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Diversity-Oriented Synthesis (DOS) strategies have successfully been used to identify new ligands for 

a variety of targets, including protein-protein interactions.
1
  These strategies provide skeletal, appendage 

and stereochemical diversity to give access to collections of complex and diverse small molecules. In the 
search for bioactive compounds, special efforts have also been directed to develop libraries based on 
privileged scaffolds, structural motifs common to bioactive molecules, such as indole, quinolone, 
benzimidazole, dihydropyridine, dihydropyrimidine, benzodiazepine, and others.

2 
Although DOS usually 

explores the chemical space not occupied by synthetic drugs and natural products, some DOS-based 
strategies around privileged scaffolds have been described.

1a,3
 These strategies populate the chemical 

space through the creation of new core skeletons that have embedded privileged motifs, or by generating 
innovative substitution patterns on privileged structures.  

Within privileged scaffolds, the indole ring is probably one of the most important structures in drug 
discovery,

4
  as well as one of the heterocyclic systems more commonly found in natural products.

5
 

Therefore, any method aimed at the preparation of innovative indole derivatives is of invaluable interest 
in medicinal chemistry. In a similar manner, the tetramic acid is a challenging structure that is present in a 
high variety of natural products displaying a wide range of biological activities, ranging from antibiotic 
and antivirals to antineoplastic and fungicides.

6 
Most of the tetramic acid derivatives hitherto described 

are 1-unsubstituted or 1-alkyl/benzyl derivatives, but very few 1-benzyloxycarbonyl analogues have been 
reported until now.

7
 

It is known that β–keto esters are versatile synthetic intermediates that have been widely used for the 
preparation of different heterocyclic systems, like dihydropyrimidinones, indoles, pentasubstituted 
pyrrole rings and pyrazolones.

8
 In particular, we have worked on the transformation of β–keto esters 

derived from amino acids and dipeptides in different chiral heterocyclic systems, namely 1,3-
dioxoperhydropyrido[1,2-c]pyrimidines, and 2-oxopiperazine derivatives.

9
 More recently, we have 

initiated a program directed to study the use of these β–keto esters as valuable starting materials for DOS 
approaches, allowing the appendage of the amino acid side-chain in the heterocyclic system, which, in 
turn, can provide a source of diversification. In this sense, the preparation of highly functionalized β,γ-
diamino esters have already been described, along with their conversion into pyrrolidinone derivatives.

10
  

Now, we illustrate the application of amino-acid-derived β–keto esters to the synthesis of non-
conventional 2,3-disubstituted indoles and 1-benzyloxycarbonyl tetramic acid derivatives.  

Inspired by the indole synthesis described by Tanimori from 2-iodoaniline and alkyl or aryl β–keto 
esters,

8e
 we decided to explore the preparation of indole derivatives of general formula C, with an unusual 

α–amino substituent at position 2, using amino acid-derived β–keto esters 1 as key starting materials 
(Scheme 1). In this copper catalyzed reaction, two intermediates can be envisaged for the generation of 
the indole ring. These are, the previously proposed condensation to conjugated enamines A,

11
  followed 

by a Heck-type coupling (i), but also the arylation of the 1,3-dicarbonyl compound to intermediates B and 
subsequent condensation (ii). In fact, the CuI/L-proline catalytic system was previously described as a 
useful procedure to diverse 2-aryl-1,3-dicarbonyl compounds.

12
 If intermediates B were formed, under the 

basic conditions of the reaction, they could also lead to tetramic acid derivatives D through lactamization 
(route iii). 

                                                           
 



 

 

Scheme 1. Initial proposed route to 2,3-disubstituted indoles and tetramic acid derivatives. 

 To explore the possibilities of this synthetic scheme, we prepared the corresponding β-keto esters 

derived from Z-Ala-OH, both L and D, and Z-Phe-OH, using described strategies.
9c,13 

In our hands, 

following the Tanimori conditions,
17

 the reaction of β–keto esters 1 with 2-iodoaniline led to complex 

mixtures, both using BINOL and L-Pro as additives. Similar disappointing results were obtained when the 

reaction was carried out by conventional heating and under MW irradiation. Considering that the primary 

amine group could be the responsible for the undesired side reactions, we decided to protect it with a 

trifluoroacetyl group, following a procedure previously described by Chen and coworkers.
14

 This 

modification would diminish the risk of side reactions and, at the same time, it would permit to take profit 

of the accelerating effect described for an ortho-amide group in Ullman-type reactions.
15 

 

 

Scheme 2. Synthesis of 2,3-disubstituted indoles and tetramic acids from amino acid-derived β–keto 
esters. 

As depicted in Scheme 2, treatment of a mixture of the corresponding β-keto ester, 1a-c, and 
iodophenyl-2-trifluoroacetylamine with copper iodide, in the presence of an excess of cesium carbonate 
(4 equiv) as base and L-Pro (0.4 equiv) as additive in DMSO,

14
 did not lead to the expected open 2-aryl-

1,3-dicarbonyl derivatives 2. Instead, under these conditions, the tetramic acid derivatives 3a-c were 



isolated in good yield. The structure of compounds 3, which should come from the nucleophilic addition 
of the carbamate NH to the methyl ester group of compounds 2, through type-B intermediates, was 
confirmed by mass spectrometry that showed the loss of 31 mass units, which corresponds to the loss of a 
MeO-group, as well as the absence of the corresponding signal in the 

1
H NMR spectra. On the contrary, 

when we tried milder conditions for the coupling reaction, using room temperature and only 1 equivalent 
of cesium carbonate as base, the expected coupling products 2a-c were isolated as the main reaction 
products.

16
 Heating compounds 2a-c with 2 equivalents of cesium carbonate in methanol led, again, to the 

tetramic acid derivatives 3a-c.
17

 This is in agreement with the direct formation of these compounds from 
1a-c when the first reaction was performed under excess of base (Scheme 2). 

Deprotection of the o-amino group of compounds 2 either in basic or in acidic conditions would permit 
the cyclization to the desired indole derivative.

[9b]
 Thus, removal of the trifluoroacetyl group of 

compounds 2a-c by treatment with hydrochloric acid finally led to the expected indole derivatives 4a-c in 
good yield.

18
 In addition, these compounds were also obtained by a similar acidic treatment of the 

tetramic acid analogues 3a-c. In general terms, for the preparation of indole derivatives 4 the route 
134 led to better yields than the alternative 124 pathway. 

Chiral HPLC experiments on these indole derivatives indicated a partial loss of optical purity, probably 
due to the instability of the β–keto esters or of the intermediate compounds 2 or 3 under the basic reaction 
conditions. A similar stereochemical integrity loss was described in the reductive amination reaction of 
these β–keto esters.

10
  

The carbamate group (Z) in compounds 3 and 4 can be easily removed by hydrogenation, as illustrated 
by the preparation of tetramic acids 5a-c, and indole 6a, respectively, having appropriate functional 
groups for further transformations. Thus, the primary amino group in compounds 6a is susceptible of new 
reactions, offering the possibility of increasing the molecular diversity by introducing different 
substituents and functionalities to that position. To exemplify this, and to explore the reactivity of the 
amino group at this position, compound 6a was reacted with an isocyanate, an acyl chloride and a 
sulfonyl chloride to lead to urea 7a, amide 8a and sulfonamide 9a, with good/acceptable yields (Scheme 
3). Reactions with the acyl and sulfonyl chlorides were performed in the presence of excess of propylene 
oxide as acid scavenger, leading to cleaner crude products and higher yield than with TEA. 

 

Scheme 3. Incorporation of diversity at the free amino group. 

 

In summary, starting from β–keto esters derived from amino acids we have developed a simple and 
practical method that permits the preparation of either 1-benzyloxycarbonyl-3,5-disubstituted tetramic 
acid derivatives or 2,3-disubstituted indole systems.  The thorough control of the reaction conditions, by 
means of the amount of base and the temperature, allowed us to stop the reaction in the linear 2-aryl-1,3-
dicarbonyl derivatives or progress it to the tetramic acids, both precursors of the indole derivatives upon 
acid hydrolysis. The obtained indole systems are substituted in position 2 by an amino methyl group, also 
supporting an amino acid side-chain (R

1
) at the methylene group. Therefore, different R

1
 substituents 

could be introduced by using different amino acids as starting materials. Additionally, the primary amino 
group on the substituent in position 2, as well as the carboxylate group in position 3 of the indole ring are 
both susceptible of further modification, providing new opportunities for diversification.  The synthetic 
approach described here could have application in the generation of libraries based on two biologically 
relevant heterocyclic systems, indole and tetramic acids, with new substitution patterns.  
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mmol), L-Pro (0.13 mmol) and Cs2CO3 (0.33  mmol), and stirred at room temperature for 3 days. 

Then the reaction mixture was neutralized with 1M HCl and extracted with EtOAc. The organic 

phase was washed with brine and dried over Na2SO4. The solvent was evaporated and the raw 

material was purified by chromatography (20% EtOAc/Hexane). As an example: (4S)-Methyl 4-

(benzyloxycarbonyl)amino-3-hydroxy-2-(2-trifluoroacetamido)phenyl-2-pentenoate (2a): 

From 1a (0.3 mmol). Brownish solid (84 mg, 60%). HPLC: tR = 11.55 min, m.p. 130-132 ºC, 

[α]
25

D  = -13.5 (c = 1.0,  MeOH). 
1
H NMR (CDCl3, 300MHz):  = 13.0 (d, 1H, J = 1.6 Hz, 3-
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3.99 (m, 1H, J = 6.8, 1.5Hz, 4-H), 3.67 (s, 3H, OCH3), 1.37 (d, 3H, J = 6.8 Hz, 5-CH3) ppm.
 13

C 

NMR (CDCl3, 75MHz): = 173.7 (3-C), 172.0 (CO), 156.0 (CO), 155.57 (q, J = 32 Hz, COCF3), 

135.7 (C Ar), 134.6 (C Ar), 131.9 (CH Ar), 129.2 (CH Ar), 128.5 (2C, CH Ar), 128.4 (2C, CH 

Ar), 128.3 (CH Ar), 128.1 (CH Ar), 127.0 (CH Ar), 126.2 (C Ar), 116.1 (q, J = 288 Hz, 

COCF3), 99.9 (2-C), 67.2 (Z-CH2), 52.1 (OCH3),  47.6 (4-C), 17.5 (5-C) ppm. C22H21F3N2O6 

(466.41): calcd. C, 56.65; H, 4.54; N, 6.01; found C, 56.55; H, 4.41; N, 5.92. ESI-MS: m/z = 

489.0 [M+Na]
+
, 467.0 [M+H]

+
. 

17. General procedure for the synthesis of 3-(2-trifluoroacetamido)phenyl-3-pyrrolin-2-one 

derivatives 3.  

Method A: A solution of the corresponding β-keto ester 1 (0.4 mmol), in dry DMSO (2 ml) was 

treated with 2-trifluoroacetamidobenzene (0.44 mmol), CuI (0.088 mmol), L-Pro (0.17 mmol) 

and Cs2CO3 (1.76  mmol), and heated at 50ºC for 24 h. Then the reaction mixture was 

neutralized with 1M HCl and extracted with EtOAc. The    organic phase was washed with 

brine and dried over Na2SO4. The solvent was evaporated and the raw material was purified by 

chromatography (5% MeOH/DCM).  

Method B: A solution of compound 2a (80 mg, 0.017 mmol) in MeOH (5 ml) and H2O (2.5 ml) 

was treated with Cs2CO3 (0.034 mmol) and heated at 80 ºC for 2h. The reaction was allowed to 

recover room temperature, neutralized with 1M HCl, and extracted with EtOAc. The workup 

was continued as described in method A. As an example: (5S)-1-Benzyloxycarbonyl-4-

hydroxy-5-methyl-3-(2-trifluoroacetamido)phenyl-3-pyrrolin-2-one (3a): From 1a (0.4 

mmol) by Method A or 2a (0.017 mmol) by Method B. (100 mg, 60% and 3.5 mg, 47% 

respectively). Brownish solid, HPLC: tR = 9.57 min, m.p. 168-171 ºC, [α]
25

D  = +36.7 (c = 1.0, 

MeOH). 
1
H NMR (DMSO-d6, 300MHz):  = 13.27 (s, 1H, 4-OH), 7.81 (dd, 1H, J = 6.2, 3.3 Hz, 

Ar), 7.57 (m, 1H, Ar), 7.49-7.26 (m, 7H, 5H Ar-Z, 1H Ar, and 1H NHCOCF3); 7.11 (dd, 1H, J = 

5.7, 3.5 Hz, 3-H Ar), 5.24 (d, 1H, J = 12.9 Hz, CH2), 5.17 (d, 1H, J = 12.9 Hz, CH2), 3.94 (q, 1H, 

5-H , J = 6.3Hz), 1.33 (d, 3H, J = 6.5 Hz, 5-CH3) ppm. 
13

C NMR (DMSO-d6, 75MHz):  = 187.6 

(4-C-OH), 169.7 (CO), 154.2 (q, J = 36 Hz, COCF3), 151.2 (COO), 136.5 (C Ar), 132.4 (C Ar), 

129.17 (CH Ar), 128.8 (2C, CH Ar), 127.8 (CH Ar), 127.5 (2C, CH Ar), 124.7 (C Ar), 124.41 

(CH Ar), 124.0 (CH Ar), 123.6 (CH Ar), 116.4 (q, J = 286 Hz, COCF3), 94.4 (3-C), 66.0 (Z-

CH2), 56.1 (5-C), 17.7 (5-CH3) ppm. C21H17F3N2O5 (434.37): calcd. C, 58.07; H, 3.94; N, 6.45; 

found C, 57.98; H, 3.88; N, 6.32. ESI-MS: m/z = 435.2 [M + H]
 +

. 

18.  General procedure for the synthesis of 2,3-disubstituted indole derivatives 4. A solution of 

the corresponding compound 2 or 3 (0.17 mmol) in MeOH (5 ml) was treated with concentrated 

HCl (1 ml) and heated at 80ºC for 2 h. After recovering room temperature, the reaction mixture 

was neutralized with 10% NaHCO3 and EtOAc was added. The organic phase was separated, 

washed with brine, dried with Na2SO4. After removing the solvent, the residue was purified by 

column chromatography (20% EtOAc/Hexane). As an example: (1´S)-2-[1´-

(Benzyloxycarbonyl) amino]ethyl-3-methoxycarbonylindole (4a): From 2a (0.17 mmol). White 

solid (38 mg, 63%), HPLC: tR = 9.95 min, m.p. 143-146ºC, [α]
25

D  = -8.7 (c = 1.0, MeOH). 
1
H 

NMR (DMSO-d6, 300MHz):  = 11.69 (s, 1H, NH), 7.93 (dd, 1H, J = 5.2, 3.8 Hz, 4-HIndol), 7.64 

(d, 1H, J = 4.5 Hz, NHCO), 7.46 (m, 1H, 7HIndol), 7.34 (m, 5H, H Ar), 7.15 (m, 2H, 5-HIndol, 6-

HIndol), 5.58 (m, 1H, CHCH3), 5.00 (m, 2H, CH2), 3.82 (s, 3H, OCH3), 1.44 (d, 3H, J = 7.0 Hz, 

CHCH3) ppm. 
13

C NMR (DMSO-d6, 75MHz):  = 165.6 (3-CO), 155.7 (NHCO), 150.6 (2-

CIndol), 137.2 (C Ar), 135.0 (7’-CIndol), 128.7 (2C, CH Ar), 128.2 (2C, CH Ar), 128.0 (CH Ar), 

126.8 (3’-CIndol),122.4 (6-CIndol), 121.6 (4-CIndol), 121.0 (5-CIndol), 112.4 (7-CIndol), 101.5 (3-

CIndol), 65.9 (Z-CH2), 51.0 (OCH3), 45.0 (CHCH3), 21.4 (CHCH3) ppm. C20H20N2O4 (352.38): 

calcd. C, 68.17; H, 5.72; N, 7.95; found C, 68.02; H, 5.68; N, 7.84. ESI-MS: m/z = 375.3 

[M+Na]
 +

, 353.3 [M+H]
+
. 

 


