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Abstract
We assessed the effectiveness of very high spatial resolution IKONOS imagery for mapping 
a top invasive woody plant, Pittosporum undulatum, in a Protected Area in S.Miguel Island. 
We developed a segmentation-based classification scheme. A strong separability between 
most important land cover classes and a high accuracy in supervised classification maps 
was achieved. Overall separability improved significantly after the training data depuration 
process. Support Vector Machine and Maximum Likelihood’s supervised classifiers 
showed a strong agreement and a good accuracy at land-cover class level, especially with 
P. undulatum. This approach was confirmed as a cost-effective method to map woody plant 
invaders in Azores Protected Areas.
Keywords: Segmentation, Ikonos, invasive alien species, protected areas, Azores, 
Pittosporum undulatum.

Introduction
Climate variability and changes, the proliferation of invasive exotic species, the increasing 
of tourist activity, natural catastrophes, the over-exploitation of natural resources as well 
as the pollution and residue management are the main threats to sustainable development, 
to nature conservation and to small island biodiversity maintainability [CBD, 2006]. These 
characteristics, associated with remoteness, isolation, smallness, and particularly closed 
systems, make planning and management on small islands more challenging in scientific 
and technical terms [Calado et al., 2007; Gil et al., 2012]. Even if many oceanic islands 
are considered biodiversity hot spots, they are also under considerable pressure from 
human activities. This situation leads to habitat destruction and fragmentation and to the 
invasion of alien species [Caujapé et al., 2010]. The biological invasion of exotic species is 
considered the second leading cause for the global loss of biodiversity, being exceeded only 
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by habitat destruction. [Rodríguez-Echeverría et al., 2009]. Invasive plants are considered 
one of the major threats to biodiversity conservation in islands, including the Macaronesian 
Archipelagos where they invade many protected areas [Silva et al., 2008; Castro et al., 
2010; Kueffer et al., 2010]. The distribution and abundance of alien plants are important to 
assess their impact on the invaded system [Parker et al., 1999]. Vegetation mapping is thus 
mandatory to obtain current states of vegetation cover in order to start vegetation protection 
and restoration programs [He et al., 2005]. Traditional methods (e.g. field surveys, literature 
reviews, map interpretation and collateral and ancillary data analysis), however, are not 
fully efficient to map vegetation because they are time consuming, date lagged and often too 
expensive [Xie et al., 2008]. Remote sensing provides repeatable and consistent assessment 
and monitoring of the environment. It allows independent control and its quality can be 
assessed. It is a tool with some very desirable characteristics for supporting environmental 
policy [De Leeuw, 2010]. Remote sensing allows efficient information collecting over 
large spatial extents at high spatial resolution. Concerning the targeted Invasive Alien 
Species (IAS), successful detection approaches have generally took advantage of unique 
phenological or biochemical properties, structural characteristics, or the spatial patterns 
of infestations. [Strand et al., 2007]. The most intuitive and easy approach for alien plant 
detection is to use high and very high spatial resolution images to map the spatial distribution 
of non-native species. The idea in this approach is to detect these species on the basis of their 
unique spatial textures/patterns or phenological characteristics. The classic source of very 
high resolution imagery has been aerial photography, but satellite imagery is increasingly 
contemplated as an alternative, in particular for those areas, such as Azores, that are distant 
from the bases of infrastructure that is required for aerial campaigns. The availability of 
Visible / Near Infrared (VNIR) spectral bands coupled to its very high spatial resolution and 
high temporal resolution make IKONOS satellite imagery a performing solution for species 
composition, land cover, phenology, habitat structure and primary productivity mapping. 
Therefore, several successful applications on invasive vegetation mapping have been 
developed using high and very high spatial resolution satellite imagery [Carson et al., 1995; 
Turner et al., 2003; Katoh, 2004; Casady et al., 2005; Everitt et al., 2006; Tsai and Chou, 
2006; Huang and Asner, 2009]. A first attempt of Pico da Vara Nature Reserve’s vegetation 
mapping performed by Gil et al. [2011] showed that using very high spatial resolution 
remote sensing data for detection and monitoring of invasive species (such as Pittosporum 
undulatum and Clethra arborea) and native vegetation patches (such as scrubland) can 
constitute a cost-effective solution to study and assess the Azorean Protected Areas. 
Nevertheless, the poor separability between important classes, as for instance Pittosporum 
woodland and Cryptomeria japonica forest stands, was identified as a major issue in order 
to obtain an accurate vegetation mapping of these areas.

Study Area
Pico da Vara/ Ribeira do Guilherme Special Protected Area (SPA) is located São Miguel, 
the largest island in the Azores. It includes one of the last main areas of native forest and 
scrubland in São Miguel, whose most important sub-area is located in the former Nature 
Reserve of Pico da Vara (815 hectares) in the mountain complex of Serra da Tronqueira (Fig. 
1). It was classified as SPA in 1999 (Decree-Law 140/99 of April 24th) due to the presence 
and conservation status of the endemic Azores Bullfinch Pyrrhula murina Godman, 1866, 
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one of the most threatened passerines in all Europe. Its estimated population of 500-800 
pairs [Ceia et al., 2011] is limited to a few fragments of remaining native vegetation 
(Azorean Laurel Forest) seriously threatened by IAS spreading.

Figure 1 - Location of Pico da Vara Nature Reserve and Pico da Vara/Ribeira do Guilherme SPA 
(S. Miguel Island, Portugal).

Target Species: Sweet Pittosporum
S. Miguel Island’s vascular plant flora (Archipelago of the Azores, Portugal) consists of 
approximately 1000 taxa and is largely dominated by non-indigenous taxa: 66% [Silva and 
Smith, 2004, 2006]. The native vegetation on this island is invaded by several problematic 
IAS, including Pittosporum undulatum, Hedychium gardnerianum, Gunnera tinctoria 
and Clethra arborea [Bibby and Charlton, 1991; Silva, 2001]. Pittosporum undulatum 
(Sweet Pittosporum) is one of the plants with the highest impact in the Azorean vegetation. 
According to a recent evaluation of the 100 most invasive species in Macaronesia, Sweet 
Pittosporum is considered invasive also in Madeira and the Canary islands, and ranked 8th 
in a total of 195 evaluated species [Silva et al., 2008]. P. undulatum is therefore considered 
one of the priority species for the implementation of control actions in the Azores, under the 
implementation of the Azorean Regional Program for Control and Eradication of Invasive 
Plants in Sensitive Areas (PRECEFIAS) [Lourenço et al., 2011]. Introduced in the Azores 
in the 19th century as a hedgerow species for the protection of orange tree plantations, P. 
undulatum later dispersed during the last 100 years to a wide range of habitats throughout 
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the Azores islands, invading plant communities from 100 to 600 m elevation. Pittosporum 
undulatum is able to overgrow native vegetation, forming pure stands [Sjogren, 1973]. 
Its distribution might be limited by several environmental factors that vary with altitude, 
namely low temperatures and increased exposure to the prevailing winds at higher altitudes. 
[Dias, 1996; Goodland and Healey, 1996]. The Sweet Pittosporum in São Miguel is limited 
by the most important climatic gradient on the island. The steep topography of the island 
originates a striking altitudinal gradient, where small increases in elevation imply both strong 
decreases in temperature and large increases in precipitation and humidity. Some other 
landforms variables, such as distance from streams presented also minor significant effects 
[Hortal et al., 2010]. Despite its invasive behavior, as stated before, as being a woody species 
widely and traditionally used in some Azores’ islands, an attempt for mapping P. undulatum 
woodland in this archipelago has been made on behalf of the Regional Forest Inventory 
(RFI) development. RFI was produced by the Azorean Forestry Regional Direction (DRRF) 
and was developed by delimiting forest stands through photo-interpretation of 1997 (black 
and white) and 2004 (real color) orthophotomaps. Field work was performed between 2003 
and 2007 to identify the different types of forest stands [Lourenço et al., 2011].
This paper aims at assessing the effectiveness of very high spatial resolution satellite 
imagery for invasive vegetation mapping (Pittosporum woodland) in Pico da Vara Nature 
Reserve (S. Miguel Island, Azores Archipelago, Portugal), using a segmentation-based 
classification scheme, in order to address the most important issues identified by Gil et 
al. [2011], as for instance the poor separability between most relevant vegetation classes 
(Pittosporum woodland, Native scrubland and Cryptomeria japonica). Finally, this study 
aims to promote the integration of this type of satellite data and methodological approach 
into the Azorean Protected Area’s IAS control and management decision-support process.

Data
Three different datasets were used in our study: 
1) An IKONOS standard geometrically corrected image with four multispectral bands (Blue, 
Green, Red and Near-Infrared) acquired on Aug 18, 2005 with 11% Cloud Cover. The 
IKONOS System is a commercial satellite from GeoEye and offers multispectral imagery 
at a spatial resolution of 4 meters and panchromatic imagery at 1 meter, a short revisit time 
(3-5 days off-nadir and 144 days for true-nadir) and a swath of 11 km x 11 km for each single 
scene;
2) The Digital Terrain Model (DTM) of S. Miguel Island with a spatial resolution of 10 
meters, produced by the Military Geographic Institute of Portugal (IGEOE), used for the 
ortho-rectification of the IKONOS image;
3) A GIS dataset of 525 points collected on the study area, by using a sub-metric GPS device. 
The land-cover characterization associated to each one these points was double checked by 
performing a photo-interpretation of the available IKONOS image (August 2005) and also 
by overlaying each point to the SPEA/LIFE Priolo Project’s vegetation monitoring program 
survey (A9 Action), continuously developed between 2004 and 2008 [Teodosio et al., 2009]. 
Four representative land cover and vegetation classes are identified in this dataset: (1) CC 
- Cryptomeria japonica (L. fil.) D. Don (“Japanese cedar”) man-planted production forest 
stands; (2) DD - Bare Soil and Landslide Areas; (3) LL - Native scrubland patches; (4) NN 
- Pittosporum Woodland (Pittosporum undulatum’s pure or largely dominated patches).
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Methods
Our methodological approach is based on producing vegetation maps through supervised 
object-oriented IKONOS image, instead of the pixel-based classification approach. In 
very high spatial resolution imagery, such as IKONOS, a group of pixels can represent 
the characteristics of land-cover targets better than single pixels, so groups of adjacent 
and similar pixels are organized into objects (or segments) and each of the objects is 
treated as a minimum classification unit. The image segmentation approach consists in the 
partition of the image into homogeneous elements (segments) that are thereafter classified. 
It has several advantages over conventional per-pixel methods and the “textural channels” 
approach. Discriminating segments instead of individual pixels greatly reduces the number 
of elements to be classified because there are fewer segments than pixels. It facilitates the 
application of more complex methods [Lobo, 1997; Yu et al., 2006]. The supervised image 
classification process is generally guided by expert to give the desired land-cover/vegetation 
classes. First, training samples which are representative and typical for that information 
class are defined, and secondly all input pixels (or segments) are labeled according to their 
class [Lenka and Milan, 2005; Xie et al., 2008]. In this study we apply three different 
classifiers: K-Nearest Neighbor (KNN), Maximum Likelihood classifier (MLC) and 
Support Vector Machine (SVM). This part of the process was run in R [R Development 
Core Team, 2011] with packages MASS [Venables and Ripley, 2002], e1071 [Dimitriadou 
et al., 2010] and raster [Hijmans and Van Etten, 2011]. K-Nearest Neighbor (KNN) is a non-
parametric method commonly used in remote sensing, pattern recognition and statistics to 
classify objects into a predefined number of categories based on a given set of predictors 
[Franco-Lopez et al., 2001]. An object is classified by a majority vote of its neighbors in 
the feature or statistical space, with the object being assigned to the most common class 
amongst its k-nearest neighbors (k is a positive integer). It is widely employed in national 
forest inventory applications using remote sensing data [Mäkelä and Pekkarinen, 2001; 
Chirici et al., 2012]. Maximum-Likelihood Classifier (MLC) is usually regarded as the 
classic and most widely used supervised classification for satellite images resting on the 
statistical distribution pattern [Sohn and Rebello, 2002; Xu et al., 2005]. Support vector 
machines (SVM) have considerable potential as classifiers of remotely sensed data. This 
approach seeks to find the optimal separating hyperplane between classes by focusing on 
the training cases that lie at the edge of the class distributions, the support vectors, with the 
other training cases effectively discarded. Thus, yielding high accuracy with small training 
sets may be expected, which could be very advantageous, given the costs of training data 
acquisition in remote sensing. A constraint on their application in remote sensing is their 
binary nature, requiring multiclass classifications to be based upon a large number of binary 
analyses [Brown et al., 2000; Foody and Mathur, 2004].
Another innovative methodological aspect of our approach is the previous depuration of the 
dataset of sites providing information for training and validation. To simulate the interactive 
outlining of training and validation fields, we selected the segments that included photo-
interpreted sites. In accordance with the segmentation-based classification concept, training 
and validation segments were preferred to the original single point sites. The training and 
validation dataset was first submitted to an interactive process to eliminate outliers in the 
statistical space, in order to increment its quality and to maximize the separability between 
land-cover and vegetation classes (to achieve higher classification accuracy).
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Processing chain
The methodological approach is schematically described in Figure 2. The first phase consisted 
of pre-processing the IKONOS Visible and Near Infrared (VNIR) multi-spectral image, by 
performing three tasks. The first one was the ortho-rectification of the multispectral image 
by using the Rational Polynomial Coefficients (RPC) IKONOS sensor model (RPC files 
were supplied with the IKONOS image), 25 Ground Control Points (GCP) and the Digital 
Terrain Model (DTM) of S. Miguel Island. The root-mean-square error (RMSE) which 
was calculated for the whole image was of 10 meters [Ganas et al., 2002; Hale and Rock, 
2003]. Afterwards, an atmospheric correction was performed by using Quick Atmospheric 
Correction (QUAC) method. This method determines the atmospheric compensation 
parameters directly from the information contained within the scene using the observed 
pixels spectra. The approach is based on the empirical finding that the spectral standard 
deviation of a collection of diverse material spectra, such as the endmember spectra in 
a scene, is essentially spectrally flat [Bernstein et al., 2005]. Finally, a cloud cover mask 
was built by performing a GIS-based photo-interpretation of a true-color (blue: band 1; 
green: band 2; red: band 3) composition. The vectorization of all clouded areas within 
study site was undertaken and the resulting mask was applied to the four IKONOS image 
multispectral bands.
The second phase of our methodological approach was the image segmentation procedure. 
This process was performed by applying the Mean Shift algorithm [Commaniciu, 2002] 
which was used as implemented in Monteverdi and Orfeo Toolbox [Christophe et al., 2011]. 
The third phase consisted of the field data depuration process, which started with the 
selection of most suitable data: segments that included photo-interpreted sites were selected. 
The second step was the calculation of segmentation-based and pixel-based image statistics 
to create a dataset of inspected test segments. Then, the whole dataset was displayed in 
reduced space in order to allow an interactive selection of outliers. Field data was tested 
for within-class consistency in terms of its average spectral properties according to the 
IKONOS image. After calculating the average Digital Number (DN) values in each spectral 
band, a Principal Component Analysis (PCA) was performed and the projected values were 
displayed in bi-plots of Principal Component (PC1, PC2 and PC3). PC1, PC2 and PC3 
accounted for 99.4% of the total variance. The PC plots were used to interactively identify 
all the polygons which PC values were actually overlapping a different class considering 
all 3 PCs. Afterwards, an inspection and diagnostic of outlier segments was performed by 
using the image and aerial photography. An action of “confirmation”, “correction” and/or 
“elimination” of outliers was developed. The selected outliers were geographically located 
within a GIS environment and the reason for their peculiar values was identified. All 
remaining cloudy and shadowed segments were removed from the training dataset. Those 
who had been assigned to a wrong class were corrected. These actions were performed 
repeatedly until no more outliers were detected. From this point, the statistics of the remaining 
training and validation segments were arranged in two separated datasets, differing for their 
diagnostic variable: Dataset A with 4 classes (CC - Cryptomeria japonica; DD - Bare Soil 
and Landslide Areas; LL - Native scrubland; NN -Pittosporum woodland); and Dataset 
B with 5 classes (CC; DD; LL; NN and NN2 - resulting from the splitting of NN in two 
classes). In order to reduce the redundancy and to maximize the effectiveness of classes, 
the statistical separability among the land cover/vegetation classes was examined before 
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and after the segmentation process (Tab. 1) using the Jeffries-Matsushita (J-M) separability 
measure (0 ≤ J-M ≤ 2) [Richards and Jia, 1999]. As a general rule, if the J-M value is greater 
than 1.9, then separation is good. If the J-M is between 1.7 and 1.9 then separation is fairly 
good; below 1.7 the separation is considered to be poor. Finally, Datasets A (with 4 classes: 
CC; DD; LL; NN) and B (with 5 classes: CC; DD; LL; NN and NN2) were randomly split 
into training (TA and TB) and validation (VA and VB) datasets. Both TA and TB datasets 
will be used for classification, whilst VA and VB will be used for assessing classification 
accuracy.
The fourth phase of our methodological approach consisted of the segmentation-based 
supervised classification of the IKONOS multispectral image (ortho-rectified and 
atmospherically corrected) by using TA and TB as training datasets, and by applying three 
different classifiers (SVM; MLC and KNN). In total, 6 classification maps were produced 
(three for each training dataset).
Finally, the accuracy assessment of six outputted classification maps was performed by computing 
overall and “per class user’s accuracy, producer’s accuracy and overall Kappa coefficient of 
agreement, using both validation datasets [Congalton and Green, 1999; Foody, 2002].

Figure 2 - Methodological flowchart.

Results and Discussion
Depuration of field data by interactive outlier detection and deletion reduced the number of 
segments from 525 to 440. It also improved overall separability (Tab. 1) in both datasets A 
(4 classes) and B (5 classes). 
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Table 1 - Separability Assessment comparison between initial and depurated training data. 
(CCa, DDa, LLa, NNa - Separability Assessment before the training data segmentation process; 
CCb, DDb, LLb, NNb - Separability Assessment after the training data segmentation process using 
4 classes (CC, DD, LL, NN); CCc, DDc, LLc, NNc, NN2c - Separability Assessment after the training 
data segmentation process using 5 classes (CC, DD, LL, NN, NN2)).

CCa CCb CCc DDa DDb DDc LLa LLb LLc NNa NNb NNc NN2c
CC - - - 1.6 1.8 1.4 0.9 1.4 1.8 2.0 2.0 2.0 2.0
DD 1.6 1.8 1.4 - - - 1.7 1.9 1.9 2.0 2.0 2.0 1.9
LL 0.9 1.4 1.8 1.7 1.9 1.9 - - - 2.0 2.0 2.0 1.8
NN 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 - - - 2.0
NN2 - - 2.0 - - 1.9 - - 1.8 - - 2.0 -

Our main target vegetation class, Pittosporum woodland (highly aggressive IAS) showed 
a maximum separability value (2.0) when using 4 classes (unique NN), and only a fairly 
good separability with LL when splitting NN into NN and NN2. This slight decrease of 
separability between NN2 and LL classes can be explained by the higher similarity between 
less developed Pittosporum woodland and Native scrubland’s structures. All the other 
classes benefited from the depuration process by reaching a good or fairly good separability 
from each other. The only exceptions are:
- Cryptomeria japonica (CC) vs. Native scrubland (LL) in Dataset A (4 classes), which 
separability improvement (0.9 to 1.4) is insufficient (<1.7). This low separability could be 
explained by a significant portion of training sites located in CC’s forest stands marginal 
and transitional areas to LL patches. 
- Cryptomeria japonica (CC) vs. Bare Soil/Landslide areas (DD) in Dataset B (5 classes), 
which separability decreased (1.6 to 1.4). This lower separation between these two classes 
could be explained by the presence of some misclassified training sites.
The main separability issues involving our main target vegetation class Pittosporum 
woodland patches that were identified by Gil et al. [2011] have been addressed and solved by 
increasing the quality of the training data, by applying the depuration process. Nevertheless, 
the problems involving Cryptomeria japonica require increasing the quantity and quality of 
CC’s training data, and by including less sites located in marginal and transitional areas to 
others land cover/vegetation categories.

Segmentation-based Supervised Classification
At overall level, the best overall classifications when using Training Dataset TA (4 classes) 
were obtained by applying classifiers MLC (Overall KIA = 0.97) and SVM (Overall KIA 
= 0.93), showing a strong agreement and a good accuracy (Overall KIA ≥ 0.8). KNN 
classification was slightly less accurate (Overall KIA = 0.74). 
When using Training Dataset TB (5 classes), the overall accuracy results were slightly less 
accurate. The best overall classifications with this dataset were also obtained by applying 
MLC (Overall KIA = 0.93) and SVM (Overall KIA = 0.90). KNN classification didn’t reach 
a strong agreement (Overall KIA = 0.72) (Tab. 2). At overall level, the segmentation-based 
approach used in this study has shown a significantly higher accuracy when compared to 
standard pixel-based approach performed by Gil et al. [2011] for the same area. MLC’s 
overall accuracy (0.78) and MLC’s overall Kappa (0.74) showed a good agreement, as it 
also occurred with SVM’s overall accuracy (0.78) and SVM’s overall Kappa (0.73).
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Table 2 - Accuracy assessment of classification maps. (P: Producer Accuracy (0-1); U: User 
Accuracy (0-1); K: Kappa Index of Agreement).

Set A - With 
unique NN

B - Whith NN 
+ NN2

MLCa SVMa KNNa MLCb SVMb KNNb

CC
(P|U|K)

0.96
0.92
0.91

0.92
0.89
0.87

0.88
0.54
0.47

0.96
0.96
0.96

0.92
0.96
0.95

0.88
0.52
0.46

DD
(P|U|K)

1.00
1.00
1.00

0.89
1.00
1.00

1.00
1.00
1.00

1.00
1.00
1.00

0.89
1.00
1.00

1.00
1.00
1.00

LL
(P|U|K)

1.00
0.98
0.96

0.99
0.94
0.89

0.92
0.92
0.85

1.00
0.96
0.93

1.00
0.91
0.83

0.92
0.93
0.87

NN
(P|U|K)

0.95
1.00
1.00

0.93
0.98
0.98

0.53
0.74
0.64

0.88
0.81
0.78

0.88
0.88
0.86

0.33
0.89
0.88

NN2
(P|U|K) - - -

0.79
0.96
0.96

0.79
0.96
0.96

0.59
0.61
0.53

Overall 
Kappa 0.97 0.93 0.74 0.93 0.90 0.72
Overall

Accuracy 0.98 0.95 0.82 0.95 0.93 0.80

At the land cover/vegetation class level, Cryptomeria forest (CC) mapping was more 
accurate when training MLC (K = 0.96) and SVM (K = 0.95) with Dataset TB (5 classes). 
When using Dataset TA (4 classes), MLC was the most accurate classifier (K = 0.91). 
KNN was the least effective classifier using both training datasets (K = 0.47 for A and K 
= 0.46 for B). The accuracy of both SVM and MLC results for CC in this study exceeded 
the best result (K = 0.88 with SVM) reached by Gil et al. [2011] under a standard pixel-
based approach. Therefore, a segmentation-based approach should be considered in this 
archipelago for operational forestry decision-support regarding Cryptomeria japonica 
stands mapping, monitoring and management.
Landslide and Bare Soil areas (DD) mapping has proven to be highly accurate with all 
three classifiers and both datasets (K = 1.0). Those results exceeded the best one achieved 
by applying Mahalanobis Distance classifier (K = 0.71) when using a standard pixel-based 
approach for the same area [Gil et al., 2011]. Therefore this segmentation-based approach 
can be highly effective for landslides detection and monitoring when using high spatial 
resolution satellite imagery and its integration within Regional Natural Hazard Monitoring 
System should be seriously considered.
Native scrubland patches (LL) mapping was highly accurate when applying each one of the 
classifiers to both datasets (0.83 ≤ K ≤ 0.96), especially when using MLC (K for Dataset A 
= 0.96; K for Dataset B = 0.93).
Regarding the main goal of this study, which was to map accurately the spatial distribution 
of Pittosporum woodland in the Pico da Vara Nature Reserve, the results were very positive 
in two cases. First, when using Dataset A (single NN class), Pittosporum woodland mapping 
has been extremely accurate when applying MLC (K = 1.0) and SVM (K = 0.98) classifiers. 
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These results exceeded significantly the best one achieved by applying Artificial Neural 
Networks classifier (K = 0.66) under a standard pixel-based approach [Gil et al., 2011]. 
Second, when using Dataset B (NN split into NN and NN2), both sub-classes reached 
quite different accuracy results. KNN (K = 0.88) and SVM (K = 0.86) have been the 
most effective methods to map the first sub-class (NN), while MLC and SVM (K = 0.96) 
have proven to be highly accurate when mapping the second sub-class (NN2). KNN was 
ineffective to map accurately this sub-class (K = 0.53). These results showed that creating 
the Dataset B (with 5 classes) to split the NN initial class in two sub-classes (NN and NN2) 
had no positive effects on the accuracy of mapping at overall and land cover/vegetation 
class levels, excepting for the case of Cryptomeria forests (K = 0.96), which was slightly 
more accurate than by using Dataset A with 4 classes (K = 0.91).
To perform a cost-benefit analysis to support a more realistic and cost-effective Pittosporum 
woodland control and management in Pico da Vara Nature Reserve under PRECEFIAS 
development, the approximated total area occupied by this invasive woody species has 
been estimated based on the best classification performed using MLC and dataset TA (K for 
Pittosporum woodland = 1.0). Being the IKONOS multispectral band’s spatial resolution 
equal to 4m (16 m² of minimal area unit), according to MLC results (Fig. 3), these IAS 
patches occupy 126 hectares of Pico da Vara protected area (815 hectares in total). According 
to the Regional Forest Inventory (RFI) the estimated area of Pittosporum Woodland in Pico 
da Vara Nature Reserve in 2007 is 35 hectares only.

Figure 3 - Comparison between classification map obtained by applying MLC to dataset A (left) 
and Regional Forest Inventory mapping for Pico da Vara Nature Reserve (right).

This relevant difference between our and RFI results (Fig. 3) can be explained by some 
different factors. The remoteness and lack of access to the whole Pico da Vara Nature 
Reserve area make intensive, effective and accurate fieldwork difficult. At the cartographic 
level, the difference between the minimum spatial unit of the RFI (1 ha) and the spatial 
resolution of the IKONOS image (16 m²) could have implied the omission of many small 
P. undulatum patches in the FRI that were included in the satellite image classification 
process. Furthermore, the low quality of 1997’s black and white orthophotomaps that were 
the first cartographic basis of RFI makes the photo-interpretation task very difficult and 
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resulted in low accuracy. Also important is the high frequency of extremely shadowed 
areas within the study area in real-color orthophotomaps of 2004. Finally, the eventual 
spread of Pittosporum woodland from 1997 (year of production of the first collection of 
orthophotomaps) to 2005 (year of production of the IKONOS image) cannot be ignored.
Therefore, the use of very high spatial resolution multispectral imagery (as IKONOS) and 
the application of this segmentation-based classification scheme should be integrated as 
core components of PRECEFIAS decision-support system. This methodological proposal 
constitutes a cost-effective solution for woody IAS patches (as Pittosporum woodland) 
detection, assessment and monitoring in the Azorean Protected Areas. Furthermore, this 
segmentation-based approach has proven to be particularly effective and accurate for forest 
areas mapping, exceeding significantly the results obtained in the same area by using the 
standard pixel-based approach [Gil et al., 2011], addressing and solving the most relevant 
separability issues between land-cover/vegetation classes. To address and map most 
vegetation classes in the Azores Islands, more categories (and more geographically dispersed 
training data) should be added to the classification scheme when mapping larger Protected 
Areas than Pico da Vara Natural Reserve (815 hectares). A good example of a relevant 
vegetation class in the Azores which should be added to a broader vegetation mapping 
scheme is “Exotic Woodland”, constituted by a mixture of woody species dominated by the 
non-indigenous Acacia longifolia and Eucalyptus globulus.

Conclusions
The results have shown that applying a segmentation-based approach to very high spatial 
resolution multispectral data (as IKONOS) can constitute a cost-effective approach for a 
continuous assessment of woody IAS spatial distribution and spread within Small Islands 
Protected Areas. The segmentation-based approach combined to the depuration of the initial 
field training dataset by interactive deletion of outliers allowed a significant increase in the 
separability between most relevant land-cover/vegetation classes, addressing and solving the 
most important problems that were identified in previous studies in the same area. Our main 
target vegetation class, Pittosporum woodland (highly aggressive IAS) showed a maximum 
separability value (2.0) in all pairwise comparisons when using a 4 class’s legend.
At overall level, SVM and MLC classifications showed a strong agreement and a good accuracy 
(Overall KIA ≥ 0.90). KNN classifications showed a good agreement and a lower accuracy 
(Overall KIA ≥ 0.70). At land-cover/vegetation class level, Native scrubland patches (LL) 
mapping was highly accurate when applying all classifiers (0.83 ≤ K ≤ 0.96). SVM, MLC and 
KNN have also proven to be highly accurate (K = 1.0) when mapping Bare Soil / Landslide 
areas (DD). Therefore this segmentation-based approach could be integrated into the Regional 
Natural Hazards Monitoring System to detect and map landslides. Cryptomeria forest (CC) 
mapping has been highly accurate when applying MLC and SVM (K > 0.90). Therefore, a 
segmentation-based approach should be considered for operational forestry decision-support 
regarding Cryptomeria japonica stands mapping, monitoring and management.
Pittosporum woodland (NN) mapping has been extremely accurate when applying MLC (K 
= 1.0) and SVM (K = 0.98) classifiers. Therefore, this methodological approach has proven 
to be extremely effective to map this aggressive woody IAS. These results will allow regional 
authorities to perform a more realistic, adequate and cost-effective Pittosporum woodland 
management in Azorean Protected Areas under PRECEFIAS development, by clearly identifying 
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the location, the dimension and the logistics constraints associated to the sites to be intervened 
and managed. Additionally, this new and more detailed data on Pittosporum undulatum spatial 
distribution will allow more accurate ecological modeling studies of this IAS in the Azores.
The comparison between our MLC’s Pittosporum woodland mapping (126 hectares) 
and the Pittosporum woodland mapping performed on behalf of the photo-interpretation 
and fieldwork-based Regional Forest Inventory (35 hectares) for the same area (Pico da 
Vara Nature Reserve) has shown a very significant difference (91 hectares). This can be 
explained by some factors that interfered with an effective and accurate fieldwork and 
photo-interpretation tasks performed during the RFI production: (1) remoteness and lack of 
access to some relevant forest areas; (2) Low quality of orthophotomaps; (3) the continuous 
spread of Pittosporum Woodland; (4) the difference between the minimum spatial unit of 
the RFI (1 ha) and the spatial resolution of IKONOS image (16 m²).
Finally, this segmentation-based vegetation mapping approach could be easily integrated 
into other Protected Areas monitoring schemes by addressing their specific decision-support 
requirements and by mapping their most representative land-cover/vegetation classes. Protected 
Areas located in Macaronesian archipelagos as Madeira (Portugal) and Canary Islands (Spain) 
could especially benefit from the adaptation and application of this methodological approach 
because of their similarities with Azores in terms of existing vegetation classes and structure. 
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