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Abstract— Avoiding obstacles and finding the way around are
tasks that can greatly benefit from an efficient implementation
of vision. While higher level vision can be performed by
conventional microprocessors at an acceptable rate, lower level
vision represents a heavy computational load to deal with. The
usual sensor plus ADC plus microprocessor scheme either fails
to meet the timing requirements or fails to operate under a
low power budget. Since the information contained in the visual
stimulus is highly redundant, converting every single pixel value
to digital prior to any processing is inefficient. Instead, we are
working in adapted architectures in which the parallelism that
is inherent to lower level vision tasks is largely exploited. This
hierarchical approach emulates the organizational principles of
biological vision systems, by using an array of elementary and
relatively coarse processors to achieve global computation, and
also the operation of the elementary cells, by using analog and
mixed-signal processing building blocks. Our chips are capable
of efficiently extracting image features and salient points at the
focal plane in order to facilitate the task of identifying objects
and interpreting the scene.

I. INTRODUCTION

The implementation of vision in autonomous robotic plat-
forms represents a challenge in which efficiency in the
computation is an unavoidable request [1]. In contrast with
other application fields, like digital still photography or
consumer electronic cameras, it is not sufficient to obtain a
high quality picture. The outcome of the required processing
is not an image, but a description of the scene with valu-
able information to assist independent navigation. Vision is
understood as a cognitive procedure by which the closest
environment is perceived and interpreted. Its implementation
requires a master plan oriented towards perception [2]. In
this context, the traditional approach to image processing
[3], which is not different from the conventional digital signal
processing scheme in which sensing is immediately followed
by digitization, memory and serialized processing, does not
pass the efficiency test. The conventional approach, though
universal, does not match the multidimensional structure of
images and video sequences. Moreover, it does not take
advantage of the inherent redundancy of the visual stimulus,
in which the value of a single isolated pixel is not as
important as the aggregation of pixels. Therefore, the con-
ventional image processing scheme in which every individual
pixel value is converted to digital prior to any processing
is inefficient when applied to the implementation of vision.
An alternative approach is to bring part of the processing
elements and memory closer to the sensor array. In one
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of the aspects, the implementation of distributed computing
and memory resources, this is what lies behind multi-core
processors [4] [5]. By splitting heavy tasks in parallel threads
the overall performance can be boosted without increasing
power consumption [6]. This is achieved by exploiting par-
allelism in the data and algorithms structure. Highly parallel
architectures trade flexibility for an extraordinary increase in
computing efficiency. In addition to the advantage of using
an adapted architecture, i. e. an architecture that matches
the inherent parallelism of early vision tasks —in which
the same operation needs to be performed on each and
every pixel and most of the time with independence on
what is happening beyond its closest neighborhood—, the
redundancy existing in the visual stimulus permits a moder-
ate accuracy requirement (6-7 bits) for in-pixel processing
elements. Analog circuits can be employed to implement
some of the processing blocks in a efficient manner [7] [8].
The highest figures are found for architectures with a reduced
programmability, i. e. highly optimized for a specific task, for
instance Gaussian filtering [9]. The performance of a system
based on this type of devices is improved not only because
of the energy efficiency of the focal-plane processing. As
the output of the vision chip is a simplified representation
of the scene being surveyed, with less data but of a higher
abstraction level, the subsequent digital processor does not
have to cope with the heavy computational loads associated
to low-level vision. Clock frequency and memory access can
be thus significantly reduced.

In this review paper we try to illustrate this hierarchical
approach to vision with some examples. First we will con-
sider the speed and power requirements on a vision chip in
the field of robot vision. Then we will display the character-
istics of a bio-inspired hierarchical vision processing scheme
aiming to energy efficiency. Then we will consider a couple
of examples, developed in our labs in which focal-plane
processing provides the support for the efficient generation
of an information-enriched representation of the scene on a
single chip.

II. ENERGY EFFICIENCY IN VISION CHIPS

Let us consider an simplified model for image processing
and vision. Any vision algorithm is composed of a number
of tasks that start from an input image and terminate with
either another image, a different type of representation of
the scene, a warning signal, a trigger, etc. In all cases, a
number of elementary operations, Nop, is performed to the
original image pixels and the derived intermediate data. In
this simplified model, all the elementary operations require



the same amount of energy to be performed, let us say e0,
and take the same amount of time to be completed, t0. Power
consumption of an elementary processor computing just this
operation will be e0/t0. The total amount of energy required
to complete the transformation of the imput image into its
corresponding output will be:

Etot = Nop · e0 (1)

and the total amount of time required to complete the
algorithm is:

Ttot =
Nop

Nproc
· t0 (2)

where Nproc is the number of elementary processors that
will be operating in parallel. This is an oversimplification
given that algorithms can not be parallelized at wish and
the speedup achieved by parallelization is limited, as stated
by Amdahl’s law [6]. However, this simplified model per-
mits analyzing the specifications of a vision system for
different scenarios. First, consider the case of time-critical
applications. In this context, it is important to minimize the
time it takes for the algorithm to be executed, Eq. (2), or
equivalently to maximize the system speed:

Speed =
1

Ttot
=

Nproc

Nopt0
(3)

Then, in order to meet very tight timing requirements, we
need to either increase the number of processors, Nproc,
or reduce the time it takes for each elementary processor
to complete a single operation, t0; and/or reduce the total
number of operations required to complete the algorithm,
Nop. This last alternative can be implemented by approxima-
tion [10], image simplification at early stages [11], sparse
representation of the scene [12] or hierarchical processing
and resource optimization [13].

For systems running on a low power budget, energy
efficiency is required, therefore power consumption needs
to be minimized:

Power =
Etot

Ttot
= Nproc

e0

t0
(4)

what is done by lowering the number of processors that are
working in parallel, Nproc, or using low-power elementary
processors.

Finally, for time-critical and low-power applications, that
are usual in fields like robotics, unmanned vehicle navigation,
autonomous surveillance camera nodes, etc., the figure of
merit to be maximized is:

FoM =
Speed
Power

=
1

Etot
=

1
Nope0

(5)

Here, the effect of parallelization is not represented by an
explicit factor, like Nproc in Eqs. (3) and (4). However, par-
allelization has an effect in this FoM, given that distributed
resources require less power to interact and do it much faster.
As in Eq. (3), modifying the algorithm in order to reduce the
number of operations to be realized increases the FoM. In
addition, using more efficient elementary processors, i. e.

reducing the amount of energy that needs to be invested
on each elementary operation, contributes to maximize the
FoM in Eq. (5) as well. e0 is commonly measured in nJ/OP
(nanojoules per operation). For a fixed throughput, which is
usually the case in systems in which the data rate is deter-
mined by the nature of the incoming real-time signal, e. g.
speech or video, increasing the energy efficiency is equiv-
alent to reducing the power dissipation for the prescribed
number of operations per second, what is usually measured
in MOPS/mW [14]. Reducing e0 can be done at two levels.
At system level, using parallel processing architectures with
distributed sensing, processing and memory [15] eliminates
the time and power overheads dedicated to data access and
communication across the system —and this is where the
degree of parallelism implicitly affects the FoM; or at circuit
level, using analog circuits that render a highly efficient
implementation for a moderate accuracy.

III. HIERARCHICAL VISION PROCESSING

The different tasks that constitute the visual processing
chain can be separated into a hierarchy defined by the
abstraction level (Fig. 1). In fact, the amount of data to
be handled at each stage observes an inverse relation with
the complexity of the data structures. For the earliest vision
stages, input data are the raw readings of the sensors. The
number of data to be processed is high, but they are simple
in their internal structure and the process flow can be very
regular. At the other end of the processing chain, those tasks
of a higher cognitive nature are usually executed on a reduced
set of data structures, this time of a highly symbolic content.
This functional hierarchy can be ideally implemented in a
physical structure composed of various layers (tiers). This
arrangement permits a progressive reduction of the data
structures to be processed while maintaining a fully parallel
connection across tiers. Coincidentally, a similar scheme is
found in biological vision systems [16], in which vertical
interactions across a layered structure [17] and massively
parallel processing [18] have been documented.

The major obstacle to the implementation of this archi-
tecture in planar technologies is the trade-off between image

Fig. 1. Hierarchical organization of vision tasks



size and processing speed. On one side, incorporating some
processing elements to the focal plane increases the size of
the elementary processor, thus influencing image resolution,
fill factor and ultimately the effective image size. On the
other side, if the sensor size is optimized by eliminating
in-pixel processing, data transmission bottlenecks occur be-
tween sensor, memory and processor, thus compromising the
processing speed. One alternative to overcome this limitation,
this is to have a high degree of parallelization while main-
taining a reasonable pixel pitch, can be 3D circuit integration
[19].

IV. CHIP EXAMPLES

Our approach to the implementation of these organiza-
tional principles is supported by two elements: conveying
the heavy computational tasks that can be parallelized close
to the sensors and using power efficient analog and mixed-
signal circuits to implement the elementary in-pixel pro-
cessing blocks. In the first example, Gaussian filtering at
the focal-plane can help reducing the amount of data to
be handled by subsequent digital processing. In the second,
extended functionalities like DoG, minima and maxima de-
tection and fully parallel image digitization is implemented
in a vertical integration technology.

A. Scale-space generator on-a-chip

Gaussian kernels are a fundamental component of a
computational approach to visual perception motivated by
physics and biological vision [20]. Convolution with Gaus-
sian kernels and Gaussian derivatives constitute a canonical
class of image operators for early vision. They are able
to generate a scale space [13] and, consequently, a multi-
scale image representation [21] of the scene. It is worth
mentioning that scale-space operators have a similar form to
the receptive fields observed in neuro-physiological studies
[22]. This type of image representation is certainly useful for
image interpretation. As there is no a priori knowledge about
the scale of the relevant elements in the scene, a multi-scale
representation covers all the possible ranges. Image features
can then be extracted at different scales and scale-invariant
features can be highlighted as characteristic of whatever takes

Fig. 2. Floorplan of the prototype chip

Fig. 3. Elementary cell of the array

place in the visual field [23]. It is not strange that visual
attention models based on saliency make extensive use of
these operators [24].

A prototype chip implementing on-chip scale-space gen-
eration is reported in [9]. It is a 176×144-px smart image
sensor which implements a massively parallel SIMD-based
focal-plane processing array composed of pixel-level pro-
cessing elements (PE). These PEs, which carry out analog
image processing concurrently with photosensing, can be
grouped into fully-programmable rectangular-shape areas by
loading the appropriate interconnection patterns into the
registers at the edge of the array. The targeted processing
can be thus performed block-wise. The architecture of the
chip is depicted in Fig. 2. The power consumption associated
to the capture, processing and A/D conversion of an image
flow at 30fps, with full-frame processing but reduced frame
size output, ranges from 2.7mW to 5.6mW, depending on
the operation to be performed. The chip has been designed
and fabricated in a 0.35µm CMOS-OPTO process. The
chip contains around half million transistors, 98% of them

Fig. 4. General view and microphotographs of the prototype



(a)

(b) (c)

Fig. 5. Output images: (a) scale-space and (b) energy-based representations
and (c) foveated image

working in analog mode.
The schematic of the elementary cell of the analog core is

depicted in Fig. 3. Each PE contains a photosensor and a state
capacitor, CP, that is 4-connected to its neighbors through p-
type MOS transistors. The equivalent resistance Req of these
transistors along with the value of CP determine the time
constant τ = ReqCP of the resulting MOS-based RC network,
which is intended to implement Gaussian filtering by time-
controlled diffusion [25]. The scale parameter ξ is related
with width of the filter ξ = σ2, which in turn is determined
by the ratio between the time interval in which the network is
permitted to evolve and the time constant of the network: σ =√

2t/τ . In addition to this operation, that can be selectively
applied to different sub-images, it is possible to generate
an energy-based representation of the scene. This is useful
for the efficient segmentation of spatially-repetitive patterns
and dynamic textures. It also accounts for the amount of
contrast associated with an image block thus allowing for a
first estimation of the salient regions of the scene [26].

The main characteristics of the chip are summarized in
Table I. A general view of the packaged prototype is shown
in Fig. 4 along with a microphotograph of the chip with a
close-up of the photosensors. Fig. 5 displays several output
images rendered by the chip, consisting in the scale-space
of the scene, the energy-based representation and a foveated

TABLE I
SUMMARY OF THE PROTOTYPE CHIP FEATURES

Technology 0.35µm CMOS 2P4M
Die size (with pads) 7280.8µm × 5780.8µm

Cell size 34.07µm × 29.13µm
Fill factor 6.45%
Resolution QCIF: 176×144 px

Power supply 3.3V
FPN 0.72%

Sensitivity 0.15V/(lux·s)
Measured power consumption 5.6mW@30fps

(worst case) 22×18px
ADC throughput 0.11MSa/s (9µs/Sa)

Fig. 6. Layout of the mixed-signal processor array

frame. A measure of its power efficiency is given by the
fact that the chip can compute a Gaussian filtered version
of the image using 20nJ. Being a 176×144-pixel array, its
equivalent computing power is 1.27e+6MOPS/mW. This is
an impressive number, but the level of programmability of
this array processor is greatly reduced. Its functionality is to
realize Gaussian filters.

B. Analog front-end for a vision system on-a-3D-chip

Another example of how massively-parallel analog and
mixed-signal array processing enables low-power vision
implementation can be found in the design of the VIS-
CUBE [27]. The target application of the VISCUBE chip
is UAV navigation and exploration. Hence, the algorithmic
requirements are intended to perform moving platform video
analytics, including feature point extraction, displacement
calculation —optical flow—, and analysis in multiple win-
dows [28]. Image capturing and processing speed needs to
reach 1000fps. In order to fulfill these requirements, our
design supports multi-scale and multi-fovea processing. The
common feature of these techniques is that they significantly
reduce the amount of data to be processed. On one side,
multi-scale algorithms handle subsampled versions of the
image; hence part of the processing is done over lower
resolution images. On the other side, foveated processing
techniques apply early image processing techniques for the
entire image, and detailed image analysis only on small
windows of the original image. During a pre-processing
phase, the regions of interest (ROI) are detected. Windows
containing these ROIs are then cut out and further analyzed

Fig. 7. General scheme of the 3D chip



Fig. 8. Conceptual schematics of the elementary mixed-signal processor

in detail. The size and the resolution —or scale— of these
windows depend on the type of analysis applied. The design
approach for this 3D vision chip is completely different
compared to the design of traditional planar chips. When
selecting image processor devices we need to study the
efficiency of different architectures. For early vision tasks,
mixed-signal locally interconnected processor arrays and
pipelined digital processor arrays can be efficiently applied
[29]. Above 1000fps and under low latency requirements in
near-sensor processing, a fine-grain mixed-signal processor
array is the best choice. For fovea-type post processing,
coarse-grain digital processor arrays can provide efficient
solution. In this way, two different cellular arrays fulfill the
computational requirements for the target application. The
fine-grain processor (tier-3 in Fig. 7) contains the sensor, the
sensor interface, mixed-signal and logic processing elements,
A/D converter and analog and logic distributed memories.
The foveal processor (tier-1 in Fig. 7) is built from an array
of locally interconnected digital processors and their local
memory. To efficiently connect cellular processor arrays with
different resolutions, we need an intermediate element to
perform switching, windowing and preparing data for the
multi-scale foveal processor array. This is implemented by
a dual-port frame buffer (tier-2 in Fig. 7). This architecture
is mapped on the layers provided by a vertical integration
technology [30]. The backside-illuminated sensor array, built
in a thinned semiconductor layer, is bump-bonded on top of
the 3D IC stack, what provides close to 100% fill factor. This
practice permits using different types of sensor materials,
what defines the wavelength of the radiation to be detected.
This can range from visible to NIR, or even SWIR. The
topmost layer of the stack (Fig. 6) contains a mixed-signal
processor array responsible for sensor interfacing, low-level
vision tasks and feature extraction.

The sensor interface, which is part of the mixed-signal
front-end (Fig. 8), consists in a capacitive transimpedance
amplifier (CTIA). It has been employed traditionally to in-
terface arrays of passive pixels, however, it is used nowadays
in high precision readout ICs [31], because several reasons:
high programmable charge-to-voltage conversion ratio; low
readout noise; photodiodes kept at a programmable bias
voltage, that is constant along the integration time; sensing
capacitance is isolated from diode parasitics. All of these
characteristics make it a universal front-end for photodiodes
of different materials. Although the photosensor pitch is
15µm, given by the minimum distance at which bonding
bumps can be deposited, a larger silicon area is required

TABLE II
NUMBER OF OPERATIONS PERFORMED BY 1 PE IN 1MS

# Description operations Total
8 Amplifier reset 1 sample + 1 hold 16
2 Min-max detection 256 comparisons + 256 AND 1024
6 A/D conversions 256 comparisons 1636
1 Binning 4 additions + 1 scaling 5
40 Diffusion cycles (2 samp. + 2 hold)*4neighbors 640

TOTAL 3321

Fig. 9. Variation of the average power consumption of tier-3 with operating
temperature

to allocate enough processing at the focal plane. For this
reason, each PE is interfaced to 4 photodiodes. This means
a 30µm pitch and a 160× 120-PE array. In addition to the
sensor interface, each PE contains (Fig. 8): 4 local analog
memories (LAM); a tree of switches that allows computing
the difference and the average of the memory contents and
permits scaling, auto-zeroing and correlated-double sampling
(CDS) [32]; part of a switched-capacitor network employed
to realize a discrete-time emulation of the linear diffusion
of the pixel values [33]; and a comparator [34] that is part
of the in-pixel A/D converter and of the extrema locator
circuit. The operation of this circuit consists in: capturing
a 320 × 240-pixel frame, converting it to digital format;
averaging 4-pixel groups and down-sampling the original
image to 160 × 120 pixels; then performing 2 different
Gaussian filters, converting them to digital; computing the
DoG and converting it to digital; finding the local maxima
and minima of this DoG and elaborating binary images
containing the extrema locations. In order to do this with
minimum hardware, some of the analog processing blocks
in this layer have been re-used by time multiplexing. In
particular, there is a pipeline that employs the two amplifiers
to realize different functions at each stage.

Due to the complexity of the 3D integrated circuit struc-
ture, the different tiers have been simulated alone. These sim-
ulations have been done after parasitic extraction, and have
been realized at the different technology corners. Mismatch
between equally designed devices due to process parame-



ter scattering have been also contemplated. An interesting
result is the average power consumption of the whole tier-
3 array, for the different technology corners, in an interval
of temperatures that ranges from 0C to 110C (plotted in
Fig. 9). For estimating the number of operations per second
realized by the mixed-signal layer (tier-3), consider that all
the operations listed in Table II take place in 1ms. The result
is 3.32GOPS per PE. As we have 160×120, for the complete
tier-3 we have 63.74e+3GOPS, what divided by the 50mW
average consumption, makes 1274.9MOPS/mW.

V. CONCLUSIONS

Focal-plane processing is a promising alternative to the
efficient implementation of vision in applications fields in
which low-power and high-speed are a must, like navigation
in autonomous robotic platforms. Planar technologies impose
a trade-off between processing speed and image resolution.
Vertical (3D) integration technologies can help to overcome
these limitations. From the point of view of the system
design, a hierarchical approach to vision tasks can help
optimize the use of the resources and therefore contribute
to an energy efficient implementation.
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