
MEIGO: a software suite based on metaheuristics for global

optimization in systems biology and bioinformatics

Matlab Version - User’s guide

Jose A. Egea, David Henriques, Thomas Cokelaer,
Alejandro F. Villaverde, Julio R. Banga, Julio Saez-Rodriguez

saezrodriguez@ebi.ac.uk
julio@iim.csic.es

josea.egea@upct.es

October 21, 2013

Contents

1 Introduction 1

2 Installing MEIGO 1

2.1 Local solvers (mex files) compatibility list . 1

3 Continuous and mixed-integer problems: Enhanced Scatter Search (eSS) 2

3.1 Quick start: How to carry out an optimization with eSS 2

3.2 eSS usage . 3

3.2.1 Problem definition . 3

3.2.2 User options . 4

3.2.3 Global options . 5

3.2.4 Local options . 5

3.2.5 Output . 6

3.2.6 Guidelines for using eSS . 7

3.2.7 Extra tool: ess multistart . 7

3.3 Application examples . 8

3.3.1 Unconstrained problem . 8

3.3.2 Constrained problem . 9

3.3.3 Constrained problem with equality constraints 9

3.3.4 Mixed integer problem . 11

3.3.5 Dynamic parameter estimation problem using N2FB 12

3.3.6 ess multistart application . 13

4 Integer optimization: Variable Neighbourhood Search (VNS) 13

4.1 Quick start: How to carry out an optimization with VNS 15

4.2 VNS usage . 15

4.2.1 Problem definition . 15

4.2.2 VNS options . 15

4.2.3 Output . 16

4.2.4 Guidelines for using VNS . 16

4.3 Application example . 17

5 Parallel computation in MEIGO 17

5.1 jPar installation . 17

5.2 Use of jPar . 18

5.3 Quick start: How to carry out an optimization with CeSS or CeVNS 18

5.4 Options and problem definition . 19

2

5.4.1 Output . 19

5.5 CeSS application example . 20

5.6 CeVNS application example . 21

Appendix A: List of options for eSS 23

Appendix B: List of options for VNS 24

References 25

1 Introduction

MEIGO is an optimization suite which implements metaheuristics for solving different nonlinear
optimization problems in both continuous and integer domains arising in systems biology, bioin-
formatics and other areas. It consists of two main metaheuristics: the enhanced scatter search
method, eSS (Egea et al., 2009, 2010) for continuous and mixed-integer problems, and the variable
neighbourhood search metaheuristic (Mladenović and Hansen, 2010), for integer (combinatorial)
optimization problems.

Both metaheuristics have been implemented in Matlab and can be invoked within the MEIGO
framework. This manual describes the use of both methods (eSS and VNS), and their correspond-
ing parallel versions based on a cooperative strategy (CeSS and CVNS).

2 Installing MEIGO

1. Download the MEIGO package from http://www.iim.csic.es/~gingproc/meigo.html.

2. Inside Matlab move to the package directory and add MEIGO to the Matlab path by running
the script install MEIGO.m.

Important: the Matlab implementations of eSS and CeSS make use of several local optimization
solvers which were available in C or Fortran. We have developed mex files (dynamic link libraries)
to call these solvers from Matlab. However, please note that they are only fully functional for the
Windows operating system. Further, there are issues regarding the mex files compatibility for the
32 and 64 bits versions of Matlab. We provide a table below which illustrates which solvers run
under which combination of Matlab and operating system.

2.1 Local solvers (mex files) compatibility list

The current distribution of MEIGO does not include mex files (binaries) for all the local solvers
and every operating system (OS). Table 1 lists the currently working local solvers binaries for
each OS. Note that if you have a 64-bit OS you can circumvent this by installing the 32-bit version
of Matlab. Moreover for the case of IPOPT, instructions to obtain a compatible MEX file are
available in https://projects.coin-or.org/Ipopt/wiki/MatlabInterface.

Important: the general conclusion from the compatibility table is that, if you want to
have a fully functional version of eSS, you should use it with Matlab 32 bits version
under Windows (tested with 32bits versions R2007-2011). This is especially important
for parameter estimation problems, where the use of local solver n2fb results in very
significant speed-ups.

3 Continuous and mixed-integer problems: Enhanced Scat-
ter Search (eSS)

eSS is the Matlab implementation of the enhanced scatter search method (Egea et al., 2009,
2010) which is part of the MEIGO toolbox for global optimization in bioinformatics. It is a
metaheuristic which seeks the global minimum of mixed-integer nonlinear programming (MINLP)
problems specified by

∗Tested under Matlab 32 bits versions R2007b-R2011. Later versions might present issues related with lack of
backwards compatibility of the MEX files.

†Requires Matlab Optimization Toolbox.

1

http://www.iim.csic.es/~gingproc/meigo.html
 https://projects.coin-or.org/Ipopt/wiki/MatlabInterface

Windows Linux MAC OS X
Local solver Matlab 32-bits Matlab 64-bits Matlab 32-bits Matlab 64-bits Matlab

N2FB∗ yes no yes no no
IPOPT∗ yes no no no no

FMINSEARCH † yes yes yes yes yes
DHC yes yes yes yes yes

HOOKE yes yes yes yes yes
NOMAD yes yes yes yes yes
SOLNP yes yes yes yes yes

LSQNONLIN † yes yes yes yes yes
FMINCON † yes yes yes yes yes

Table 1: Compatibility table of local optimization solvers. Solvers implemented as
MEX files might not run in all the operating systems.

min
x
f(x, p1, p2, ..., pn)

subject to

ceq = 0

cL ≤ c(x) ≤ cU
xL ≤ x ≤ xU

where x is the vector of decision variables, and xL and xU its respective bounds. p1, . . . , pn are
optional extra input parameters to be passed to the objective function (see examples in sections
3.3.3, 3.3.5). ceq is a set of equality constraints. c(x) is a set of inequality constraints with lower
and upper bounds, cL and cU . Finally, f(x, p1, p2, ..., pn) is the objective function to be minimized.

3.1 Quick start: How to carry out an optimization with eSS

• Start Matlab

• Add MEIGO Toolbox to the Matlab path. ∗.

• Define your problem and options similarly to this scheme (see the following sections)

problem.f=’ex1’; %mfile containing the objective function

problem.x_L=-1*ones(1,2); %lower bounds

problem.x_U=ones(1,2); %upper bounds

opts.maxeval=500;

opts.local.solver=’dhc’;

• Type: Results=MEIGO(problem,opts, ’ESS’). If your problem has additional constant pa-
rameters to be passed to the objective function, they are declared as input parameters after
“opts” (e.g., type Results=MEIGO(problem,opts,’ESS’,p1,p2) if your model has two extra
input parameters, p1 and p2).

∗The MEIGO package can be downloaded for installation at http://www.iim.csic.es/~gingproc/meigo.html

2

http://www.iim.csic.es/~gingproc/meigo.html

Regarding the objective function, the input parameter is the decision vector (with extra param-
eters p1, p2, . . . , pn if they were defined before calling the solver). The objective function must
provide a scalar output parameter (the objective function value) and, for constrained problems, a
second output parameter, which is a vector containing the values of the constraints. For problems
containing equality constraints (= 0), they must be defined before the inequality constraints. Some
examples are provided in section 3.3. For a quick reference, consider the following example which
will be later extended in section 3.3.3.

min
x
f(x) = −x4

subject to

x4 − x3 + x2 − x1 + k4x4x6 = 0

x1 − 1 + k1x1x5 = 0

x2 − x1 + k2x2x6 = 0

x3 + x1 − 1 + k3x3x5 = 0

x0.55 + x0.56 ≤ 4

0 ≤ x1, x2, x3, x4 ≤ 1

0 ≤ x5, x6 ≤ 16

with k1, k2, k3, k4 being extra parameters defined before calling the solver. The objective function
for this problem would be:

example of objective function

function [f,g]=ex3(x,k1,k2,k3,k4)

f=-x(4);

%Equality constraints. Declared BEFORE inequality constraints

g(1)=x(4)-x(3)+x(2)-x(1)+k4*x(4).*x(6);

g(2)=x(1)-1+k1*x(1).*x(5);

g(3)=x(2)-x(1)+k2*x(2).*x(6);

g(4)=x(3)+x(1)-1+k3*x(3).*x(5);

%Inequality constraint

g(5)=x(5).^0.5+x(6).^0.5;

return

This objective function can be invoked like this (let us assume that x has dimension 6 and we
define the 4 extra input parameters k1 to k4)

[f]=ex3(ones(1,6),0.2,0.5,-0.1,0.9)

3.2 eSS usage

3.2.1 Problem definition

In order to solve an optimization problem with eSS, a structure (named problem here) containing
the following fields must be defined:

• f : String containing the name of the objective function.

• x L: Vector containing the lower bounds of the variables.

3

• x U: Vector containing the upper bounds of the variables.

Besides, there are two optional fields

• x 0: Vector or matrix containing the given initial point(s).

• f 0: Function values of the initial point(s). These values MUST correspond to feasible points.

• vtr: Objective function value to be reached.

If the problem contains additional constraints and/or integer or binary variables, the following
fields should also be defined:

• neq∗: Number of equality (= 0) constraints.

• c L: Vector defining the lower bounds of the inequality constraints.

• c U: Vector defining the upper bounds of the inequality constraints.

• int var†: Number of integer variables.

• bin var†: Number of binary variables.

3.2.2 User options

The user may define a set of different options related to the optimization problem. They are defined
in another structure (named opts here) which has the following fields:

• maxeval: Maximum number of function evaluations (default: 1000).

• maxtime: Maximum CPU time in seconds (default: 60).

• iterprint: Print information on the screen after each iteration. 0: Deactivated; 1: Activated
(default: 1).

• plot: Plots convergence curves. 0: Deactivated; 1: Real Time; 2: Final results (default: 0).

• weight: Weight that multiplies the penalty term added to the objective function in con-
strained problems (default: 106).

• log var: Indexes of the variables which will be analyzed using a logarithmic distribution
instead of an uniform one‡ (default: empty). See an example in Section 3.3.5.

• tolc: Maximum constraint violation allowed. This is also used as a tolerance for the local
search (default: 10−5).

• prob bound: Probability (0-1) of biasing the search towards the bounds. 0: Never bias to
bounds; 1: Always bias to bounds (default: 0.5).

• inter save: Saves results of intermediate iterations in eSS report.mat. Useful for very
long runs. 0: deactivated; 1: activated (default: 0).

∗In problems with equality constraints they must be declared first before inequality constraints (See example 3.3.3)

†For mixed integer problems, the variables must be defined in the following order: [cont., int., bin.].

‡Useful when the bounds of a decision variables have different orders of magnitude and they are both positive.

4

3.2.3 Global options

A set of options related to the global search phase of the algorithm may also be defined within the
structure opts:

• dim refset: Number of elements d in RefSet (default: “auto”, d2−d
10·nvar ≥ 0).

• ndiverse: Number of solutions generated by the diversificator in the initial stage (default:
“auto”, 10 · nvar).

• combination: Type of combination of RefSet elements. 1: Hyper-rectangles combinations;
2: Linear combinations (default: 1).

3.2.4 Local options

eSS is a global optimization method which performs local searches from selected initial points to
accelerate the convergence to optimal solutions. Some options regarding the local search can be
defined in a sub-structure within the options structure (named opts.local here), which has the
following fields:

• solver: Local solver to perform the local search. Solvers available (names must be introduced
as strings):

– fmincon:‡ Sequential quadratic programming method (The MathWorksTM, 2008).

– solnp: the SQP method¶.

– fminsearch:‡. Modification of the Simplex-based method implemented in Matlab (The
MathWorksTM, 2008) to handle bound constraints, by John D’Errico.

– dhc: Direct search method (de la Maza and Yuret, 1994).

– hooke: Hooke & Jeeves direct search method (Hooke and Jeeves, 1961)‖.

– n2fb: Specific method for non-linear least squares problems (Dennis et al., 1981).

– lsqnonlin:‡ Another method for non-linear least squares problems (The MathWorksTM,
2008).

– ipopt : Interior point method (Wächter and Biegler, 2006).

• tol: Level of tolerance in local search. 1: Relaxed; 2: Medium; 3: Tight (default: 2 in
intermediate searches and 3 in the final stage).

• iterprint: Print each iteration of local solver on screen (only for local solvers that allow it).
0: Deactivated; 1: Activated (default: 0).

• n1: Number of iterations before applying the local search for the first time (default: 1).

• n2: Number of function iterations in the global phase between two consecutive local searches
(default: 10).

• finish: Applies local search to the best solution found once the optimization is finished
(default: same as opts.local.solver).

• bestx: If activated (i.e., positive value), applies the local search only when the algorithm
finds a solution better than the current best solution. 0: Deactivated; 1: Activated (default:
0).

‡Requires the Matlab Optimization Toolbox for its use.

¶The original Matlab code can be found at http://www.stanford.edu/~yyye/matlab/ by Ye (1987)

‖C.T. Kelley’s Matlab code is used (http://www4.ncsu.edu/~ctk/darts/hooke.m)

5

http://www.stanford.edu/~yyye/matlab/
http://www4.ncsu.edu/~ctk/darts/hooke.m

• balance: Balances between quality (=0) and diversity (=1) for choosing initial points for
the local search (default 0.5).

Note that, for some problems, the local search may be inefficient, spending a high computation
time to provide low quality solutions. This is the case of many noisy or ill-posed problems. In these
instances, the local search may be deactivated by user by defining the value of the field solver as
zero.

When using n2fb (or dn2fb) and lsqnonlin as local solvers, the objective function value must
be formulated as the square of the sum of differences between the experimental and predicted
data (i.e.,

∑ndata
i=1 (yexpi − yteori)

2). Besides, a third output argument must be defined in the
objective function: a vector containing those residuals (i.e., R = [(yexp1 − yteor1), (yexp2 −
yteor2), . . . , (yexpndata − yteorndata)]). In Section 3.3.5 an application example illustrates the use
of these local methods.

3.2.5 Output

eSS ’s output is a structure (called Results here) containing the following fields:

• Results.fbest: Best objective function value found after the optimization.

• Results.xbest: Vector providing the best function value found.

• Results.cpu time: CPU Time (in seconds) consumed in the optimization.

• Results.f : Vector containing the best objective function value after each iteration.

• Results.x: Matrix containing the best vector after each iteration.

• Results.time: Vector containing the CPU time consumed after each iteration.

• Results.neval: Vector containing the number of evaluations after each iteration.

• Results.numeval: Total number of function evaluations.

• Results.local solutions: Matrix of local solutions found.

• Results.local solutions values: Function values of the local solutions.

• Results.Refset.x: Matrix of solutions in the final Refset after the optimization.

• Results.Refset.f : Objective function values of the final Refset members after the optimiza-
tion.

• Results.Refset.fpen: Penalized objective function values of the final Refset members after
the optimization. The values for feasible solutions will coincide with their corresponding
Results.Refset.f values.

• Results.Refset.const: Matrix containing the values of the constraints (those whose bounds
are defined in problem.c L and/or problem.c U) for each of the solutions in the final Refset
after the optimization.

• Results.end crit: Criterion to finish the optimization:

– 1: Maximum number of function evaluations achieved.

– 2: Maximum allowed CPU time achieved.

– 3: Value to reach achieved.

The structures Results, problem and opts are saved in a file called ess_report.mat.

6

3.2.6 Guidelines for using eSS

Although eSS default options have been chosen to be robust for a high number of problems, the
tuning of some parameters may help increase the efficiency for a particular problem. Here is
presented a list of suggestions for parameter choice depending on the type of problem the user has
to face.

• If the problem is likely to be convex, an early local search can find the optimum in short
time. For that it is recommended to set the parameter opts.local.n1 = 1. Besides, setting
opts.local.n2 = 1 too, the algorithm increases the local search frequency, becoming an
“intelligent” multistart.

• When the bounds differ in several orders of magnitude, the decision variables indexes may
be included in log var.

• For problems with discontinuities and/or noise, the local search should either be deac-
tivated or performed by a direct search method. In those cases, activating the option
opts.local.bestx = 1 may help reduce the computation time wasted in useless local searches
by performing a local search only when the best solution found has been improved.

• When the function values are very high in absolute value, the weight (opts.weight) should
be increased to be at least 3 orders of magnitude higher than the mean function value of the
solutions found.

• When the search space is very large compared to the area in which the global solution may
be located, a first investment in diversification may be useful. For that, a high value of
opts.ndiverse can help finding good initial solutions to create the initial RefSet. A prelim-
inary run with aggressive options can locate a set of good initial solutions for a subsequent
optimization with more robust settings. This aggressive search can be performed by reducing
the size of the RefSet (opts.dim refset). A more robust search is produced increasing the
RefSet size.

• If local searches are very time-consuming, their tolerance can be relaxed by reducing the
value of opts.local.tol not to spend a long time in local solution refinements.

• When there are many local solutions close to the global one, the option opts.local.balance
should be set close to 0.

3.2.7 Extra tool: ess multistart

This tool allows the user to perform a multistart optimization procedure with any of the local
solvers implemented in eSS using the same problem declaration. ess multistart can be invoked
within MEIGO using the same structure setting the third input parameter as ’MULTISTART’.

>> Results_multistart=MEIGO(problem,opts,’MULTISTART’,p1,p2,...)

The structure problem has the same fields as in eSS (except problem.vtr which does not apply
here).

The structure opts has only a few fields compared with eSS (i.e.,opts.ndiverse, opts.local.solver,
opts.iterprint, opts.local.tol and opts.local.iterprint). They all work like in eSS except
opts.ndiverse, which indicates the number of initial points chosen for the multistart procedure.
A histogram with the final solutions obtained and their frequency is presented at the end of the
procedure.

The output structure Results multistart contains the following fields:

• .fbest: Best objective function value found after the multistart optimization.

7

• .xbest: Vector providing the best function value.

• .x0: Matrix containing the vectors used for the multistart optimization.

• .f0: Vector containing the objective function values of the vectors in Results multistart.x0.

• .func: Vector containing the objective function values obtained after every local search.

• .xxx: Matrix containing the vectors provided by the local optimizations.

• .no conv: Matrix containing the initial points that did not converge to any solution.

• .nfuneval: Matrix containing the number of function evaluations performed in every opti-
mization.

The structures problem, opts and Results multistart are saved in a file called Results_multistart.mat.

3.3 Application examples

In this section we will illustrate the usage of eSS within MEIGO for solving different instances.

3.3.1 Unconstrained problem

min
x
f(x) = 4x21 − 2.1x41 + 1/3x61 + x1x2 − 4x22 + 4x42

subject to

−1 ≤ x1, x2 ≤ 1

The objective function is defined in ex1.m. Note that being an unconstrained problem, there is
only one output argument, f .

ex1.m script

function F=ex1(x)

F=4*x(1).*x(1)-2.1*x(1).^4+1/3*x(1).^6+x(1).*x(2)-4*x(2).*x(2)+4*x(2).^4;

return

The solver is called in main_ex1.m. This problem has two known global optima in x∗ = (0.0898,−0.7127)
and x∗ = (−0.0898, 0.7127) with f(x∗) = −1.03163.

Options set:

• Maximum number of function evaluations set to 500.

• Maximum number of initial diverse solutions set to 40.

• Local solver chosen: dhc.

• Local solver for final refinement: fmincon.

• Show the information provided by local solvers on screen.

8

main ex1.m script

%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex1’; %mfile containing the objective function

problem.x_L=-1*ones(1,2); %lower bounds

problem.x_U=ones(1,2); %upper bounds

opts.maxeval=500;

opts.ndiverse=40;

opts.local.solver=’dhc’;

opts.local.finish=’fmincon’;

opts.local.iterprint=1;

%========================= END OF PROBLEM SPECIFICATIONS =====================

Results=MEIGO(problem,opts,’ESS’);

3.3.2 Constrained problem

min
x
f(x) = −x1 − x2

subject to

x2 ≤ 2x41 − 8x31 + 8x21 + 2

x2 ≤ 4x41 − 32x31 + 88x21 − 96x1 + 36

0 ≤ x1 ≤ 3

0 ≤ x2 ≤ 4

The objective function is defined in ex2.m. Note that being a constrained problem, there are two
output arguments, f and g.

ex2.m script

function [F,g]=ex2(x)

F=-x(1)-x(2);

g(1)=x(2)-2*x(1).^4+8*x(1).^3-8*x(1).^2;

g(2)=x(2)-4*x(1).^4+32*x(1).^3-88*x(1).^2+96*x(1);

return

The solver is called in main_ex2.m. The global optimum for this problem is located in x∗ =
[2.32952, 3.17849] with f(x∗) = −5.50801.

Options set:

• Maximum number of function evaluations set to 750.

• Increase frequency of local solver calls. The first time the solver is called after 2 iterations.
From that moment, the local solver will be called every 3 iterations.

3.3.3 Constrained problem with equality constraints

min
x
f(x) = −x4

9

main ex2.m script

%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex2’; %mfile containing the objective function

problem.x_L=[0 0]; %lower bounds

problem.x_U=[3 4]; %upper bounds

problem.c_L=[-inf -inf];

problem.c_U=[2 36];

opts.maxeval=750;

opts.local.n1=2;

opts.local.n2=3;

%========================= END OF PROBLEM SPECIFICATIONS =====================

Results=MEIGO(problem,opts,’ESS’);

subject to

x4 − x3 + x2 − x1 + k4x4x6 = 0

x1 − 1 + k1x1x5 = 0

x2 − x1 + k2x2x6 = 0

x3 + x1 − 1 + k3x3x5 = 0

x0.55 + x0.56 ≤ 4

0 ≤ x1, x2, x3, x4 ≤ 1

0 ≤ x5, x6 ≤ 16

with k1 = 0.09755988, k3 = 0.0391908, k2 = 0.99 · k1 and k4 = 0.9 · k3. The objective function is
defined in ex3.m. Note that equality constraints must be declared before inequality constraints.
Parameters k1, . . . , k4 are passed to the objective function through the main script, therefore they
do not have to be calculated in every function evaluation. See the input arguments below.

ex3.m script

function [f,g]=ex3(x,k1,k2,k3,k4)

f=-x(4);

%Equality constraints

g(1)=x(4)-x(3)+x(2)-x(1)+k4*x(4).*x(6);

g(2)=x(1)-1+k1*x(1).*x(5);

g(3)=x(2)-x(1)+k2*x(2).*x(6);

g(4)=x(3)+x(1)-1+k3*x(3).*x(5);

%Inequality constraint

g(5)=x(5).^0.5+x(6).^0.5;

return

The solver is called in main_ex3.m. The global optimum for this problem is located in x∗ =
[0.77152, 0.516994, 0.204189, 0.388811, 3.0355, 5.0973] with f(x∗) = −0.388811.

Options set:

• Number of equality constraints set to 4 in problem.neq.

• Fields problem.c_L and problem.c_U only contain bounds for inequality constraints.

• Maximum computation time set to 5 seconds.

• Local solver chosen: solnp.

• Parameters k1, . . . , k4 are passed to the main routine as input arguments.

10

main ex3.m script

%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex3’;

problem.x_L=[0 0 0 0 0 0];

problem.x_U=[1 1 1 1 16 16];

problem.neq=4;

problem.c_L=-inf;

problem.c_U=4;

opts.maxtime=5;

opts.local.solver=’solnp’;

%========================= END OF PROBLEM SPECIFICATIONS =====================

k1=0.09755988;

k3=0.0391908;

k2=0.99*k1;

k4=0.9*k3;

[Results]=MEIGO(problem,opts,’ESS’,k1,k2,k3,k4);

3.3.4 Mixed integer problem

min
x
f(x) = x22 + x23 + 2x21 + x24 − 5x2 − 5x3 − 21x1 + 7x4

subject to

x22 + x23 + x21 + x24 + x2 − x3 + x1 − x4 ≤ 8

x22 + 2x23 + x21 + 2x24 − x2 − x4 ≤ 10

2x22 + x23 + x21 + 2x2 − x3 − x4 ≤ 5

0 ≤ xi ≤ 10 ∀i ∈ [1, . . . , 4]

Integer variables: x2, x3 and x4. In the function declaration (ex4.m) they must have the last
indexes.

ex4.m script

function [F,g]=ex4(x)

F = x(2)^2 + x(3)^2 + 2.0*x(1)^2 + x(4)^2 - 5.0*x(2) - 5.0*x(3) - 21.0*x(1) + 7.0*x(4);

g(1) = x(2)^2 + x(3)^2 + x(1)^2 + x(4)^2 + x(2) - x(3) + x(1) - x(4);

g(2) = x(2)^2 + 2.0*x(3)^2 + x(1)^2 + 2.0*x(4)^2 - x(2) - x(4);

g(3) = 2.0*x(2)^2 + x(3)^2 + x(1)^2 + 2.0*x(2) - x(3) - x(4);

return

The solver is called in main_ex4.m. The global optimum for this problem is located in x∗ =
[2.23607, 0, 1, 0] with f(x∗) = −40.9575.

Options set:

• An initial point is specified.

• The number of integer variables is specified (mandatory).

• No local solver for mixed-integer problems is available in MEIGO.

• Stop criterion determined by the CPU time (2 seconds).

11

main ex4.m script

%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex4’;

problem.x_L=[0 0 0 0];

problem.x_U=[10 10 10 10];

problem.x_0=[3 4 5 1];

problem.int_var=3;

problem.c_L=[-inf -inf -inf];

problem.c_U=[8 10 5];

opts.local.solver=0;

opts.maxtime=2;

%========================= END OF PROBLEM SPECIFICATIONS =====================

Results=MEIGO(problem,opts,’ESS’);

3.3.5 Dynamic parameter estimation problem using N2FB

Here we will illustrate the use of eSS within MEIGO using N2FB as local solver. In particular,
the problem considered is the isomerization of α-pinene (Rodŕıguez-Fernández et al., 2006).

min
p
J =

5∑
j=1

8∑
i=1

(yj(p, ti)− ỹji)2

subject to the system dynamics

dy1
dt

= −(p1 + p2)y1

dy2
dt

= p1y1

dy3
dt

= p2y1 − (p3 + p4)y3 + p5y5

dy4
dt

= p3y3

dy5
dt

= p4y3 − p5y5

and subject to parameter bounds

0 ≤ xi ≤ 1 ∀i ∈ [1, . . . , 5]

In order to use N2FB as local solver, in the script ex5.m there must be three output arguments:
apart from the objective function and the constraints (empty in this case), a vector R containing
the residuals must be defined. The Matlab routine ode15s for stiff ODE systems is used to perform
the numerical integration.

The solver is called in main_ex5.m. The global optimum for this problem is located in p∗ =
[5.93 · 10−5, 2.96 · 10−5, 2.0 · 10−5, 2.75 · 10−4, 4.00 · 10−5], with f(p∗) = 19.88.

Options set:

• An initial point is specified.

• Maximum number of evaluations is 1000.

• All the variables are declared as log var.

12

ex5.m script

function [J,g,R]=ex5(x,texp,yexp)

[tout,yout] = ode15s(@ex5_dynamics,texp,[100 0 0 0 0],[],x);

R=(yout-yexp);

R=reshape(R,numel(R),1);

J = sum(sum((yout-yexp).^2));

g=0;

return

%***

%Function of the dynamic system

function dy=ex5_dynamics(t,y,p)

dy=zeros(5,1); %Initialize the state variables

dy(1)=-(p(1)+p(2))*y(1);

dy(2)=p(1)*y(1);

dy(3)=p(2)*y(1)-(p(3)+p(4))*y(3)+p(5)*y(5);

dy(4)=p(3)*y(3);

dy(5)=p(4)*y(3)-p(5)*y(5);

return

%***

• We choose the N2FB local solver.

• Save results in a file after every iteration.

3.3.6 ess multistart application

An application of ess multistart within MEIGO on the problem ex3 using solnp as local solver is
presented in the script main_multistart_ex3.m. The number of initial points chosen is 25.

4 Integer optimization: Variable Neighbourhood Search (VNS)

VNSm is a Matlab implementation of the Variable Neighbourhood Search (VNS) metaheuristic
which is part of the MEIGO toolbox for global optimization in bioinformatics. VNS was first
proposed by Mladenović and Hansen (1997) for solving combinatorial and/or global optimization
problems. The method guides a trial solution to search for an optimum in a certain area. After this
optimum is located, the trial solution is perturbed to start searching in a new area (or neighbour-
hood). New neighbourhoods are defined following a distance criterion in order to achieve a good
diversity in the search. Different variants of the method have been published in recent years in
order to adapt it to different types of problems (Mladenović and Hansen, 2010). VNS implements
some of this variants by means of different tunning parameters.

VNS seeks the global minimum of integer programming (IP) problems specified by

min
x
f(x, p1, p2, ..., pn)

subject to

13

main ex5.m script

%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex5’;

problem.x_L=zeros(1,5);

problem.x_U=ones(1,5);

problem.x_0=0.5*ones(1,5);

opts.maxeval=1e3;

opts.log_var=[1:5];

opts.local.solver=’n2fb’;

opts.inter_save=1;

%========================= END OF PROBLEM SPECIFICATIONS =====================

%time intervals

texp=[0 1230 3060 4920 7800 10680 15030 22620 36420];

% Distribution of species concentration

% y(1) y(2) y(3) y(4) y(5)

yexp=[100.0 0.0 0.0 0.0 0.0

88.35 7.3 2.3 0.4 1.75

76.4 15.6 4.5 0.7 2.8

65.1 23.1 5.3 1.1 5.8

50.4 32.9 6.0 1.5 9.3

37.5 42.7 6.0 1.9 12.0

25.9 49.1 5.9 2.2 17.0

14.0 57.4 5.1 2.6 21.0

4.5 63.1 3.8 2.9 25.7];

Results=MEIGO(problem,opts,’ESS’,texp,yexp);

main multistart ex3.m script

%========================= PROBLEM SPECIFICATIONS ===========================

problem.f=’ex3’;

problem.x_L=[0 0 0 0 0 0];

problem.x_U=[1 1 1 1 16 16];

problem.neq=4;

problem.c_L=-inf;

problem.c_U=4;

opts.ndiverse=25;

opts.local.solver=’solnp’;

opts.local.iterprint=1;

opts.local.tol=2;

%===

k1=0.09755988;

k3=0.0391908;

k2=0.99*k1;

k4=0.9*k3;

Results_multistart=MEIGO(problem,opts,’MULTISTART’,k1,k2,k3,k4);

xL ≤ x ≤ xU

where x is the vector of (integer) decision variables, and xL and xU its respective bounds. p1, . . . , pn
are optional extra input parameters to be passed to the objective function, f , to be minimized.

14

The current VNS version does not handle constraints apart from bound constrained, so that the
user should formulate his/her own method (i.e., a penalty function) to solve constrained problems.

4.1 Quick start: How to carry out an optimization with VNS

• Start Matlab

• Run the script install MEIGO.m, in order to add MEIGO ∗ to the Matlab path.

• Define your problem and options (see the following sections)

• Type: Results=MEIGO(problem,opts, ’VNS’). If your problem has additional constant pa-
rameters to be passed to the objective function, they are declared as input parameters after
“opts” (e.g., type Results=MEIGO(problem,opts,’VNS’,p1,p2) if your model has two extra
input parameters, p1 and p2).

Regarding the objective function, the input parameter is the decision vector (with extra parameters
p1, p2, . . . , pn if they were defined before calling the solver). The objective function must provide
a scalar output parameter (the objective function value).

4.2 VNS usage

4.2.1 Problem definition

A structure named problem containing the following fields must be defined for running VNS :

• f : String containing the name of the objective function.

• x L: Vector containing the lower bounds of the variables.

• x U: Vector containing the upper bounds of the variables.

• x 0: Vector containing the initial solution to start the search. If this field is not defined then
the algorithm will choose an initial point randomly chosen within the bounds.

4.2.2 VNS options

The user may define a set of different options related to the integer optimization problem. They
are defined in another structure (named opts here) which has the following fields.

• maxeval: Maximum number of function evaluations (default: 1000).

• maxtime: Maximum CPU time in seconds (default: 60).

• maxdist: Percentage of the problem dimension which will be perturbed in the furthest
neighborhood (vary between 0-1, default: 0.5).

• use local: Uses local search (1) or not (0). Default:1.

The following options only apply when the local search is activated (i.e., opts.use local=1)

• aggr: Aggressive search. The local search is only applied when the best solution has been
improved (1=aggressive search, 0=non-aggressive search, default:0).

∗The MEIGO package can be downloaded for installation at http://www.iim.csic.es/~gingproc/meigo.html

15

http://www.iim.csic.es/~gingproc/meigo.html

• local search type: Applies a first (=1) or a best (=2) improvement scheme for the local
search (Default: 1).

• decomp: Decompose the local search (=1) using only the variables perturbed in the global
phase. Default: 1.

4.2.3 Output

VNS output is a structure (called Results here) containing the following fields:

• Results.fbest: Best objective function value found after the optimization.

• Results.xbest: Vector providing the best function value found.

• Results.cpu time: CPU Time (in seconds) consumed in the optimization.

• Results.func: Vector containing the best objective function value after each improvement.

• Results.x: Matrix containing the best vector after each improvement (in rows).

• Results.time: Vector containing the CPU time consumed after each improvement.

• Results.neval: Vector containing the number of evaluations after each improvement.

• Results.numeval: Total number of function evaluations.

The structures Results, problem and opts are saved in a file called VNS_report.mat.

4.2.4 Guidelines for using VNS

Parameter tuning in VNS may help increase the efficiency for a particular problem. Here is
presented an explanation of the influence of each parameter and suggestions for tuning.

• opts.use local: It is activated (=1) by default but it might be deactivated for a first quick
run in which a feasible or a good solution is required in a short computation time, or when
the problem dimension is so high that local searches involve high computational times.

• opts.aggr: This option uses the aggressive scheme in which the local search is only applied
when the best solution has been improved within the local search. The activation of this
options makes the method visit many different neighborhoods but without refining the solu-
tions unless a very good one is found. It might be a good option to locate promising areas
or to discard poor areas and constraint the search space later.

• opts.local search type: There are two types of local searches implemented in the method.
One is the first improvement, which perturbs all the decision variables in a random order,
changing one unit per dimension and stopping when the intial solution has been outperformed
even if there are variables still not perturbed. The second option is a best improvement, which
perturbs all the decision variables and then chooses the best solution among the perturbed
solution to replace (or not) the initial solution. The best improvement produces a more
exhaustive search than the first improvement, but it may be highly time consuming for large-
scale problems. The first improvement scheme allows a more dynamic search but can miss
refined high quality solutions. In both cases the go-beyond principle is applied: If a solution
has been improved by perturbing one dimension, we repeat the perturbation following the
same direction since it is considered as a promising search direction.

16

• opts.decomp: Performing a local search over all the decision variables might be computa-
tionally inefficient in the case of large-scale problems. The Variable Neighbourhood Decom-
position Search (VNDS, Hansen et al. 2001) decomposes the problem into a smaller sized
one by just performing the local search over the perturbed decision variables instead of all of
them. The number of perturbed decision variables is determined by the problem dimension
and by the options opts.maxdist (see below).

• opts.maxdist: This option chooses the percentage (between 0 and 1), of decision variables
which are perturbed simultaneously in the search. In other words, it controls the distance
between the current solution and the furthest neighborhood to explore. A high percentage
(e.g., 100% of the variables) produces a more exhaustive search but is more time consuming.
It has been empirically proven that for many instances a low percentage of perturbed variables
is efficient to locate global solutions.

4.3 Application example

To illustrate the use of VNS we choose the 10 dimensional Rosenbrock function with integer
decision variables as an example. The code of the Rosenbrock function is available inside the
installation directory of the MEIGO package, under the examples folder.

nvar=10;

problem.x_L=-5*ones(1,nvar);

problem.x_U=5*ones(1,nvar);

problem.f=’rosen10’;

opts.maxeval=1000;

algorithm=’VNS’;

[Results]=MEIGO(problem,opts,algorithm);

5 Parallel computation in MEIGO

MEIGO allows the user to exploit multi core computation with either of the implemented methods
by means of their corresponding parallelizable versions: CeSS and CeVNS. The different threads
for calculation are managed with jPar (Karbowski et al., 2008), a tool for parallelizing Matlab
calculations.

5.1 jPar installation

In order to make your OS aware of the location of certain binaries, some folders need to be added
to the OS path during the installation. A guide on how to do this, can be found in:

http://www.java.com/es/download/help/path.xml

1. Download jPar from http://www.mathworks.com/matlabcentral/fileexchange/24924 and
copy it in your computer, for example in the directory $MATLAB_ROOT/toolbox.

2. JDK (Java Development Kit) is required to be installed in order to build jPar ; since some
users have reported problems with JDK 1.7, it is advised to use JDK 1.6.x. If you don’t have
JDK 1.6 installed, please install it. Check if you have the correct compiler version and if it
is in the OS path by running:

javac -version

17

http://www.java.com/es/download/help/path.xml
http://www.mathworks.com/matlabcentral/fileexchange/24924

In case the java compiler is not found, you will need to add the JDK folder the OS the path.
Check http://www.java.com/es/download/help/path.xml for more information on how
to do this. In case the JDK version is not the correct one, you need to install JDK 1.6 or to
change the OS path order so that the correct javac is chosen preferentially.

3. Move to jPar directory and compile it by executing the compile.sh or compile.bat script.

4. Add a line to the file containing the route of the Java classes with the location of the jpar
java executable. Typically you should add:
$matlabroot/toolbox/jpar/jpar.jar

in
$MATLAB_ROOT/toolbox/local/classpath.txt;

5. Overwrite the file:
$MATLAB_ROOT/sys/java/jre/<system_arch>/jre/lib/security/java.policy

with the file java.policy contained in the jpar folder. This is necessary to allow Java to open
connections to the RMI communication server. The < system arch >, depending on the
machine in question, can be: glnx86, glnxa64, win32, win64, maci, etc.

6. Add the jPar folder to the OS path.

I f possible, save the jPar directory into the default Matlab path. More information available
at: http://www.mathworks.es/es/help/matlab/ref/savepath.html

5.2 Use of jPar

In order to run jPar follow these steps:

1. Add the jPar path to the Matlab session using:
>> addpath(genpath(’jpar_path’));

where jpar_path points to the jPar folder.

2. Make sure there are no jPar solvers still running from a previous session. If there were any,
stop them. Additionally, check if there are any jPar jobs running and kill them if there are
any.

3. Start the jPar server by typing “jpar server.bat start” in the DOS command prompt (Win-
dows) or “sh ./jpar server.sh start” (Unix), from the jPar directory.

4. Start the number of jPar solvers that are going to be used (1 solver = 1 thread). Each solver
has to be started from a Matlab session in the jPar directory using:
>> jpar_solver([’hostname’]);

where ’hostname’ is the name of the host where jPar server is running.
To kill solvers use the command: >> jpar_client(’kill’);

To see free solvers use the command: >> jpar_client(’hosts’);.

Important: please make sure that jPar has been installed properly in your system
before trying to use CeSS or CVNS

5.3 Quick start: How to carry out an optimization with CeSS or CeVNS

1. Install and learn how to use jPar. More details about jPar can be found in the previous
section.

2. Open n+ 1 Matlab sessions, where n is the number of parallel tasks you need to run.

18

http://www.java.com/es/download/help/path.xml
http://www.mathworks.es/es/help/matlab/ref/savepath.html

3. In each of the n+1 Matlab sessions add MEIGO to the path by running the install MEIGO.m

script. You might also consider saving the MEIGO directory to the default Matlab path.

4. With exception to one of the n+ 1 opened Matlab sessions introduce the command:
jpar_solver(’HOSTNAME’).

where HOSTNAME is the name/address where the jPar solver is running; if left empty
default is ’localhost’.

5. Configure your problem and options. Use get Cess options or get CeVNS options in order
to obtain a valid structure array for this purpose. Each element in this array contains the
options and problem definitions for each parallel thread. Note that you may create your own
scripts for this purpose. All scripts must be modified before launching jPar. Posterior
modifications will not be detected by jPar.

6. In the remaining Matlab sessions where a jPar solver was not started, call CeSS or CeVNS
providing the structure array with the options and problem definition, the number of itera-
tions and a flag specifying if jPar will run in parallel mode or not. Straightforward examples
on how to use CeSS or CeVNS are provided in sections 5.5 and 5.6, respectively.

7. After finishing the optimization, kill the jPar solvers and stop the jPar server. If the jPar
configuration does not allow to stop the server through MATLAB, you can do it manually
by shutting down MATLAB and killing the command window where jPar is running.

5.4 Options and problem definition

The corresponding cooperative method for either of the algorithms included in MEIGO (i.e., CeSS
and CeVNS), is invoked using the same declaration and options (see sections 3.2 and 4.2). Here,
the difference is that you must specify the problem definition and options for each cooperative
thread. When defining the algorithm options (opts) we recommend the use of different settings
for each thread of eSS or VNS. As for the problem definition, typically the same problem will be
used in every thread. For example, if we want to use CeSS or CeVNS with 2 different threads you
should provide the following structure array:

par_struct(1).problem=problem;

par_struct(1).opts=opts_thread_1;

par_struct(2).problem=problem;

par_struct(2).opts=opts_thread_2;

Additionally, two extra arguments must be defined:

• n iter: Number of cooperative iterations to perform. Notice that if you only run 1 iteration
there will be no exchange of information between threads (your are basically running a multi-
start VNS/eSS).

• is parallel: Defines if jpar will be used or not (true or false). This options is specially useful
to debug your code, since with jpar you cannot use breakpoints. Additionally if there are
errors in your objective function jpar will get stuck without returning any warnings.

5.4.1 Output

The CeSS /CeVNS output is a structure containing the following fields:

• f mean: Contains the mean value of the objective function at each iteration.

• fbest: Contains the lowest value found by the objective function at each iteration.

19

• iteration res: Contains the results returned by each CeSS / VNS thread at the end of an
iteration. Check sections 3.2.5 and 4.2.3 for more information.

• numeval: The number of evaluations at the end of each iteration.

• time: The computation time at the end of each iteration.

5.5 CeSS application example

CeSS is a Matlab implementation of the Cooperative enhanced Scatter Search method which is part
of the MEIGO toolbox for global optimization in bioinformatics. The CeSS strategy (Villaverde
et al., 2012) is a general purpose technique for global optimization, suited for a computing envi-
ronment with several processors. Its key feature is the cooperation between the different programs
(“threads”) that run in parallel in different processors. Each thread runs the enhanced Scatter
Search metaheuristic (eSS) (Egea et al., 2009, 2010), which is also available in MEIGO.

To illustrate the use of CeSS we choose the D/m-group Shifted Schwefel’s Problem 1.2 (f17) from
the LSGO benchmarks (Tang et al., 2012) as an example. The Matlab code of f17 (f17.m) is
available inside the installation directory of the MEIGO package. The Matlab scripts are provided
with appropriate default options for testing CeSS with f17.

You can find an implementation of this problem in the script run CeSS.m inside the examples folder
of MEIGO toolbox. Notice that you will still need to follow the steps detailed in section 5.3. This
example begins by defining the basic settings of the optimization:

% Optimization settings:

nthreads = 2; % number of threads

n_iter = 2; % number of cooperative iterations

is_parallel = true; % parallel (true) or sequential (false)

maxtime_per_iteration = 50; % time limit for each iteration

Then the information about number of parameters and their bounds is given:

% Number of parameters of the function and their bounds:

npars = 1000;

x_L = -100*ones(1,npars);

x_U = 100*ones(1,npars);

After that, the function get_CeSS_options.m is called, which contains default settings for each
thread:

% Read default optimization settings:

par_struct = get_CeSS_options(nthreads,npars,maxtime_per_iteration);

These settings may be overwritten in the main file:

% Overwrite the following default options in par_struct:

for i=1:nthreads

par_struct(i).problem.f = ’f17’; % name of the function to be optimized

par_struct(i).problem.x_L = x_L; % lower parameter bounds

par_struct(i).problem.x_U = x_U; % upper parameter bounds

par_struct(i).opts.local.solver = 0; % Don’t use local solver for tests

par_struct(i).opts.local.finish = 0; % Don’t use local solver for tests

end

20

Finally, the CeSS algorithm is called and its results are plotted:

% Run CeSS:

Results = CeSS(par_struct,n_iter,is_parallel)

% Plot results:

plot(Results.time,log10(Results.f))

We encourage the modification of the default settings depending on your particular problem. It
is important that each thread exploits different facets of the algorithms. Some promoting a more
aggressive exploitation with more frequent local searches (e.g. lower opts.local.n2) and others
which put more emphasis in global exploration.

5.6 CeVNS application example

CeVNS is an extension of VNS which makes use of parallel computation packages available in
Matlab to reduce the time needed to solve a given integer programming problem (IP). This imple-
mentation builds on the ideas explored by (Villaverde et al., 2012) which showed (in a nonlinear
programming context) that, at least for a set of benchmarks, cooperative instances of an optimiza-
tion algorithm exchanging information from time to time produced better results than running
same instances in an independent fashion with an equivalent computational cost.

Next we show an example script that illustrates how to configure the structure of options used
by CeVNS. This example calls two CPUs to solve the integer Rosenbrock problem. It can be
found in the script run rosen10 CeVNS.m inside the examples folder in the MEIGO package. The
mechanism of defining the options and problem for each thread is very similar to what was shown
in the previous section for CeSS. Notice that you will still need to follow the steps detailed in
section 5.3 before running this example.

% Optimization settings:

nthreads = 2; % number of threads

n_iter = 2; % number of cooperative iterations

is_parallel = true; % parallel (true) or sequential (false)

maxtime_per_iteration = 10; % time limit for each iteration

% Number of parameters; bounds; and initial point:

npars = 50;

x_L =-5*ones(1,npars);

x_U = 5*ones(1,npars);

x_0 = round(rand(1,npars).*(x_U-x_L+1)+x_L-0.5);

% Read default optimization settings:

par_struct=get_CeVNS_options(nthreads,npars,maxtime_per_iteration);

% Overwrite the following default options in par_struct:

for i=1:nthreads

par_struct(i).problem.f = ’rosen10’;

par_struct(i).problem.x_L = x_L;

par_struct(i).problem.x_U = x_U;

par_struct(i).problem.x_0 = x_0;

end

% Run CeVNS:

Results = CeVNS(par_struct,n_iter,is_parallel)

21

As in the case of CeSS your are encouraged to provide different options for each thread of CeVNS.
Although we provide a default set of options, we recommend that you tweak these settings for your
particular problem.

22

Appendix A: List of options for eSS

Option Description Type Options Default value
User options

opts.maxeval Maximum number of function evaluations Integer – 1000
opts.maxtime Maximum CPU time in seconds Real [Positive] – 60
opts.iterprint Print information on the screen after each iteration Binary [0|1] 1
opts.weight Weight for penalizing infeasible solutions Real [Positive] – 106

opts.log var Indexes of “logarithmic” variables Integer [vector positive] – numeric(0)
opts.tolc Tolerance for local search and constraints violation Real [Positive] – 10−5

opts.prob bound Probability (0-1) of biasing the search toward the bounds Real [Positive] – 0.5
opts.inter save Saves results in a .mat file in intermediate iterations Binary [0|1] 0

Global options
opts.dim refset Number of elements in RefSet Integer ≥ 6 – “auto”
opts.ndiverse Number initial diverse solutions Integer [Positive] – 10 · nvar
opts.combination Type of combination of RefSet elements Integer [1|2] 1

Local options
opts.local.solver Local solver String see section 3.2.4 0
opts.local.tol Level of tolerance in local search Integer [1|2|3] 2
opts.local.iterprint Print each iteration of local solver on screen Binary [0|1] 0
opts.local.n1 Number of iterations before the first local search Integer [Positive] – 1
opts.local.n2 Number of iterations between two local searches Integer [Positive] – 10
opts.local.finish Local solver for final search String see section 3.2.4 opts.local.solver
opts.local.bestx Applies the local search only when fbest is improved Binary [0|1] 0
opts.local.balance Balances between quality (= 0) and diversity (= 1) Real [Positive] – 0.5

23

Appendix B: List of options for VNS

Option Description Type Options Default value
opts.maxeval Maximum number of function evaluations Integer – 1000
opts.maxtime Maximum CPU time in seconds Real [Positive] – 60
opts.maxdist Option related with the maximum number of perturbed variables Real [0—1] 0.5
opts.use local Use local search or not Binary [0—1] 1
opts.aggr Applies aggressive search Binary [0—1] 0
opts.local search type Applies first (1) or best (2) improvement in the local search Integer [1—2] 1
opts.decomp Decomposes the local search Binary [0—1] 1

24

References

de la Maza, M. and Yuret, D. (1994). Dynamic hill climbing. AI Expert, 9(3):26–31.

Dennis, J. E., Gay, D. M., and Welsch, R. E. (1981). An adaptive non-linear least-squares algo-
rithm. ACM Transactions on Mathematical Software, 7(3):348–368.

Egea, J., Balsa-Canto, E., Garćıa, M.-S., and Banga, J. (2009). Dynamic optimization of nonlinear
processes with an enhanced scatter search method. Industrial & Engineering Chemistry Research,
48(9):4388–4401.

Egea, J., Mart́ı, R., and Banga, J. (2010). An evolutionary algorithm for complex process opti-
mization. Computers & Operations Research, 37(2):315–324.

Hansen, P., Mladenović, N., and Pérez-Brito, D. (2001). Variable neighborhood decomposition
search. Journal of Heuristics, 7(4):335–350.

Hooke, R. and Jeeves, T. (1961). Direct search solution of numerical and statistical problems.
Journal of the ACM, 8(2):212–229.

Karbowski, A., Majchrowski, M., and Trojanek, P. (2008). jpar–a simple, free and lightweight tool
for parallelizing matlab calculations on multicores and in clusters. 9th International Workshop
on State-of-the-Art in Scientific and Parallel Computing.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers and Operations
Research, 24:1097–1100.

Mladenović, N. and Hansen, P. (2010). Variable neighbourhood search: methods and applications.
Annals of Operations Research, 175(1):367–407.

Rodŕıguez-Fernández, M., Egea, J. A., and Banga, J. R. (2006). Novel metaheuristic for parameter
estimation in nonlinear dynamic biological systems. BMC Bioinformatics, 7:483+.

Tang, K., Yang, Z., and Weise, T. (2012). Competition on large scale global optimization.
IEEE World Congress on Computational Intelligence, http://staff.ustc.edu.cn/~ketang/
cec2012/lsgo_competition.htm.

The MathWorksTM (2008). Optimization toolbox 4 user’s guide.

Villaverde, A. F., Egea, J. A., and Banga, J. R. (2012). A cooperative strategy for parameter
estimation in large scale systems biology models. BMC Systems Biology, 6:75.

Wächter, A. and Biegler, L. (2006). On the implementation of an interior point filter line search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106(1):25–57.

Ye, Y. (1987). Interior algorithms for linear, quadratic and linearly constrained non-linear pro-
gramming. PhD thesis, Stanford University.

25

http://staff.ustc.edu.cn/~ketang/cec2012/lsgo_competition.htm
http://staff.ustc.edu.cn/~ketang/cec2012/lsgo_competition.htm

	Introduction
	Installing MEIGO
	Local solvers (mex files) compatibility list

	Continuous and mixed-integer problems: Enhanced Scatter Search (eSS)
	Quick start: How to carry out an optimization with eSS
	eSS usage
	Problem definition
	User options
	Global options
	Local options
	Output
	Guidelines for using eSS
	Extra tool: ess_multistart

	Application examples
	Unconstrained problem
	Constrained problem
	Constrained problem with equality constraints
	Mixed integer problem
	Dynamic parameter estimation problem using N2FB
	ess_multistart application

	Integer optimization: Variable Neighbourhood Search (VNS)
	Quick start: How to carry out an optimization with VNS
	VNS usage
	Problem definition
	VNS options
	Output
	Guidelines for using VNS

	Application example

	Parallel computation in MEIGO
	jPar installation
	Use of jPar
	Quick start: How to carry out an optimization with CeSS or CeVNS
	Options and problem definition
	Output

	CeSS application example
	CeVNS application example

	Appendix A: List of options for eSS
	Appendix B: List of options for VNS
	References

