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Abstract

In this work we study the two and three-dimensional antiferromagnetic Ising model with an imaginary
magnetic field iθ at θ = π . In order to perform numerical simulations of the system we introduce a new
geometric algorithm not affected by the sign problem. Our results for the 2D model are in agreement with
the analytical solution. We also present new results for the 3D model which are qualitatively in agreement
with mean-field predictions.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

Since its introduction many years ago, the Ising model has been a prototype statistical sys-
tem for studying phase transitions and critical phenomena [1]. With the advent of the epoch of
computer numerical simulations to study statistical systems, this model has become even more
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important as a test bench to develop new algorithms. There are many interesting physical systems
for which, due to the sign problem, we do not have efficient numerical algorithms. Some exam-
ples include QCD at finite density or with a non-vanishing θ term. This situation has hindered
progress in such fields for a long time, and it is thus of great interest to study novel simulation
algorithms. In the present work we develop and test a new algorithm, which belongs to a class of
“geometric” algorithms [2–20], and which is applicable to the D � 2 dimensional antiferromag-
netic Ising model with an imaginary magnetic field iθ (see [21] and [22]) at θ = π , with which
we are able to solve the sign problem that afflicts this model when using standard algorithms.
Preliminary results were presented in [24].

This paper is organized as follows. In Section 2 we introduce the antiferromagnetic Ising
model. In Section 3 we derive our geometric representation of the model. Section 4 is devoted
to the construction of the numerical algorithm. In Section 5 we present the numerical results
and finally Section 6 contains our conclusions. Some technical details on the ergodicity of the
algorithm as well as on the numerical analysis are contained in Appendices A–D.

2. The antiferromagnetic Ising model with a topological term

We consider the Ising model in D � 2 dimensions, defined on a hypercubic lattice Λ with
an even number of sites L = 2n in each direction, and with either open or periodic boundary
conditions. The Hamiltonian of the model is

H
[{sx}, J,B

] = −J
∑

(x,y)∈B
sxsy − B

∑
x

sx. (1)

Here the spin variables are sx = ±1, and the sum
∑

(x,y)∈B is over the pairs of sites (x, y) that are
nearest neighbors; we denote the set of all such pairs by B. Moreover, J is the coupling between
nearest neighbors, and B is an external magnetic field. The reduced Hamiltonian H = H/(kBT ),
where T is the temperature and kB the Boltzmann constant, is written as

H
[{sx},F,h

] = −F
∑

(x,y)∈B
sxsy − h

2

∑
x

sx, (2)

with F = J/(kBT ), h = 2B/(kBT ). As the total number of spins is LD = (2n)D , and therefore
even, the quantity Q = 1

2

∑
x sx is an integer number, taking values between −LD/2 and LD/2.

Q can then be thought of as playing the role of a topological charge. It is then worth studying
what happens for imaginary values of the reduced magnetic field h, i.e., for h = iθ . The topo-
logical charge Q is odd under the Z2 transformation sx → −sx ∀x: while at θ = 0 the system is
symmetric under this transformation, for θ �= 0,π the Z2 symmetry of the system is explicitly
broken. At θ = π the contribution of the topological charge to the Boltzmann factor amounts to

eiπQ = (−1)Q = (−1)−Q, (3)

i.e., this contribution is Z2 invariant, and therefore the Z2 symmetry is restored; it has to be
checked if it is spontaneously broken or not.

3. Geometric representation of the model

3.1. Partition function

We will now introduce a geometric representation for the model at h = iθ = iπ . Let us rewrite
the partition function of the system,
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Z(F, θ = π) =
∑

sx=±1

e
F

∑
(x,y)∈B sxsy+i π

2

∑
z sz

=
∑

sx=±1

∏
(x,y)∈B

eFsxsy
∏
z

isz =
∑

sx=±1

∏
(x,y)∈B

eFsxsy
∏
z

isz

= iV
∑

sx=±1

∏
(x,y)∈B

[
cosh(F sxsy) + sinh(F sxsy)

]∏
z

sz

=
∑

sx=±1

∏
(x,y)∈B

[
cosh(F ) + sinh(F )sxsy

]∏
z

sz, (4)

where we have taken into account that the volume of the system, V = LD , is a multiple of 4,
and that cosh(−x) = cosh(x), sinh(−x) = − sinh(x). Note now the following symmetry of this
partition function. Define the two staggered lattices Λ(1,2) as follows:

Λ(1) = {
x = (i1, . . . , iD) ∈ Λ

∣∣ (i1 + · · · + iD)mod 2 = 0
}
,

Λ(2) = {
x = (i1, . . . , iD) ∈ Λ

∣∣ (i1 + · · · + iD)mod 2 = 1
}
. (5)

Nearest neighbors always belong to different staggered lattices; as a consequence, if we change
variables in the sum in Eq. (4) by changing the sign of all the spins in only one of the two
staggered lattices, say, sx → −sx ∀x ∈ Λ(2), Eq. (4) becomes

Z(F, θ = π) = (−1)
LD

2
∑

sx=±1

∏
(x,y)∈B

[
cosh(F ) − sinh(F )sxsy

]∏
z

sz

=
∑

sx=±1

∏
(x,y)∈B

[
cosh(F ) − sinh(F )sxsy

]∏
z

sz. (6)

Therefore, Z(F, θ = π) = Z(−F, θ = π), i.e., at θ = π the ferromagnetic and antiferromagnetic
models are essentially equivalent. In conclusion, we can write

Z(F, θ = π) =
∑

sx=±1

∏
(x,y)∈B

[
cosh

(|F |) + sinh
(|F |)sxsy]∏

z

sz. (7)

Let us denote by B! the power set of B, i.e.,

B! = {b | b ⊆ B}. (8)

A subset b can be seen as a configuration of “active bonds” (we will sometimes also refer to
active bonds as “dimers”) between neighboring sites. Let N [b] be the number of elements of b,
i.e., the number of active bonds; clearly, N̄ [b] = N [B] −N [b] is the number of inactive bonds.
Finally, we define the quantity

πx

[
(y, z)

] =
{

1 if x = y or x = z,

0 otherwise,
(9)

and let πx[b] be the number of bonds in b that “touch” x,

πx[b] =
∑

πx

[
(y, z)

]
. (10)
(y,z)∈b
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Armed with this notation, we can rewrite the product over pairs of neighboring sites in Eq. (7) as
follows,∏

(x,y)∈B

[
cosh

(|F |) + sinh
(|F |)sxsy] =

∑
b∈B!

cosh
(|F |)N̄ [b] sinh

(|F |)N [b] ∏
(x,y)∈b

sxsy.

(11)

The sum over spin configurations in Z vanishes unless each spin appears an even number of
times in the product above, and gives a factor of 2 per spin otherwise, that is,

∑
sx=±1

∏
(x,y)∈b

sxsy
∏
z

sz =
{

0 if ∃x 	 πx[b]mod 2 = 0,

2LD
otherwise.

}
(12)

Summarizing,

Z(F, θ = π) = 2LD ∑
b∈B!,

{πx [b] mod 2=1∀x}

cosh
(|F |)N̄ [b] sinh

(|F |)N [b]

= 2LD

cosh
(|F |)N [B] ∑

b∈B!,
{πx [b] mod 2=1∀x}

tanh
(|F |)N [b]

. (13)

This is the geometric representation that we will use in our algorithm.

3.2. Observables

It is useful to generalize the partition function to the case of variable couplings, i.e.,

H
[{sx}, {Fxy}, θ = π

] = −
∑

(x,y)∈B
Fxysxsy − i

π

2

∑
x

sx. (14)

This allows us to calculate all the correlation functions for an even number of spins 〈sx1sx2 . . .

sx2k
〉,1 by taking derivatives with respect to Fxy for an appropriate set of (x, y). Indeed, choosing

a set of paths C1, . . . ,Ck connecting the spins pairwise (there are no restrictions on these paths),
and then performing derivatives with respect to all the pairs (x, y) appearing in those paths
(if a pair appears m(x,y) times, one has to take the m(x,y)-th derivative with respect to the
corresponding coupling),

〈sx1sx2 . . . sx2k
〉 = Z−1({Fxy = F }, θ = π

)
×

{[ ∏
(x,y)∈∪jCj

∂m(x,y)

∂F
m(x,y)
xy

]
Z

({Fxy}, θ = π
)}∣∣∣∣{Fxy }={F }

. (15)

The geometric representation for the partition function with variable couplings is similar to the
one obtained for constant coupling, and the final result takes the form

Z
({Fxy}, θ = π

) = 2LD ∑
b∈B!,

{πx [b] mod 2=1∀x}

∏
(x,y)

(x,y)/∈b

cosh(Fxy)
∏
(x,y)

(x,y)∈b

sinh(Fxy). (16)

1 Correlation functions with an odd number of spins are automatically zero.
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Taking derivatives with respect to Fx1y1, . . . ,Fxlyl
, and carrying them inside the summation

over b, one obtains an extra factor coth(Fxiyi
) if (xi, yi) is an active bond of the configuration,

i.e., if (xi, yi) ∈ b, or tanh(Fxi ,yi
) if (xi, yi) is inactive, i.e., (xi, yi) /∈ b:[

l∏
i=1

∂

∂Fxiyi

]
Z

({Fxy}, θ = π
)

= 2LD ∑
b∈B!,

{πx [b] mod 2=1∀x}

l∏
i=1

[
tanh(Fxiyi

)
(
1 − δb(xi, yi)

) + coth(Fxiyi
)δb(xi, yi)

]

×
∏
(x,y)

(x,y)/∈b

cosh(Fxy)
∏
(x,y)

(x,y)∈b

sinh(Fxy), (17)

where δb(x, y) = 1 if (x, y) ∈ b, and 0 otherwise. Noting that

tanh(Fxiyi
)
(
1 − δb(xi, yi)

) + coth(Fxiyi
)δb(xi, yi) = tanh(Fxiyi

)1−2δb(xi ,yi ), (18)

and setting Fxy = F , ∀(x, y), we finally obtain[
l∏

i=1

∂

∂Fxiyi

]
Z

({Fxy}, θ = π
)∣∣{Fxy }={F }

= 2LD ∑
b∈B!,

{πx [b] mod 2=1∀x}

l∏
i=1

[
tanh(F )1−2δb(xi ,yi )

] ∏
(x,y)

(x,y)/∈b

cosh(F )
∏
(x,y)

(x,y)∈b

sinh(F )

= 2LD

cosh(F )N [B] ∑
b∈B!,

{πx [b] mod 2=1∀x}

l∏
i=1

[
tanh(F )1−2δb(xi ,yi )

]
tanh(F )N [b]. (19)

Finally, denoting by �[b; {xi, yi}] = ∑l
i=1 δb(xi, yi), and dividing by the partition function,

we obtain

〈sx1sx2 . . . sx2k
〉 =

∑
b∈B!,

{πx [b] mod 2=1∀x}
tanh(F )l−2�[b;{xi ,yi }] tanh(F )N [b]

∑
b∈B!,

{πx [b] mod 2=1∀x}
tanh(F )N [b]

= 〈〈
tanh(F )l−2�[b;{xi ,yi }]〉〉, (20)

where the symbol 〈〈. . .〉〉 indicates the average taken with the probability distribution2

P(b) = tanh(F )N [b]∑
b∈B!,

{πx [b] mod 2=1∀x}
tanh(F )N [b] . (21)

As an example, let us write down the two-point correlation function 〈sxsy〉 for x and y lying
on the same lattice axis, e.g., y = x + l1̂. Let C be a path connecting x and y on the lattice;

2 The proof of ergodicity in Appendix A shows that N [b] is even for any admissible configuration.
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the simplest choice is a straight-line path C = ⋃l
i=1(xi, yi) with yi = xi+1, xi = x + (i − 1)1̂

(i = 1, l + 1), x1 = x and yl = y. We have

C(l,F ) ≡ 〈sxsx+l1̂〉 = 〈〈
tanh(F )l−2�[b;{xi ,yi }]〉〉, (22)

where �[b; {xi, yi}] is the number of active bonds in configuration b along the straight-line path
connecting x and x + l1̂. However, we stress the fact that the specific choice of the path is
irrelevant, as they are all equivalent, as long as the endpoints are fixed.

We can also obtain expressions for bulk observables, such as the energy density and the spe-
cific heat, by taking derivatives of the partition function with respect to the coupling constant.
Using the geometric representation it is easy to see that such observables are directly related
to the average number of active bonds and its fluctuations. We denote by B = N [b] the total
number of active bonds, H0 is defined as

H0 = −J
∑

(x,y)∈B
sxsy, (23)

and we denote the fluctuations in these quantities by �H0 = H0 − 〈H0〉, �B = B − 〈〈B〉〉. Then
we have the following relations for the energy density ε and the specific heat cV (we only show
for simplicity the relation in the case of periodic boundary conditions):

ε ≡ −
〈

H0

kBT V

〉
= DF tanhF + 2F

sinh 2F

〈〈
B

V

〉〉
(24)

cV ≡
〈

1

V

(
�H0

kBT

)2〉
= DF 2

(coshF)2
−

(
2F

sinh 2F

)2

cosh 2F

〈〈
B

V

〉〉

+
(

2F

sinh 2F

)2〈〈 1

V
(�B)2

〉〉
, (25)

where D is the dimensionality of the system. For small values of the coupling F the energy
density and the specific heat are approximately equal to the average occupation number of the
dimers and to its fluctuations:

ε �
〈〈

B

V

〉〉
(26)

cV �
〈〈

1

V
(�B)2

〉〉
−

〈〈
B

V

〉〉
(27)

4. Monte Carlo algorithm

In order to perform calculations by means of Monte Carlo methods, we need an efficient
algorithm to explore the space of configurations, that as we have seen is given, in the geometric
representation, by

B̃ ≡ {
b ∈ B! ∣∣ πx[b] mod 2 = 1 ∀x

}
, (28)

or, in words, by those configurations for which the number of active bonds touching any site x

of the lattice is odd. We will call the set B̃ the set of admissible configurations. For simplicity we
will describe in detail the algorithm only for D = 2, as it can be easily generalized to D > 2.

As far as numerical simulations are concerned, it is enough if we know at least one admissi-
ble configuration, and a set of updating rules that take us from one admissible configuration to
another and that satisfy detailed balance and ergodicity.
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Fig. 1. Site x∗ on the dual lattice in 2D. The dashed lines indicate bonds whose state is not specified.

Table 1
Possible configurations at a dual lattice site x∗. Active bonds are indicated by a solid line, inactive bonds by no line. The
quantity w(x∗) = ∑4

i=1 Ai(x
∗) is the number of active bonds surrounding x∗.

S(x∗) w(x∗) A(x∗) S(x∗) w(x∗) A(x∗)

� �

��

0 (0,0,0,0) � �

��

2 (0,1,1,0)

� �

��

1 (1,0,0,0) � �

��

2 (0,1,0,1)

� �

��

1 (0,1,0,0) � �

��

2 (0,0,1,1)

� �

��

1 (0,0,1,0) � �

��

3 (1,1,1,0)

� �

��

1 (0,0,0,1) � �

��

3 (1,1,0,1)

� �

��

2 (1,1,0,0) � �

��

3 (1,0,1,1)

� �

��

2 (1,0,1,0) � �

��

3 (0,1,1,1)

� �

��

2 (1,0,0,1) � �

��

4 (1,1,1,1)

To describe the updating rules we found convenient to work with the dual lattice (equivalently,
the set of squares of the original lattice). Let us denote a point in the dual lattice by x∗, and let us
enumerate the four links of the corresponding square in anticlockwise order, as shown in Fig. 1.
To describe a configuration of bonds, we introduce for each site of the dual lattice a vector with
four components, A(x∗) ≡ (A1(x

∗),A2(x
∗),A3(x

∗),A4(x
∗)), defined such that Ai(x

∗) = 1 if
the corresponding bond is active and Ai(x

∗) = 0 if it is inactive. The bond configuration is com-
pletely specified by the dual lattice field A(x∗), although this description is redundant: indeed,
one has that A3(x

∗) = A1(x
∗ + 1̂) and A2(x

∗) = A4(x
∗ + 2̂). In Table 1 we show all the possible

configurations of a given square on the lattice, i.e., a point x∗ in the dual lattice. The graphs S(x∗)
corresponding to these configurations, and the number of active bonds, w(x∗) = ∑4

i=1 Ai(x
∗),

are also shown.
Suppose now that we are given an admissible configuration, and we want to update it to a

new admissible configuration. This requires updating some bonds by changing their state, i.e.,
Ai(x

∗) → 1 − Ai(x
∗). A general set of updated bonds defines a (possibly disconnected) path on

the direct lattice. If this path has an open end, by definition this means that the end site is touched
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by a single updated bond. As a consequence, the parity of the number of active bonds touching
this site would change from odd to even under the update, and the resulting configuration would
not be admissible. The most general admissible update consists therefore in changing the state
of bonds belonging to a closed (possibly disconnected) path. This is easily seen to be equivalent
to perform consecutive updates on the set of elementary squares that cover that part of the lattice
enclosed by the path,3 each elementary update consisting in changing the state of all the bonds
surrounding each one of the elementary squares. In higher dimensions, this set is replaced by the
elementary squares on a lattice surface having the path as boundary; any such surface yields the
same net update of bonds.4

In terms of A(x∗), an elementary update consists in the following replacement,

A
(
x∗) → CA

(
x∗) ≡ I − A

(
x∗), (29)

where C stands for conjugation, and where we have introduced the vector I = (1,1,1,1). Un-
der conjugation, Ai(x

∗) → 1 − Ai(x
∗), i = 1, . . .4; clearly, C2 = I , where I is the identity,

IA(x∗) = A(x∗). The variation �w(x∗) in the number of active bonds under conjugation is
given by

�w
(
x∗) =

4∑
i=1

CAi

(
x∗) − Ai

(
x∗) =

4∑
i=1

Ii − 2Ai

(
x∗) = 2

[
2 − w

(
x∗)]. (30)

In Table 2 we show the pairs of configurations of an elementary square connected by conjuga-
tion, together with �w(x∗). These updating steps can be applied independently to all the sites of
the dual lattice, and are clearly reversible. We have now the ingredients to set up the first version
of a Metropolis algorithm (Algorithm 1). It is easy to see that this algorithm satisfies detailed
balance. The only question remaining is that of the ergodicity of the algorithm.

4.1. Ergodicity

Concerning ergodicity the situation is slightly different for open or periodic boundary condi-
tions.

The simplest case is that of open boundaries. In this case we can prove (Appendix A.1) that all
the admissible configurations can be transformed to the same configuration through a sequence
of conjugation moves. As these transformations are reversible, any admissible configuration is
connected to all the others. Therefore in this case Algorithm 1 is ergodic and can be used as is to
simulate the system.

The case of periodic boundary conditions is slightly more complicated. One can see that
in this case, the total number of vertical (respectively horizontal) active bonds modulo 2 on
any given row (respectively, column) of the dual lattice is conserved under the updating moves,
and moreover is the same for any row (column). Calling these numbers vertical and horizontal
parity, PV and PH , respectively, this defines four different “sectors” of admissible configurations,
classified by parities (PV ,PH ) ∈ {(0,0), (1,0), (0,1), (1,1)}. It can be shown that the updating

3 There is an exception: this equivalence does not hold when the closed path winds around the lattice, when periodic
boundary conditions are imposed (see below).

4 When periodic boundary conditions are imposed, one has to supplement these updates with those obtained by chang-
ing the state of all the bonds on straight-line paths winding around the lattice. This point is discussed in detail in
Section 4.1 and in Appendix A.2 and Appendix A.3.
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Table 2
Transformation of configurations under conjugation C. Acted upon a graph, we denote the transformation with a hat.
The quantity �w(x∗) is the variation in the number of active bonds when passing from S(x∗) to ĈS(x∗). As Ĉ is an
involution, Ĉ[ĈS(x∗)] = S(x∗), so the conjugate of a configuration in column 3 is the corresponding configuration in
column 1, and the variation of the number of active bonds changes sign when passing from a configuration in column 3
to the corresponding configuration in column 1.

S(x∗) A(x∗) ĈS(x∗) CA(x∗) �w(x∗)

� �

��

(0,0,0,0) � �

��

(1,1,1,1) 4

� �

��

(1,0,0,0) � �

��

(0,1,1,1) 2

� �

��

(0,1,0,0) � �

��

(1,0,1,1) 2

� �

��

(0,0,1,0) � �

��

(1,1,0,1) 2

� �

��

(0,0,0,1) � �

��

(1,1,1,0) 2

� �

��

(1,1,0,0) � �

��

(0,0,1,1) 0

� �

��

(1,0,1,0) � �

��

(0,1,0,1) 0

� �

��

(1,0,0,1) � �

��

(0,1,1,0) 0

Algorithm 1
1. At a given site x∗ of the dual lattice, compute �w(x∗) corresponding to a conjugation step.
2. If �w(x∗)� 0, accept the step.
3. If �w(x∗) > 0, take a random number r ∈ [0,1]. If r � tanh(|F |)�w(x∗) , accept the step, otherwise reject it (note

that in this case tanh(|F |)�w(x∗) � 1).
4. Repeat the procedure for all the dual lattice sites.

moves are ergodic within each sector separately (Appendix A.2). Therefore we have to modify
slightly Algorithm 1 to obtain an ergodic algorithm (Algorithm 2).

The case of higher dimensionality is a straightforward generalization of the algorithms pre-
sented here, obtained by applying Algorithm 1 to all the elementary squares of the lattice, and by
taking into account that for periodic boundary conditions there are now 2D “sectors”, classified
by the D parities defined in analogy to the 2D case.

5. Numerical results

We have performed numerical simulations of both the 2D and the 3D models using the algo-
rithms discussed previously.

First of all, we tested the algorithms in the case of periodic boundary conditions. The accep-
tance rate of the global update varies widely with both the coupling and the size of the system.
For example, for the 2D model at F = −1.0 the acceptance rate drops from about 60% at L = 16
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Algorithm 2
1. Start from a configuration of parity, say, (0,0).
2. After a certain number of sweeps through the whole lattice, using Algorithm 1, propose a change of the parity PH of

the configuration, by proposing the inversion of the state of all the horizontal bonds on a row i = i0, j = 1, . . . ,L,
of the direct lattice, chosen randomly, so (possibly) passing to a configuration of parity (0,1) with probability
tanh(|F |)�w̃ , where

�w̃ =
L∑

j=1

(
CBH (i0, j) − BH (i0, j)

) = L − 2
L∑

j=1

BH (i0, j), (31)

and we have denoted BH (i, j) = A1(i, j), and CBH (i, j) = 1 − BH (i, j).
3. After the same number of sweeps through the whole lattice, (try to) change the parity PV of the configuration by

proposing the inversion of the state of all the vertical bonds on a column j = j0, i = 1, . . . ,L, of the direct lattice,
chosen randomly, so (possibly) passing to a configuration of parity (1,1), if the proposal in the previous point has
been accepted, or (1,0), if the proposal in the previous point has been rejected, with probability tanh(|F |)�w̃ , where
now

�w̃ =
L∑

i=1

(
CBV (i, j0) − BV (i, j0)

) = L − 2
L∑

i=1

BV (i, j0), (32)

and we have denoted BV (i, j) = A4(i, j), and CBV (i, j) = 1 − BV (i, j).
4. Iterate the procedure.

to about 30% at L = 64; for a smaller coupling, F = −0.6, the acceptance rate drops from 27%
at L = 16 to 3% at L = 64.5

Then we checked that the bounds on the number of active bonds in each configuration of our
system (Appendix B) and also on the average of this quantity (Appendix C) were respected. For
simplicity we only show in Fig. 2 the average number of active bonds.

Then we calculated the correlation functions (22) as well as the energy density (24) and the
specific heat (25) both for the two-dimensional and three-dimensional systems. We have eval-
uated these quantities for different values of the coupling F and various volumes, with lattice
sizes ranging from L = 16 to L = 1024. Simulations were done collecting 100k measurements
for each value of F . We discarded between 10k and 20k configurations at the beginning of each
run in order to ensure thermalization. The data analysis was done using the jackknife method
over bins at different blocking levels.

In Figs. 3, 4 and 5 we show how the correlation functions depend on the distance d , both for
the 2D and 3D models, choosing different antiferromagnetic couplings F < 0 and varying the
lattice volume V . In Fig. 6 we show the staggered and the standard magnetization squared in the
2D model for two values of the coupling F , together with a solid line indicating the analytical
result. As can be seen the staggered magnetization squared is always different from zero while the
standard magnetization vanishes for all values of the coupling F , and the results are in perfect
agreement with the analytical solution of Refs. [21–23]. In Fig. 7 we show the corresponding
results for the 3D model at the same values of the coupling, as well as the mean-field prediction
for the staggered magnetization obtained in Ref. [25]. Again the standard magnetization vanishes,
whereas the staggered one does not, and its value is close to the mean-field prediction for large

5 For large volumes and small couplings the global acceptance rate is so small that our simulations are effectively
confined to one sector. However the difference between sectors is a boundary effect, and we expect, on general thermo-
dynamic grounds, that it should vanish in the large volume limit. This is strongly supported by the very precise agreement,
for all values of the coupling, between our simulations and the exact results in the 2D case.
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Fig. 2. Average number of active bonds normalized by the total number of bonds as a function of |F | for different lattice
sizes L for the 2D model (top) and 3D model (bottom).

values of the coupling |F |. Therefore, despite the vanishing of the standard magnetization, the Z2

symmetry of the system is spontaneously broken both in the 2D and in the 3D models. We can
also notice an apparent decrease of C(d,F ) at large d for small values of the coupling F both
for the 2D and 3D models. This is due to the heavy-tailed distributions of the correlators, which
are also responsible for the noisy behavior seen at large d . In Fig. 8 we show the probability
distributions of the logarithm of the correlators for a lattice size L = 64 and for F = −0.4 and
F = −2.0. Clearly we notice that for a small coupling |F | the values are spread in a wider range
than for F = −2.0; also a long tail develops for large distances d , thus making more difficult a
precise evaluation of the correlators.6 Finally, in Figs. 9 and 10 we show the energy density ε

6 This is the reason why we have made no attempt to calculate the staggered magnetization for couplings smaller than
|F | = 1.0.
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Fig. 3. Dependence of the correlation functions on the distance d for different values of the coupling F and for various
lattice sizes L in the 2D model.

and the specific heat cV as a function of |F | for various lattice sizes L. The solid lines present in
the figures for the 2D model are the analytical results for these quantities [22]. We can see that
the energy density and the specific heat do not show any sign of singular behavior in F for the
range of couplings studied.

6. Conclusions

In this paper we studied the 2D and 3D antiferromagnetic Ising model with a “topological”
θ -term at θ = π . For this model we introduced a new geometric algorithm free from the sign
problem.

The numerical part of the work has been devoted to testing the algorithm for the two-
dimensional model against known analytical results, with which we obtain perfect agreement,
and then afterwards to study the three-dimensional system. Our findings strongly support the
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Fig. 4. Dependence of the correlation functions on the distance d for different values of the coupling F and for various
lattice sizes L in the 2D model (continued).

scenario that, despite the vanishing of the standard magnetization, the staggered magnetization
is non-zero for all D � 2, and therefore the Z2 symmetry is spontaneously broken for all values
of F at θ = π .

It would be interesting to study whether it is possible to introduce a “worm” in our algorithm,
in the spirit of [2]. This could change the dynamics of the system; in particular an implementation
that allows the worm to wind through the lattice might be able to tunnel between the different
parity sectors. We leave the study of such a possibility for a future work.
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Fig. 6. Standard and staggered magnetization squared for two values of the coupling F for the 2D model. The red line
indicates the analytical prediction (Eq. (D.3), Appendix D), whereas the blue line is the zero value. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. Ergodicity

A.1. Open boundary conditions for the 2D model

Consider a 2D N × N square lattice with open boundary conditions. In this case Algorithm 1
is ergodic. The basic idea of the proof is to perform transformations that “shift” all the vertical
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Fig. 7. Standard and staggered magnetization squared for two values of the coupling F for the 3D model. The red line
indicates the mean-field prediction [25], whereas the blue line is the zero value. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

active bonds to the left. This can be accomplished by performing transformations according to
the rules listed in Table 3, starting from the upper-right corner of the dual lattice, proceeding
downward along a column of the dual lattice, and then moving to the column to the left. We call
this transformation “reduction”, which we denote with R. It is easily seen from Table 3 that it
coincides with the identity if A2(x

∗) = 0, and with conjugation if A2(x
∗) = 1, i.e.,

RA
(
x∗) = δA2,0IA

(
x∗) + δA2,1CA

(
x∗). (A.1)

In the case of open boundary conditions, the sites of the dual lattice are x∗(i, j) with i, j ∈
{1, . . . ,N − 1}. By construction, after R has been applied to the right-most column of the dual
lattice, the resulting configuration will not have any vertical bond on the right-hand side of this
column, i.e., A2(x

∗) = 0 for x∗(i,N − 1), i ∈ {1, . . . ,N − 1}, and only horizontal bonds will
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Fig. 8. Behavior of the probability distributions of the logarithm of the correlators in the 2D model for two different
values of the coupling F .

be present. As R transforms an admissible configuration into another admissible configuration,
the only possibility is that all the horizontal bonds of the right-most column of the dual lattice
are active, as the rightmost sites of the direct lattice need to be touched by at least one active
bond and they cannot have more than one (see Fig. 11). We now apply R to the following
column: as the vertical bonds move to the left, and all the sites in the before-last column of the
direct lattice already have an active bond, the horizontal bonds in the before-last column of the
dual lattice must be inactive (see Fig. 12). If we now repeat the procedure, we find ourselves as
after the first step: there is a column of sites of the direct lattice with no vertical bonds, and no
horizontal bonds to the right, exactly as the right boundary of the lattice. Therefore, the result
iterates for pairs of columns of the dual lattice, until we reach the left boundary. As all the sites
are already connected horizontally to the right, and as the uppermost site can have at most a
single vertical bond, it is easy to see that no vertical bond can appear. We have then reduced
the initial configuration to the reduced configuration of Fig. 13. As no reference has been made
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Fig. 9. Energy density ε as a function of |F | for various lattice sizes L for the 2D model (top) and 3D model (bottom).
The analytical result for the 2D model is also plotted for comparison.

to the specific form of the initial configuration, the procedure applies equally to any admissible
configuration, which completes the proof of ergodicity for open boundary conditions. This also
provides an admissible configuration, so completing the construction.

A.2. Periodic boundary conditions for the 2D model

Consider a 2D N × N square lattice with periodic boundary conditions. In this case, the sites
of the dual lattice are x∗(i, j) with i, j ∈ {1, . . . ,N}, and are closed as well by periodic boundary
conditions. We start by applying R to column N of the dual lattice. Again, after this procedure
there are no vertical bonds active on the right-hand side of the column; however, this time the
right-most sites of the direct lattice can have horizontal active bonds entering from the left or
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Fig. 10. Specific heat cV as a function of |F | for various lattice sizes L for the 2D model (top) and the 3D model
(bottom). The analytical result for the 2D model is also plotted for comparison.

from the right, due to the periodic boundary conditions (see Fig. 14). There are 2N possibilities,
according to the position of the horizontal bonds (left or right). Repeating the procedure for
column N − 1, one immediately sees that the active horizontal links must be the same as in
column 1, as there are no other possibilities due to the absence of vertical bonds in column
N − 1 of the direct lattice (see Fig. 15). Repeating again, we find for column N − 2 the same
configuration of horizontal bonds of column N , and so on. Since there is now an even number
of columns on the dual lattice, the final pattern will be N/2 identical pairs of columns on the
dual lattice, with all the odd columns equal to each other, and all the even columns equal to each
other.

At first sight, one could think that there are therefore 2N reduced configurations instead of
one (see Fig. 16). At second sight, one could think that there are even more, as it is possible that
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Table 3
Reduction: it coincides with the identity if A2 = 0, and with conjugation if A2 = 1, i.e.,
R = δA2,0I + δA2,1C.

S(x∗) A(x∗) R̂S(x∗) RA(x∗)

� �

��

(0,0,0,0) � �

��

(0,0,0,0)

� �

��

(1,0,0,0) � �

��

(1,0,0,0)

� �

��

(0,1,0,0) � �

��

(1,0,1,1)

� �

��

(0,0,1,0) � �

��

(0,0,1,0)

� �

��

(0,0,0,1) � �

��

(0,0,0,1)

� �

��

(1,1,0,0) � �

��

(0,0,1,1)

� �

��

(1,0,1,0) � �

��

(1,0,1,0)

� �

��

(1,0,0,1) � �

��

(1,0,0,1)

� �

��

(0,1,1,0) � �

��

(1,0,0,1)

� �

��

(0,1,0,1) � �

��

(0,1,0,1)

� �

��

(0,0,1,1) � �

��

(0,0,1,1)

� �

��

(1,1,1,0) � �

��

(0,0,0,1)

� �

��

(1,1,0,1) � �

��

(0,0,1,0)

� �

��

(1,0,1,1) � �

��

(1,0,1,1)

� �

��

(0,1,1,1) � �

��

(1,0,0,0)

� �

��

(1,1,1,1) � �

��

(0,0,0,0)

all the vertical bonds in column 1 of the direct lattice are active (see Fig. 17): in this case all the
sites in this column have two more active bonds (vertical bonds are however absent in the rest of
the lattice, by construction). However, one can show that many of these configurations, that we
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Fig. 11. Right-most column of the dual lattice (using open boundary conditions) after the first step of reduction. The state
of the vertical bonds inside the rectangle is not specified.

Fig. 12. The two right-most columns of the dual lattice (using open boundary conditions) after the second step of reduc-
tion.

Fig. 13. Reduced configuration, after completing the reduction process.

Fig. 14. The N th and first columns of the dual lattice (using periodic boundary conditions) after the first step of reduction.
(Numbers in the figure refer to columns of the direct lattice.)

call almost-reduced, can be transformed into one another: by direct inspection, one can show that
a configuration with two horizontal bonds on the right of two adjacent sites can be transformed
into the configuration with two bonds on the left of the same two adjacent sites, all the rest
unchanged (and vice-versa); and that a configuration with one bond on the right and one on the
left of two adjacent sites can be transformed into the configuration with the first bond on the left
and the second one on the right of the same two adjacent sites, all the rest unchanged. In the case
without vertical bonds, it suffices to apply a conjugation to a site of the dual lattice belonging
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Fig. 15. The N − 1th, N th and first columns of the dual lattice (using periodic boundary conditions) after the first step of
reduction.

Fig. 16. A possible almost-reduced configuration. The same pattern is repeated along the whole lattice.

Fig. 17. Another possible almost-reduced configuration, with all the vertical bonds of column 1 in active state, winding
around the lattice. Only the pattern of horizontal bonds is repeated along the whole lattice.

Fig. 18. Allowed transformations of a pair of adjacent rows in the almost-reduced configurations. Only the basic block is
drawn.

to the row corresponding to the two given sites, and then repeat the reduction procedure; in the
case with vertical bonds, it is enough to repeat the reduction procedure along the whole lattice
(see Fig. 18).

Exploiting these equivalences, one can “swap” pairs of bonds, finally reducing to one of the
four configurations of Fig. 19. However, it is not possible to transform one of these configurations
into one another by means of our admissible moves. To see this, define the number of active
vertical bonds on row i of the dual lattice,

NV (i) =
N∑

j=1

A4(i, j) = 1

2

N∑
j=1

A4(i, j) + A2(i, j), NV (i) ∈ N, (A.2)

and the number of active horizontal bonds on column j of the dual lattice,
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Fig. 19. The four inequivalent reduced configurations for periodic boundary conditions. The pair (PV ,PH ) is reported
above each configuration.

NH (j) =
N∑

i=1

A1(i, j) = 1

2

N∑
i=1

A1(i, j) + A3(i, j), NH (j) ∈ N. (A.3)

Observing that the admissible updates always change A1(i, j)+A3(i, j) and A4(i, j)+A2(i, j)

by 0 or ±2, one has that the vertical parity PV (i) = NV (i)mod 2 and the horizontal parity
PH (j) = NH (j)mod 2 are conserved under admissible moves. It is evident that for each of the
four configurations of Fig. 19, PV (i) = PV ∀i and of PH (j) = PH ∀j , due to the horizontal
periodicity of the configuration, and moreover that these configurations have different values of
(PV ,PH ). As these quantities are conserved, we have that PV (i) = PV ∀i and PH (j) = PH ∀j

also for a generic configuration, which under R will be transformed to the reduced configuration
with the same pair (PV ,PH ).

A.3. Ergodicity in the 3D model

Consider a 3D cubic N ×N ×N lattice, with N even, and a configuration of bonds satisfying
the constraint that every site is touched by an odd number of bonds. We define plaquette update
(PU) the process of inverting the state (active/inactive) of all the bonds surrounding an elementary
square of the lattice. We denote by Pμν(n) the square formed by the links (n,n + μ̂), (n +
μ̂, n + μ̂ + ν̂), (n + μ̂ + ν̂, n + ν̂) and (n + ν̂, n), with μ,ν = 1,2,3 and n = (n1, n2, n3) where
ni = 1,2, . . . ,N .

We now show that by means of PUs it is possible to transform any admissible configura-
tion into any other in the case of open boundary conditions (obc), while in the case of periodic
boundary conditions (pbc) it is necessary to supplement these transformations with a few global
transformations. In this way we can construct an ergodic algorithm. The strategy is to reduce any
admissible configuration to one and the same, “elementary” configuration.

The proof is as follows. Consider the squares lying in the (1,2) planes of the lattice. Fix
n1 = N − 1, and ∀n2, n3 apply a PU on the plaquette P12(n) if the rightmost bond (i.e., the one
on the link (n+ 1̂, n+ 1̂+ 2̂)) is active, otherwise leave it untouched. For obc n2 = 1,2, . . . ,N −1
and n3 = 1,2, . . . ,N , while for pbc n2 = 1,2, . . . ,N and n3 = 1,2, . . . ,N . After this sequence
of transformations, all the bonds on the links (n+ 1̂, n+ 1̂ + 2̂) at n1 = N − 1 are made inactive.
Repeat now this procedure for n1 = N − 2,N − 3, . . . ,1. As a result, all the bonds on the links
(n + 1̂, n + 1̂ + 2̂) (i.e. along direction 2) for n1 = 1, . . . ,N − 1, n2 = 1, . . . ,N − 1 (obc) or
n2 = 1, . . . ,N (pbc) and n3 = 1, . . . ,N are made inactive.
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Consider now the squares lying in the (3,1) plane, and starting from n1 = N − 1, apply a PU
on the plaquette P31(n) if the rightmost bond (i.e., the one on the link (n+ 1̂, n+ 1̂+ 3̂)) is active,
otherwise leave it untouched. For obc n3 = 1,2, . . . ,N − 1 and n2 = 1,2, . . . ,N , while for pbc
n3 = 1,2, . . . ,N and n2 = 1,2, . . . ,N ; repeat then the procedure for n1 = N − 2,N − 3, . . . ,1,
so that in the end all the bonds on the links (n + 1̂, n + 1̂ + 3̂) (i.e. along direction 3) for n1 =
1, . . . ,N − 1, n3 = 1, . . . ,N − 1 (obc) or n3 = 1, . . . ,N (pbc) and n2 = 1, . . . ,N are made
inactive. This second series of transformations clearly does not touch the bonds along direction 2.

As a result, we have now a configuration where there are no active bonds in the directions 2
and 3, except possibly at n1 = 1. Therefore, in the bulk of the lattice the constraint on the number
of bonds touching a site has to be enforced by means of bonds in direction 1, and therefore only
one bond can touch a site. This immediately implies the following relation:

B1(n1, n2, n3) = 1 − B1(n1 + 1, n2, n3), n1 = 1, . . . ,N − 2, (A.4)

for n2, n3 = 1, . . . ,N . For obc, since B1(N − 1, n2, n3) = 1 ∀n2, n3 in order for the sites at
n1 = N to satisfy the constraint, this implies

obc : B1(n1, n2, n3) = mod(n1,2), n1 = 1, . . . ,N − 1, ∀n2, n3. (A.5)

Since all sites at n1 = 1 are touched by at least one bond, active bonds in directions 2 and 3 at
n1 = 1 must form closed paths, so that they contribute an even number of active bonds to all sites.
Any non-self-intersecting path of active bonds can be made inactive by performing a PU on all
the plaquettes contained in the path; self-intersecting paths of active bonds can be decomposed
in non-self-intersecting paths that have no link in common, and so also in this case all bonds in
direction 2 and 3 can be made inactive, i.e., we obtain B2,3(n1, n2, n3) = 0 ∀n1, n2, n3. This is
the sought-after “elementary configuration”, to which all other configurations can be reduced in
the case of obc.

For pbc, in order for the sites at n1 = N to satisfy the constraint, one has furthermore that
B1(N −1, n2, n3) = 1−B1(N,n2, n3), ∀n2, n3, and so B1(1, n2, n3) = 1−B1(N,n2, n3), which
implies that a single bond in direction 1 touches the sites at n1 = 1. This again implies that the
active bonds in directions 2 and 3 at n1 = 1 must form closed paths. While for closed paths that
do not wind around the lattice the considerations made above apply, so that the corresponding
bonds can be made inactive, this is not true for winding paths. However, we can basically re-
peat the same strategy used above: starting from n2 = N − 1, perform a PU in the plaquettes
P23(1, n2, n3) if the rightmost bond ((n + 2̂, n + 2̂ + 3̂)) is active, for all n3, and then repeat
the procedure for all n2 until we reach n2 = 1. At this point, there can be only bonds along di-
rection 2, and possibly bonds along direction 3 at n2 = 1. Enforcing the constraint that every
site has to be touched by an even number of bonds lying in the plane n1 = 1, we conclude that
B2(1, n2, n3) = B2(1,1, n3) ∀n2, i.e., active bonds (if any) in direction 2 form closed straight-
line paths winding around the lattice. As a consequence, the number of 2-bonds touching a site
at n2 = 1 is even (either zero or 2), so that the same must apply for the 3-bonds at n2 = 1,
and so again B3(1,1, n3) = B3(1,1,1) ∀n3. Furthermore, it is easy to see that the straight lines
formed by the 2-bonds can be parallelly shifted, and that a pair of such straight lines at n3 and
n3 + 1 can be made inactive, by means of PU’s. In conclusion, it is always possible to reduce the
configuration of 2- and 3-bonds on the plane n1 = 1 to one of the following cases:
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Table 4
Partial classification of reduced configurations in 3D.

Conf. P2 P3

1 0 0
2 1 0
3 0 1
4 1 1

1: B2(1, n2, n3) = 0, ∀n2, n3,

B3(1, n2, n3) = 0, ∀n2, n3;
2: B2(1, n2,1) = 1 ∀n2, B2(1, n2, n3) = 0 ∀n2, ∀n3 �= 1,

B3(1, n2, n3) = 0, ∀n2, n3;
3: B3(1,1, n3) = 1 ∀n3, B3(1, n2, n3) = 0 ∀n2 �= 1, ∀n3,

B2(1, n2, n3) = 0, ∀n2, n3;
4: B2(1, n2,1) = 1 ∀n2, B2(1, n2, n3) = 0 ∀n2, ∀n3 �= 1,

B3(1,1, n3) = 1 ∀n3, B3(1, n2, n3) = 0 ∀n2 �= 1, ∀n3. (A.6)

The configurations 1–4 are characterized by the number (0 or 1) of 2-bonds and 3-bonds in a
strip at fixed n2 and n3, respectively. Notice that these numbers do not depend on which strip
we choose. Since there are no other 2-bonds and 3-bonds in the rest of the lattice, these numbers
are the same if we count the 2-bonds in a slice (i.e., all n1 and n3) at fixed n2, and if we count
the 3-bonds in a slice (i.e., all n1 and n2) at fixed n3. Again, these numbers do not depend on
the chosen slice. Since a PU in the (μ, ν) plane does not change the parity of the number of
μ- or ν-bonds in a slice at fixed nμ or nν (although changing possibly their number), we can
determine to which of the above configurations in the n1 = 1 plane a given generic configuration
can be reduced, by simply computing these parities, which again do not depend on which slice
we choose. Defining

P2 = mod

( ∑
n1,n3

B2(n1, n2, n3),2

)
, P3 = mod

( ∑
n1,n2

B2(n1, n2, n3),2

)
, (A.7)

one can easily classify the configurations 1–4 (see Table 4).
The last step is to simplify as much as possible the configuration of 1-bonds. For each (n2, n3),

the configuration of 1-bonds is entirely determined by the value of B1(1, n2, n3). It is easy to
see that by means of PUs, we can simultaneously change the configurations at (n2, n3) and
(n2 + 1, n3) or (n2, n3 + 1), i.e., we can go from B1(1, n2, n3) = b1, B1(1, n2 + 1, n3) = b2
(bi = 0,1) to B1(1, n2, n3) = 1 − b1, B1(1, n2 + 1, n3) = 1 − b2, or from B1(1, n2, n3) = b1,
B1(1, n2, n3 + 1) = b2 to B1(1, n2, n3) = 1 − b1, B1(1, n2, n3 + 1) = 1 − b2. Using this ob-
servation, we can change the position of those rows characterized by B1(1, n2, n3) = 0, and
trade a pair of such rows for a pair with B1(1, n2, n3) = 1. For definiteness, we move them first
towards n2 = 1 at fixed n3, removing them when two show up at neighboring sites: as a result,
B1(1, n2, n3) = 1 ∀n2 �= 1, n3. Next, we move them towards n3 = 1 at fixed n2 = 1, again remov-
ing them when two show up at neighboring sites: as a result, B1(1, n2, n3) = 1 ∀n2 �= 1, n3 �= 1.
Then, two possibilities remain: either B1(1,1,1) = 1 or B1(1,1,1) = 0. This means that in the
first case there is an even number of 1-bonds in any slice at fixed n1, while in the second case
this number is odd. Since, as mentioned above, the parity of the number of 1-bonds in a slice at
fixed n1 is not changed by a PU, the “reduced configuration” of 1-bonds corresponding to any
given generic configuration is determined by the value of the quantity
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Table 5
Complete classification of the reduced configurations in 3D.

B1(1,1,1) B2(1,1,1) B3(1,1,1) P1 P2 P3

�

�

�

�� 1 0 0 0 0 0

�

�

�

�� 1 0 1 0 0 1

�

�

�

��� 1 1 0 0 1 0

�

�

�

��� 1 1 1 0 1 1

�

�

�

� 0 0 0 1 0 0

�

�

�

� 0 0 1 1 0 1

�

�

�

�

�
0 1 0 1 1 0

�

�

�

�

��
0 1 1 1 1 1

P1 = mod

( ∑
n2,n3

B1(n1, n2, n3),2

)
. (A.8)

Therefore, the whole configuration space is made of 8 sectors, not connected by PU’s. Each sector
is characterized by the values of the parities Pi , or, equivalently, by the “reduced configuration”
to which it can be brought by means of PU’s alone. In turn, these reduced configurations are
entirely determined by the following relations,

pbc: B1(n1, n2, n3) = 1 − B1(n1 + 1, n2, n3), n1 = 1, . . . ,N − 1,

B2(n1, n2, n3) = B3(n1, n2, n3) = 0 ∀n1 �= 1, ∀n2, ∀n3,

B2(1, n2, n3) = 0, ∀n2, ∀n3 �= 1,

B3(1, n2, n3) = 0, ∀n2 �= 1, ∀n3,

B2(1, n2,1) = B2(1,1,1), ∀n2,

B3(1,1, n3) = B3(1,1,1), ∀n3, (A.9)

and by the values of B1(1,1,1), B2(1,1,1), and B3(1,1,1) (see Table 5). In order to move
from a sector to another, i.e., to change one of the parities Pi while remaining in the space of
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admissible configurations, it is necessary to change the state of all the bonds along a closed path
winding around the lattice along direction i.

Appendix B. Determination of the upper and lower number of bonds permitted in a given
configuration (pbc case)

Due to the constraints, the number of dimers touching a given site must be odd for an admis-
sible configuration. In dimension D and using periodic boundary conditions, this means that this
number is 1,3, . . . ,2D − 1. We denote by Vk the number of vertices with k dimers in a given
configuration, and by V the total number of sites. One has the two following relations:

D∑
k=1

V2k−1 = V,

D∑
k=1

(2k − 1)V2k−1 = 2B, (B.1)

where B is the total number of dimers. The first equation above can be rewritten as

V = V1 +
D∑

k=2

V2k−1 (B.2)

and substituting this into the second equation we get

2B = V +
D∑

k=2

2(k − 1)V2k−1 � V +
D∑

k=1

2(D − 1)V2k−1. (B.3)

Since the terms under the summation signs are positive, we get the inequalities

V � 2B � (2D − 1)V (B.4)

and dividing by the total number of links DV we obtain

1

2D
� B

DV
� 1 − 1

2D
. (B.5)

Appendix C. Average number of bonds (pbc)

Given an admissible configuration of dimers b = {Ai(x
∗)} one immediately sees that the

configuration A′
i (x

∗) = 1−Ai(x
∗) is still admissible. Indeed, the change in the number of dimers

πx[b] touching site x is πx[b′] − πx[b] = 2(D − πx[b]), which is even, so that if πx[b] is odd,
then πx[b′] is odd. Setting t = tanhF we can therefore write for the partition function (up to an
irrelevant factor)

Z =
∑

{b∈B̃}
tB =

∑
{b∈B̃}

tDV −B =
∑

{b∈B̃}
tB tDV −2B (C.1)

or equivalently〈〈
tDV −2B

〉〉 = 1. (C.2)
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Using the well-known inequality 〈eA〉 � e〈A〉, we find

tDV −2〈〈B〉〉 � 1, (C.3)

which, since t � 1, implies

DV − 2〈〈B〉〉 � 0 ⇒
〈〈

B

DV

〉〉
� 1

2
. (C.4)

Appendix D. Analytic evaluation of the spin–spin correlation functions

Here we show the analytic results for the 2D ferromagnetic Ising model with imaginary
magnetic field H

kT
= i π

2 that have been derived in Ref. [23]. The most important result for our
purposes is the asymptotic behavior of the spin–spin correlation function. Since in the geometric
representation the weight of each graph depends only on t = tanh |F |, the partition function is
the same in the ferromagnetic and antiferromagnetic cases; furthermore, independently of the
sign of the coupling, the spin–spin correlation functions read

〈s0sd〉 = 〈〈
tanhFd−2Nd

〉〉
(D.1)

where Nd is the number of active bonds on the straight-line path connecting the sites (0,0) and
(d,0). Therefore we can write

〈s0sd〉 = (sgnF)d
〈〈
td−2Nd

〉〉 = { 〈〈td−2Nd 〉〉 F > 0,

(−1)d〈〈td−2Nd 〉〉 F < 0,
(D.2)

i.e., 〈s0sd〉AFM = (−1)d〈s0sd〉FM . The result obtained in Ref. [23] for 〈s0sd〉FM is the following:

〈s0sd〉FM = M2
{

1 − (−1)d

4π

(1 − t2)2

t (1 + t2)

1

d

(
1 − t

1 + t

)2d}
,

M = 1

2
3
8

(1 + t2)
1
2

t
1
4 (1 + t4)

1
8

, (D.3)

where M is the staggered magnetization. Then the result for the antiferromagnetic coupling im-
mediately follows:

〈s0sd〉AFM = M2
{
(−1)d − 1

4π

(1 − t2)2

t (1 + t2)

1

d

(
1 − t

1 + t

)2d}
. (D.4)
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