de la trashumancia en los llanos de la Depresión del Ebro, se eliminó el nivel superior del bosque, de manera que su límite descendió en gran parte del Pirineo varios cientos de metros. En ocasiones, el piso supraforestal se inicia a poco más de 1300 m (valle del Aragón Subordán) y puede conectarse directamente con el nivel de cultivos (como sucedía en Otal, valle de Broto). En este caso el proceso deforestador fue más extenso y duradero, favoreciendo la presencia de amplios rebaños durante el verano. El
estudio de depósitos lacustres demuestra que, después de millones de sedimentación preferentemente orgánica, indicadora de un ambiente muy estable, se inicia bruscamente, hacia el siglo XI, un proceso de sedimentación de cenizas -derivadas de incendios forestales- y a continuación la llegada de aportes detríticos (arcillas, arenas) que progresan en forma de delta hacia el interior del lago. Tales aportes indican el predominio de procesos erosivos tras la eliminación del bosque.

El paisaje supraforestal actual confirma las perturbaciones producidas, a pesar del buen recubrimiento de las formaciones herbáceas: los movimientos en masa superficiales (deslizamientos planares) han desmantelado buena parte de los suelos (Puigdefábregas & García Ruiz, 1983), y densas redes de incisiones se han instalado en laderas rectilíneas, a la vez que cabeceras muy activas de torrentes aportan grandes cantidades de sedimentos hacia pequeños conos de deyección o directamente hacia barrancos de orden superior. Sobre los restos del regolito predominan extensas redes de terracillas con muy poco suelo y escasa vegetación (García Ruiz & Del Barrio, 1990; García Ruiz et al., 1990). La aplicación de un Sistema de Información Geográfica al estudio de la organización espacial de procesos geomórficos ha permitido a González et al. (1995) identificar un conjunto de procesos relacionados con las actividades humanas en el piso subalpino.

En montaña media existen muchas evidencias geomorfológicas del impacto de actividades agrícolas. Muchos antiguos campos de cultivo, especialmente los localizados en laderas convexas y rectas, han perdido gran parte del suelo original y cuentan con un elevado volumen de piedras en superficie. Algunas laderas de matorral muestran frecuentes incisiones -en general muy poco profundas- y frecuentes coladas de piedras, que dejan una cicatriz que tarda décadas en recolonizarse (García Ruiz & Puigdefábregas, 1982).

En la actualidad, una vez abandonada y colonizada por el matorral o incluso por el bosque la mayoría de las laderas, es difícil imaginar cómo funcionaba la montaña media en momentos de mayor presión humana, pero hay evidencias de un gran dinamismo geomorfológico. Los cauces de todos los ríos pirenaicos son excelentes indicadores de la erosión en las laderas y del aumento de la torrentialidad al atravesar la zona más afectada por la deforestación y los cultivos. Hasta bien entrado el siglo XX las llanuras aluviales se caracterizan por un escombrado de gravas con barras desprovistas de vegetación y canales trenzados muy instables. Todo indica que durante la época de máxima utilización agrícola del territorio llegaban muchos sedimentos desde las laderas a los cauces y que la intensidad de las avenidas impedía la estabilización de la vegetación y los canales. El trabajo de Rubio & Hernández (1990) sobre el río Ara aporta información sobre este problema. Lo mismo sucedía con algunos abanicos aluviales que total o parcialmente tenían una gran actividad (Gomez Villar,
1996). Las grandes acumulaciones de coladas de piedras en la cabecera del valle del Juez (García Ruiz & Martínez Castroviejo, 1990) y en otros torrentes secundarios también parecen ligados a un origen antropico. La Fig. 1 sugiere que las áreas más afectadas por la actividad humana son también las que aportan sedimentos más voluminosos y, por lo tanto, están sujetas a mayor erosión y a una más energica y voluminosa escorrentía superficial. De hecho, lo que prueba esta figura es que, en contra de lo que pudiera esperarse, el tamaño medio de los sedimentos en el río Aurín no se reduce desde la cabecera, sino que a partir del kilómetro 12 aumenta, coincidiendo con la llegada de tributarios desde las laderas más antropizadas (García Ruiz et al., 1996). Estos aportes no pueden explicarse simplemente por un cambio climático, que en ningún caso ha sido capaz de perturbar seriamente en los últimos 2000 años la cubierta vegetal.

La información histórica, con base documental, es todavía fragmentaria, pero ayuda a interpretar los modos de ocupación del espacio y a identificar los momentos más importantes de la transformación del paisaje. Como ejemplo, entre otros muchos, puede citarse el estudio de Bielza et al. (1986), donde señala que los momentos culminantes de la presión agrícola en el Pirineo se producen a principios del siglo XIV, durante el XVI y en el XIX. La profusión del artígeno durante el siglo XVI obligó a adoptar medidas reguladoras en 1560 y 1688.

En el Sistema Ibérico riojano, el excelente estudio de Moreno Fernández (1995) analiza la evolución del monte público durante los siglos XVIII y XIX, es decir, en el tránsito entre el Antiguo Régimen y la implantación del liberalismo económico. En ese momento la actividad agrícola pasa a ser un amortiguador frente a la crisis de la trashumancia y de la artesanía textil. La búsqueda obligada de otras fuentes de supervivencia, junto con

![Fig. 1. Evolución del tamaño de los cantos a lo largo del cauce del río Aurín (Pirineo aragonés)](image-url)
LA AGRICULTURA TRADICIONAL DE MONTAÑA

Foto 3. Laderas de Díazas, en las proximidades del Parque Nacional de Ordesa y Monte Perdido. La eliminación del bosque, que se remonta, en general, a los siglos XI y XII, ha favorecido el arroyamiento superficial y los movimientos en masa, con pérdida de gran parte del suelo en las laderas más pendientes.

Foto 4. Muchos ríos de montaña reflejan una elevada torrencialidad, propiciada por la deforestación y el desarrollo de la agricultura en fuertes pendientes. Con frecuencia, el aporte de sedimentos es tan grande que el fondo de valle se escorba de sedimentos gruesos ante la incompetencia del cauce para evacuar todos los materiales que le llegan. En la foto, fondo de valle del río Ijuez, cuenca alta del río Aragón.
la desamortización de muchos montes públicos, dan lugar a una reactivación general de las roturaciones (que también pueden estar relacionadas con un ascenso en el precio del trigo)(Foto 5). Este autor señala que extensas zonas roturadas en laderas durante el siglo XIX fueron pronto abandonadas debido a la erosión.

En la Depresión del Ebro, Gallego et al. (1992) señalan un aumento de las roturaciones durante el siglo XIX, en cuyas dos últimas décadas se produce un incipiente abandono de tierras, y nueva expansión del espacio agrícola a principios del siglo XX. Esta evolución es similar a la apuntada por Moreno Fernández (1995) en el sector riojano de la Depresión del Ebro entre 1859 y 1868, donde la Desamortización favorece muchas roturaciones de encinares y robledales, algunos adehesados, como en Bañares, Santo Domingo, Grañón, Fuenmayor, hasta el punto de que casi llegan a desaparecer los patrimonios rústicos públicos. Las roturaciones de carrascales en el municipio de Cenicero a principios del siglo XX (García Ruiz & Arnáez, 1987) y la progresiva eliminación de los carrascales del llano riojano durante este siglo (Manzanares, 1987) confirman la expansión agrícola en tierras llanas a costa de los últimos restos de formaciones forestales.

Un buen ejemplo de interconexión entre un fenómeno geomorfológico e información documental es el de la gran colada de piedras de San Adrián de Sasave, estudiada recientemente por Martí et al. (en prensa). San Adrián de Sasave es un Monasterio construido en el siglo IX en la confluencia de dos torrentes (Foto 6). A mediados del siglo XX sólo el tejado y la parte alta de los muros de la iglesia eran visibles: una gran colada de piedras sepultaba casi todo el edificio y las dependencias del Monasterio. En la actualidad la iglesia ha sido exhumada, lo que permite analizar las características del movimiento en masa.

Existen evidencias documentales de una primera avenida en el siglo XII, que enterró parcialmente al Monasterio. Esto coincide con información procedente de otras fuentes: así, los troncos encontrados en su lugar original durante la excavación han dado una edad de nacimiento entre 1030 y 1160 AD (datación con radiocarbono calibrado, UBAR 446), a los que hay que añadir 75-80 años de acuerdo con su número de anillos. La muerte del árbol parece, pues, coincidir con la fecha de la primera avenida (Martí et al., en prensa).

El acceso a la iglesia, por su puerta principal, se produce por medio de cinco escalones descendientes. Esto es muy inusual, ya que lo normal es que las escaleras de entrada sean ascendentes, no descendentes, indicando que después de un enterramiento parcial de la iglesia la única posibilidad de acceso fue por medio de escalones desde el nivel superior del depósito hasta la entrada. Otras escaleras descendientes se construyeron en la entrada meridional.

El Monasterio desapareció a finales del siglo XVIII. Una gran avenida depositó un enorme volumen de sedimentos pobremente clasificados, dejando casi completamente enterrado a la iglesia. En la actualidad la cuenca de drenaje (3.2
Foto 5. El crecimiento demográfico y la crisis de la ganadería obligaron a ocupar laderas pendientes para su aprovechamiento agrícola. En los mejores lugares se construyeron complejos sistemas de bancales que permitieron la conservación del suelo. Cabecera de la cuenca del Alhama, en el Sistema Ibérico riojano.

Foto 6. La ermita-monasterio de San Adrián de Sasave fue enterrada por varias coladas de piedras. Su excavación ha permitido estudiar la estructura sedimentaria del depósito y datar el momento de las primeras avenidas.
Km2) está cubierta por un bosque de Pinus sylvestris y muestra una gran estabilidad, de manera que es imposible imaginar una elevada producción de sedimentos. Sin embargo, las cosas eran muy diferentes en el pasado y los campos cultivados ocupaban la mayoría de las laderas por debajo de 1600 m. El arado romano se introdujo en esta región inmediatamente después de la construcción del Monasterio, facilitando el cultivo en condiciones topográficas difíciles. En esas condiciones pequeñas coladas de piedras e incisiones pudieron aportar mucho sedimento durante décadas, almacenándose en diferentes lugares de la cuenca, preparados para movilizarse durante una precipitación de gran intensidad.

Un ejemplo similar por sus interacciones entre información geomorfológica e histórica es el aportado por Dearing (1992) sobre los sedimentos acumulados en un lago de Gales durante los últimos 800 años. En este periodo los valores más elevados de producción de sedimentos se registraron en los siglos XVIII y XX, con motivo de la actividad minera. En cambio, los efectos de la deforestación, la expansión agrícola y la Pequeña Edad del Hielo fueron muy pequeños. La agricultura en laderas tuvo más efectos sobre los picos de crecida (sedimentos particulados de mayor calibre) que sobre la producción de sedimentos. Hasta el siglo XVIII, en pleno dominio de la agricultura tradicional, se ha estimado una producción de sedimentos de 10 Tm. Km$^{-2}$. año$^{-1}$, cifra realmente baja en comparación con registros actuales en el área mediterránea.

3.2 El método comparativo

Este método se basa en la utilización de información procedente de otras regiones del mundo en las que la agricultura tradicional sea plenamente funcional o incluso se halle en expansión. En la actualidad gran parte de las montañas de los países subdesarrollados se encuentran en condiciones muy parecidas a las montañas mediterráneas en el momento de su máximo demográfico, es decir, en pleno crecimiento poblacional, con escasas innovaciones tecnológicas, reducidos intercambios con el exterior y ausencia de núcleos de población importantes, capaces de transmitir dinamismo al territorio circundante (García Ruiz, 1990). De ahí que, como los Pirineos o el Sistema Ibérico en los siglos XVIII y XIX, haya verdadera necesidad de ocupar nuevas tierras y reducir la superficie ocupada por el bosque.

El funcionamiento hidromorfológico de los sistemas agrícolas en países subdesarrollados es un tema de creciente interés entre los interesados por la erosión, la productividad del suelo, la calidad de los recursos hídricos y la conservación de grandes obras hidráulicas. Debe tenerse en cuenta, además, que algunas prácticas agrícolas se toman como ejemplo de una gestión adecuada de los recursos, mientras que otras representan pérdidas de suelo tan elevadas que ponen en duda la sostenibilidad del sistema agropecuario. Precisamente la fuerte dependencia respecto a la agricultura tradicional por parte de una población en expansión numérica hace de la conservación del suelo un factor limitante (Fotos 7 y 8), del que de-
Foto 7. Los Andes de Mérida (Venezuela) se han cultivado intensamente con cercales después de la conquista española, ocupando laderas muy pendientes que han sufrido grandes pérdidas de suelo.

Foto 8. La escasez de agua y de suelo obliga a concentrar los esfuerzos de los grupos humanos en los mejores lugares, aquellos que potencialmente muestran una mayor productividad. En general, las laderas bajas y los fondos de valle poseen suelos más potentes y más húmedos, incluso con posibilidades de regadío. Las laderas medias y altas, sometidas a incendios periódicos y sobrepastoreo, muestran los efectos de un proceso avanzado de desertificación. Valle de Azadén, Atlas central, Marruecos.
puede no sólo la supervivencia de las áreas más directamente afectadas (las áreas de montaña), sino también el bienestar de las llanuras inmediatas.

En este sentido un estudio clave es el de Ives & Messerli (1989) sobre el Himalaya, o mejor dicho, lo que esos autores llaman el dilema del Himalaya. El incremento demográfico subsiguiente a la introducción de la medicina moderna así como la supresión de la malaria, con duplicación de efectivos poblacionales cada 27 años, da lugar a un aumento rápido de la demanda de madera como combustible y elemento de construcción, así como una creciente necesidad de tierra agrícola para la provisión de más alimentos. Este problema inicial crea una mayor presión sobre el bosque (deforestación masiva, con pérdida de la mitad de las reservas forestales de Nepal entre 1950 y 1980). A su vez, las nuevas tierras de cultivo se asientan en laderas cada vez más pendientes y marginales, favoreciendo la ocurrencia de deslizamientos y perturbando el ciclo hidrológico normal (pag.3). La consecuencia es un aumento de la escorrentía superficial durante el monzón de verano (ver Hamilton & Pearce, 1988), con avenidas catastróficas y acumulación de sedimentos en las llanuras, descenso de la capa freática durante la estación seca y colmatación de embalses. Los efectos se dejarían sentir en el gran delta del Ganges, afectado por avenidas más intensas y frecuentes (ver también Eckholm, 1976). Los autores señalan además que los problemas de erosión en laderas dan lugar a una pérdida de tierra agrícola que sólo puede compensarse con más deforestación y el empleo de más energía para obtener combustible.

Este esquema puede ser exagerado -y de hecho ha sido contestado por Hofer (1993), quien no encuentra tendencias significativas en el caudal del río Ganges-, pero en sus elementos básicos responde a lo apuntado por muchos otros autores tanto para el Himalaya (Blaikie, 1988) como para las Filipinas (White, 1996) o para las montañas del África Oriental. Así, Hurni (1988) reporta una regeneración del suelo diez veces menor que las tasas de erosión en las montañas de Etiopía, lo que imposibilita pensar en un desarrollo sostenible. El mismo Hurni (1987) señala que las zonas cultivadas soportan 42 veces más erosión que las áreas forestales y 8 veces más que las laderas con matorral. En las montañas de Uganda, donde históricamente se ha constatado una elevada densidad de población, el reciente aumento demográfico induce a la deforestación y al cultivo de laderas cada vez más pendientes, sin estrategias adecuadas de conservación del suelo (Bagoona, 1988). Liniger (1988) apunta además como causa de la erosión en algunas montañas los movimientos migratorios de personas poco adaptadas a las nuevas condiciones ambientales. En Nigeria, Lal (1996) ha demostrado que las prácticas de barbecho producen altas pérdidas de nutrientes, en contra de la creencia popular. En Rwanda, Lewis & Nyanulinda (1996) han medido tasas de pérdida de suelo en torno a 68 Tm.ha-1.año-1 en campos agrícolas, debido igualmente a la creciente
ocupación del espacio en condiciones marginales. Estos autores ponen de relieve que sería posible una reducción de las tasas de erosión mediante el aterrazamiento, la introducción intercalada de árboles o dejando fajas de hierba entre las parcelas, pero algunos de estos métodos serían incompatibles con la necesidad inmediata de una alta producción de alimentos. El libro de Messerli & Hurni (1990) contiene mucha información sobre los problemas de erosión y conservación del suelo que afectan a las montañas africanas.

Muchos otros estudios aportan resultados similares. De entre ellos puede tomarse como ejemplo el trabajo de Ries (1995), comparando tres cuencas del Himalaya nepalí sometidas a usos del suelo muy diferentes. La cuenca utilizada más intensamente, con arroz, cereal de invierno, mijo y maíz, produce 13.3 Tm. ha-1. año-1 de sedimentos; una cuenca con un grado medio de utilización (pastos, patatas) produce 7.5 Tm. ha-1. año-1; y la tercera cuenca, con un uso muy bajo (predominio de bosque natural), 2.1 Tm. ha-1. año-1. En el estudio de Ries se llega a dos importantes conclusiones: En primer lugar, la mayor erosión se obtiene en las parcelas sometidas a agricultura nómada (el equivalente a las artícas pirenaicas), del orden de 10 veces más que cualquier otro uso con excepción del maíz. Y en segundo lugar, el impacto humano es mucho mayor sobre el caudal que sobre la erosión del suelo, lo que provoca una mayor inestabilidad en los cauces (más deslizamientos en los taludes por socavamiento).

Salvando las distancias, una situación similar a la de muchas montañas subdesarrolladas ha tenido lugar en la Sierra de Lujar, en el sur de España. Faulkner (1995) señala una expansión del cultivo del almendro en laderas pendientes, sin aterrazar, en este caso debido más a condiciones concretas del mercado que a una angustiosa presión demográfica. El resultado es el desarrollo de activas redes de cárcavas.

No es difícil imaginar que en determinados momentos la producción de escorrentía y sedimentos en montañas como el Pirineo y el Sistema Ibérico se hayan guiado por modelos similares a los suientemente descritos. Los momentos de fuerte presión sobre el territorio, bien por causas demográficas o sociopolíticas, se han resuelto con un aumento de la presión sobre el bosque y una ampliación de la superficie cultivada hacia espacios muy marginales. Aunque sólo fuera durante unas décadas, la erosión del suelo alcanzaría niveles muy elevados, se desencadenarían movimientos en masa superficiales y los ríos reforzarían su carácter braided a la vez que incrementarían el tamaño medio de sus sedimentos.

3.3 El método experimental.

Mediante el método experimental se trata de reproducir condiciones similares a las dominantes en la agricultura actual y en la tradicional. Generalmente se obtiene información sobre la producción de escorrentía y sedimentos en parcelas cerradas, de tamaño muy variable. En la
"Estación Experimental Valle de Aísa" se han reproducido 9 usos distintos, entre ellos la agricultura cerealista en pendiente. Las parcelas, de 10x3m, cuentan con una caja Gerlach en su parte inferior, desde donde la escorrentía se dirige a un sistema de balancines cuya señal es registrada en un data logger. Una parte de la escorrentía es desviada hacia un depósito para el análisis posterior de solutos y del sedimento en suspensión.

La Fig 2 muestra la concentración media de sedimentos en distintos usos agrícolas en comparación con el matorral denso, a partir de parcelas de la "Estación Experimental Valle de Aísa". Los valores extremos han sido eliminados para evitar distorsiones provocadas por errores derivados de la propia experimentación. Las mayores pérdidas se dan en el barbecho, una práctica habitual en los campos pendientes, seguido por la artica y, a mucha distancia, por el cereal con abono. La artica (Foto 9), con una concentración media de 700 mg.l-1, y sobre todo el barbecho, que se acerca a 2g.l-1, constituyen los usos agrícolas con mayores efectos erosivos. En cambio, el cereal abonado no presenta especial problemas salvo por el hecho de que se ha cultivado siempre en alternancia con el barbecho. La diferencia entre la artica y el cereal fertilizado se debe a su muy diferente productividad, pues el rendimiento medio en el primer caso está en torno a 700 Kg.Ha-1 y en el segundo está en unos 2,800 Kg.Ha-1. La Tabla 2 indica los coeficientes de escorrentía y la pérdida de suelo durante el periodo de

<table>
<thead>
<tr>
<th>Uso</th>
<th>Coeficiente de escorrentía</th>
<th>Pérdida total de sedimentos (T/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artica</td>
<td>14.7</td>
<td>9.0</td>
</tr>
<tr>
<td>Cereal fertilizado</td>
<td>17.9</td>
<td>17.0</td>
</tr>
<tr>
<td>Barbecho</td>
<td>12.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Matorral denso</td>
<td>26.3</td>
<td>33.3</td>
</tr>
</tbody>
</table>
un año en artica, barbecho, cereal fertilizado y matorral denso. Los coeficientes de escorrentía son bastante moderados, lo que resulta lógico si se tiene en cuenta que salvo en la parcela de matorral denso se trata de un suelo removido con una elevada rugosidad. Los valores más bajos se obtienen en la parcela de matorral denso, seguida por la de cereal con abono químico. El barbecho, debido a su escasa vegetación, y la artica presentan, por el contrario, coeficientes sensiblemente más altos. Las diferencias entre los usos en pérdida de suelo son muy elevados, al coincidir la magnitud de la concentración de sedimentos con la del coeficiente de escorrentía. De ahí que el barbecho alcance 15.5 T.Ha-1 y la artica, 10 T.Ha-1, superando en 10 veces al matorral denso y triplicando o duplicando respectivamente al cereal con abono. Es evidente, no obstante, que las cifras sólo tienen un valor comparativo, pues las condiciones en que se produce la experimentación alteran en parte el modo de circulación del agua en la ladera.

La baja productividad de la artica explica, pues, su elevada producción de sedi-

Foto 9. La Estación Experimental “Valle de Aisa” reproduce diferentes usos del suelo para el control de la erosión y la escorrentía superficial. Una de las parcelas se destina al cultivo de cereal siguiendo el sistema clásico de antiguo, que consiste en desbrozar una parte de la ladera, quemar las ramas y raíces del matorral y distribuir las cenizas a modo de abono. En la foto, el momento de la quema.
mentos, a lo que debería añadirse la falta de estructuras de conservación en condiciones naturales. Esa baja productividad está relacionada con la pobreza en nutrientes de los suelos en ladera sobre flysch y con el bajo aporte procedente de las cenizas del matorral. Los análisis efectuados por Lasanta (1989, pp. 31-37) demuestran que los suelos cultivados tienen un contenido muy bajo en fósforo asimilable, en potasio asimilable y en magnesio, con una capacidad total de cambio de baja a muy baja en el 80% de los suelos analizados. Esta pobreza se compensa mediante la adición de fertilizantes orgánicos o químicos y de ahí su excelente productividad y el control de la erosión en la parcela abonada. Sin embargo, el añadido de las cenizas en las articas representaba bien poco como entrada real de nutrientes.

La Tabla 3 confirma que *Genista scorpius*, la especie dominante entre las roturadas para su quema y distribución en las articas, aporta cantidades extremadamente bajas en nutrientes (García Ruiz et al., 1996). Las cenizas representan sólo el 2.25% de la planta y su contenido en P, Mg y Na es insignificante. Este análisis permite concluir que la quema del matorral no contribuía mucho a enriquecer el suelo, por lo que la productividad era muy baja y la recuperación de la vegetación, una vez abandonada la parcela, era muy lenta; los resultados obtenidos demuestran que *Genista scorpius* es una planta de necesidades muy modestas en nutrientes y de ahí su persistencia durante décadas en los campos abandonados, sin que apenas avance la sucesión vegetal (Molinió et al., 1994).

En comparación con el matorral denso, las articas y el barbecho se convertían en las fuentes de sedimentos más importantes del sistema tradicional junto con los matorrales abiertos (García Ruiz et al., 1995) producidos por incendios periódicos. En todo caso, los resultados confirman que la agricultura cerealista en laderas pendientes, especialmente en el caso de las articas, es responsable de la erosión y deterioro de los suelos en muchas laderas de montaña. De ahí que pueda afirmarse que durante el llamado sistema tradicional prácticamente toda la montaña media contribuía a la carga de sedimentos en los ríos, excepto las laderas umbrias cubiertas de bosque y los fondos de valle (García Ruiz, 1996). En la actualidad el área contribuyente se ha reducido mucho en extensión y en intensidad. González et al. (en prensa), en una primera evaluación en la cuenca experimental Loma de Arnás, consideran que sólo el 1 por ciento del territorio aporta sedimentos hacia los cauces en cantida-

| Tabla 3. Contenido de nutrientes de *Genista scorpius*. (Resultados sobre materia seca) |
|---------------------------------|-----|
| Cenizas | 2,25|
| Nitrogénio | 1,24|
| Fósforo | 0,05|
| Potasio | 0,29|
| Calcio | 0,53|
| Magnesio | 0,08|
| Sodio | 33 ppm.|

138
des considerables, debido a la colonización vegetal después del abandono de tierras.

También a partir de parcelas experimentales, Soto et al. (1995) demostraron que en Galicia el sistema de rozas aumenta la fertilización en los primeros meses, pero decrece a niveles similares a los anteriores al incendio después de 9 meses. Además comprobaron pérdidas de nutrientes por volatilización durante el incendio y por movilización por la esorrentía, registrándose aumentos de 20 a 50 veces en la pérdida de nutrientes. Por otro lado, las pérdidas de suelo fueron extremadamente altas: 57.18 y 45.73 Tm.Ha-1 en dos parcelas experimentales en comparación con 1.35 Tm.Ha-1 en la parcela de control (matorral de Ulex europaeus). Bouhier (1979) atribuye al impacto histórico de las rozas el paisaje erosionado que se observa hoy en muchas áreas montañosas de Galicia.

4. Conclusiones

Las sociedades humanas han organizado el paisaje (en el sentido de proporcionar una jerarquización de funciones en el espacio y en el tiempo) de acuerdo con una serie de condicionantes entre los que destacan los factores ambientales, una forma cultural de percibir las relaciones con la naturaleza, la presión demográfica y los modos de organización social. La mayoría de estos factores son cambiantes en el tiempo, de manera que la actuación del hombre en un territorio concreto puede variar en periodos muy cortos. Los momentos de mayor presión -sea cual sea su origen- son los que tienen mayor trascendencia en la dinámica hidromorfológica de laderas y cauces porque coinciden con las fases más erosivas.

En general, la sustitución de una densa cubierta vegetal por campos de cultivo representa una mayor producción de escorrentía y de sedimentos, pero el problema alcanza otras dimensiones cuando esa sustitución se produce en laderas pendientes y, más aún, cuando no se toman las necesarias precauciones conservacionistas, como ha sucedido con la agricultura nómad. En esas condiciones no sólo se ha aportado grandes cantidades de sedimentos a los fondos de valle, llanuras aluviales, conos de deyección y deltas, sino que también se han incrementado temporalmente los picos de crecida y la frecuencia de avenidas. Además, una vez finalizada la presión sobre el territorio, la recuperación de la cubierta vegetal es muy lenta y las tasas elevadas de erosión se mantienen aún durante décadas. Las montañas mediterráneas muestran los resultados de esos periodos erosivos, con laderas ocupadas por un matorral abierto, escaso suelo y abundante pedrigrisidad superficial (Foto 10). En contraste, algunos sectores (fondos de valle, rellanos colgados, laderas abancaladas) reflejan el esfuerzo consciente por conservar y mejorar los lugares de mayor productividad (Foto 11).

La oposición entre las áreas mejor conservadas (que recibían abonado y suelo, además de mucha energía humana y animal) y las áreas marginales es una constante del mundo mediterráneo. Las
Foto 10. Muchas laderas de montaña sufren intensos procesos de erosión por arroyamiento superficial. La eliminación de la vegetación, los cultivos, los incendios y el pisoteo del ganado explican la reducción de las tasas de infiltración. La recolonización vegetal se enfrenta a grandes dificultades incluso décadas después de que desapareciera el factor causante. Ladera en el valle de Canfranc, Pirineo aragonés, con matorral abierto, escaso suelo y evidencias de arrastres superficiales.

Foto 11. Al pie de la Sierra de Alcubierre (sector central de la Depresión del Ebro) los valles aparecen rellenos de sedimentos tras la erosión de las laderas yesíferas. Los fondos de valle son ahora los únicos espacios cultivados, a veces formando bancos y controlando las líneas de drenaje.
primeras constituían el eje central en torno al cual giraba la sociedad agrícola, mientras las segundas formaban parte de una reserva utilizable en los momentos más difíciles. Una situación similar -quizás aún más extrema- se está dando actualmente en muchas montañas del Tercer Mundo, donde el fuerte incremento demográfico obliga a ocupar laderas cada vez más pendientes y alejadas, lo que pone en duda la sustentabilidad de un sistema que ha dependido siempre de complejas técnicas y rutinas de conservación del suelo.

Agradecimientos

Este trabajo se ha elaborado con el apoyo del Proyecto de investigación: "Producción de sedimentos y escorrentía como consecuencia de los cambios de uso del suelo en áreas de montaña: Instrumentos para valorar el impacto hidrológico de la marginalización territorial" (AMB96-0401), financiado por la CICYT.

Referencias

Dearing, J.A. (1992): Sediment yield and sources in a Welsh upland lake-catch-

Faulkner, H. (1995): Gully erosion associated with the expansion of unterrace-
ced almond cultivation in the coastal Sierra de Lujar, S. Spain. *Land De-

Fortea, J. & Martí, B. (1987): Considera-
ciones sobre los inicios del Neolítico en el Mediterráneo español. *Zephy-
rus*, 37: 179-211.

Gallego, D., Germán, L. & Pinilla, V.
(1992): Transformaciones económi-
cas en el valle del Ebro (1800-1936). *En Estructura económica del Valle
del Ebro* (J.M. Serrano Sanz, edr.), pp., 129-166, Espasa Calpe, Madrid.

García Ruiz, J.M. & Del Barrio, G.
(1990): Effects géomorphologiques
des activités humaines dans les mi-
lieux supraflorestiers des Pyrénées es-

El medio natural. En *Cenicero histó-
rico. Transformaciones económicas y
cambios sociales en una comunidad
torioana.*, pp. 11-56, Cenicero.

García Ruiz, J.M. & Puigdefábregas, J.
(1982): Formas de erosión en el
deflysch eoceno surpíreno.
Cuadernos de Investigación Geográfica, 8:
85-128.

García Ruiz, J.M. (1990): El viejo di-
lema: estabilidad e inestabilidad de los
ecosistemas de montaña. En *Geoeoco-
logía de las áreas de montaña* (J.M.

de tierras y erosión en áreas de monta-
ña. *En Erosión y recuperación de
tierras en áreas marginales* (T. La-
santa & J.M. García Ruiz, eds.), Insti-
tuto de Estudios Riojanos y Socie-
dad Española de Geomorfología, pp.
33-50, Logroño.

García Ruiz, J.M., Alvera, B., Del Ba-
rrio, G. & Puigdefábregas, J. (1990):
Geomorphologic processes above the
timberline in the Spanish Pyrenees.
*Mountain Research and Develop-
ment*, 10(3): 201-214.

García Ruiz, J.M., Lasanta, T., Gonzá-
lez, C., Martí, C., White, S., Errea,
M.P. & Maestro, M. (1996): La agri-
cultura marginal como fuente de se-
dimentos en el Pirineo Central. *IV Reunión
de Geomorfología* (A. Grandal & J. Pagés, eds.), Sociedad Espa-
ñola de Geomorfología, pp. 123-132,
La Coruña.

García Ruiz, J.M., Lasanta, T., Ortigosa,
L., Ruiz Flaño, P., Martí, C. & Gon-
der different land uses in the Spanish
Pyrenees. *Mountain Research and De-

Gómez Villar, A. & García Ruiz, J.M.
(en prensa): The role of human activ-
ities in the development of alluvial
fans. *Physics and Chemistry of the
Earth.*

Gómez Villar, A. (1996): *Conos aluvia-
les en pequeñas cuencas torrentenciales
de montaña.* *Geoforma Ediciones*, 191 pp., Logroño.

