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ABSTRACT4

It is demonstrated that boreal winter accumulated heating degree days, a weather derivative5

product frequently demanded by energy suppliers (among others), can be skillfully predicted6

with a lead time of one month, i.e. at the beginning of the previous November, for many7

regions of the Northern Hemisphere extratropcis. This finding contradicts the assumption8

of poor seasonal predictability for this variable. The present short note is meant to properly9

inform the participants of the weather derivative market in order to assure market trans-10

parency and to foster the scientific discussion on how to disseminate with this formerly11

unknown expert knowledge.12
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1. Introduction13

The seasonal predictability of the boreal winter (DJF) climate in the Northern Hemi-14

sphere (NH) extratropics is generally assumed to be poor (Kushnir et al. 2006; Folland et al.15

2012; Kim et al. 2012). However, it was recently demonstrated that DJF-mean 2m air tem-16

peratures over a large fraction of the NH can be predicted from Eurasian snow cover increase17

during the previous October, as described by the Snow Advance Index (SAI) (Cohen and18

Jones 2011; Cohen et al. 2012). In a follow-up study, it was shown that this index can be19

equally used for predicting DJF-precipitation totals in Europe, obtaining significant forecast20

skill over the Iberian Peninsula and southern Norway (Brands et al. 2012).21

The physical basis for these empirical findings has been provided by a large number of22

observational and idealized general circulation model (GCM) studies (Cohen et al. 2001;23

Gong et al. 2003; Cohen et al. 2007; Hardiman et al. 2008; Fletcher et al. 2009; Kolstad24

and Charlton-Perez 2011; Smith et al. 2011). Following the conceptual model in Cohen25

et al. (2007), an above-normal Eurasian snow cover extend in October enhances the up-26

ward wave activity flux, which, in turn, weakens the stratospheric polar vortex. Due to the27

relatively long decorrelation time (or memory) of the stratosphere, this weakening tends to28

persist and propagate downward into the troposphere (Baldwin et al. 2003), thereby favoring29

the negative phase of the Arctic Oscillation during the following winter season. Although30

some aspects of this teleconnection pathway are not yet fully understood, it is increasingly31

recognized that the predictability of the boreal winter climate might be much larger than32

previously thought and that replicating the above mentioned lagged teleconnection in oper-33

ative dynamical seasonal forecasting models could be key for improving their forecast skill34

(Cohen and Jones 2011; Peings et al. 2012).35

The present study assesses the relevance of this formerly unknown expert knowledge for36

the weather derivative market and discusses some implications. This is done for the example37

of accumulated heating degree days (HDD), a common weather derivative product (Zeng38

2000) which, for example, is traded at the Chicago Mercantile Exchange (CME) GLOBEX39
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electronic platform (http://www.cmegroup.com/trading/weather/). Before the start of40

the winter season, energy suppliers (among others) usually make contracts based on HDD41

in order to insure against a possible loss of sales that would be caused by an anomalously42

warm winter (Quayle and Diaz 1980; Sailor and Munoz 1997; Timmer and Lamb 2007). In43

this study, it will be shown that winter accumulated heating degree days (hereafter ‘DJF-44

HDD’) can be skillfully forecasted in many regions of the Northern Hemisphere extratropcis,45

among them the southern United States, by using a statistical forecasting method based46

on simple linear regression. Since the standard deviation with respect to the climatological47

mean is usually taken as reference for defining the ‘strike’, i.e. the pre-negotiated threshold48

value above/below which the energy supplier/buyer will be paid out or not (Zeng 2000;49

Jewson and Brix 2005; Considine 2012), it constitutes the forecast variable in the present50

study. The added value/skill of the proposed forecasting method will be measured in terms51

of the percentage with which the purely climatological forecast (i.e. always predicting the52

climatological mean/standard deviation = 0) is outperformed. Having available a skillful53

prediction for the DJF-HDD on the 1st of November, i.e. one month ahead, is a kind of54

expert knowledge which should be made available in the field of weather derivative trading55

in order to assure market transparency.56

2. Data and Methods57

Accumulated heating degree days are commonly defined as follows:58

HDD =
n∑

i=1

(Tbase − Tmean)+ (1)

where n is the number of days the HDD is calculated for, i.e. n=90 for the DJF-season fo-59

cussed on in this study (note that the 29th of February is ignored in case of leap years), Tbase is60

the baseline temperature which is set at the commonly used value of 18◦C or 65◦Fahrenheit,61

valid for a typical uninsolated building, and Tmean is the daily-mean 2m air temperature at a62
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given location. The plus sign indicates that only positive values are accumulated (Buyukalaca63

et al. 2001).64

Tmean are calculated upon 6-hourly reanalysis data from ERA-Interim (Dee et al. 2011),65

which are publicly available at the European Center of Medium-Range Weather Forecasts66

(http://data-portal.ecmwf.int/data/d/interim_daily/). To confirm the results ob-67

tained with this gridded dataset for selected cities of the United States, in-situ station data68

from the United States National Climatic Data Center, which are freely available at the Av-69

erage Daily Temperature Archive of the University of Dayton (http://academic.udayton.70

edu/kissock/http/Weather/default.htm), are used in addition. Note that some station71

time series suffer from a very small number (< 0.5% in any case) of large outlier values72

which are first set to missing values and then are linearly interpolated (Jewson and Brix73

2005). Thereafter, for each DJF-season between 1997/98 and 2011/12 (n=15) and for each74

reanalysis grid-box and station location, the HDD values are calculated as described in Eq.75

1 and represent the values to be predicted (the predictands).76

The increase of Eurasian snow cover in October is calculated using daily satellite re-77

trievals from NOAA (Ramsay 1998), which are stored at the National Snow and Ice Data78

Center (ftp://sidads.colorado.edu/pub/DATASETS/NOAA/G02156/24km/). For each Oc-79

tober between 1997 and 2012, the daily snow cover over a spatial domain covering 25−60◦N80

and 0 − 180◦E is calculated and a time series of d = 31 days of square kilometer values is81

obtained (Cohen and Jones 2011). Then, the robust linear regression approach described in82

Street et al. (1988) is applied to this time series. For this specific problem, robust regression83

is preferable to ordinary regression since it avoids the fitted straight line from being ‘moved’84

towards outlier values that do occur in the daily snow cover time series. Consequently, ro-85

bust regression is resistant to outlier values and essentially removes one uncertainty source.86

The slope of the robust regression line (i.e. the regression coefficient) is then taken as index87

value (Cohen and Jones 2011), which represents the rate of advance of the snow cover extend88

in October (and not the mean value). This index value is available on November 1st and is89
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applied as the only predictor from which DJF-HDDs are predicted.90

As a statistical forecasting method, simple linear regression is applied in a one-year out91

cross-validation framework (Michaelsen 1987). The objective of this approach is to construct92

a loop in which the ith of n = 15 DJF-HDD values (expressed in standardized anomalies)93

is forecasted from the regression parameters obtained from regressing the remaining n − 194

HDD values against its corresponding predictor values. In order to avoid artificial skill95

(von Storch and Zwiers 1999), the ith of the n = 15 DJF-HDD values is forecasted from96

the standardized anomalies of the remaining n − 1 HDD values, i.e. the calculation of the97

mean and standard deviation is repeated in each step of the cross validation. Note that98

the temporal autocorrelation of the DJF-HDD time series was found to be spurious in those99

regions where the forecasting method is successful (see below for a definition of ‘successful’).100

This is in qualitative agreement with Madden (1977) and Kushnir et al. (2006) and justifies101

the assumption of data independence the cross-validation approach relies on.102

To measure the forecast/out-of-sample skill of the proposed forecasting scheme, the time103

series of 15 independend predictions is compared to its observed counterpart. The first104

measure of forecast skill applied here is the root mean square error skill score (rmsess)105

defined as follows (Jolliffe and Stephenson 2003):106

rmsess = (1− rmse

rmseref
)× 100 (2)

where rmse is the root mean square error of the time series predicted by the statistical107

forecasting method and rmseref is the rmse obtained from always predicting the climato-108

logical mean, the latter being 0, since standardized anomalies/zero-mean data are calculated109

in each step of the cross-validation. Note at this point that calculating the climatological110

mean upon 15 or even 10 values only is a standard procedure in weather derivative trading111

(Considine 2012). Thus, rmsess gives the percentage with which the error committed by112

assuming ‘normal’ winters is decreased by using the statistical forecasting method proposed113

here.114
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In addition to rmsess, the Pearson correlation coefficient (r) between the observed and115

forecasted DJF-HDD values is applied and its significance is computed using a two-sided116

t-test (null hypothesis H0 : r = 0), which is a standard procedure for assessing the skill of117

seasonal forecasts (Kim et al. 2012).118

The above mentioned one-year-out cross-validation is applied separately for each grid-119

box and station. Due to the massive repetition of the method to thousands of grid boxes120

covering the NH, significant local out-of-sample skill (αlocal = 0.05) over a areal fraction121

of 5% would be expected even if the method had no predictive capability (assuming zero122

spatial autocorrelation). Consequently, it must be assured that the areal fraction obtained123

by the forecasting approach is very unlikely to be a product of chance. To this end, and124

similar to the method applied in DelSole and Shukla (2009), the cross-validation approach125

is repeated 1000 times, using the randomly re-shuffled predictor time series in each step.126

The 99th percentile of the resulting 1000 areal fractions of locally significant forecast skill127

arising from chance is then assumed to represent the critical value above which global/field128

significance (αglobal) is obtained. Note that the spatial autocorrelation of the predictand is129

taken into account by this technique.130

To additionally demonstrate that the results are not sensitive to possible trends in the131

observed DJF-HDD time series, the statistical forecasting approach was also applied to lin-132

early de-trended time series (the detrending was repeated in each step of the cross-validation133

in order to avoid artificial skill). The corresponding results were found to closely match134

those obtained from undetrended time series. Since the method-related uncertainties of135

de-trending short-time series are manyfold (Jewson and Brix 2005), and since one-year-out136

cross-validation disrupts the temporal sequence (i.e. the independent variable of the trend),137

the results for the raw time series will be shown in the next section.138
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3. Results139

Fig. 1a shows the forecast skill in terms of rmsess for the DJF-HDD values obtained140

from gridded ERA-Interim 2m air temperatures (see Eq. 1). Areas exhibiting an rmsess141

> 20% are found for the following regions (in alphabetic order):142

• Central America143

• Eastern Mediterranean144

• Greenland145

• North Africa146

• Norway147

• Siberia148

• Southeast Asia149

• Southern Alaska150

• Southern U.S.A151

the latter being most relevant for weather derivative trading. Note that the areal fraction152

of locally significant correlations (αlocal = 0.05) between observed and forecasted values —153

which are not shown since they roughly correspond to rmsess values > 20%— was found to154

be highly significant (αglobal = 0.01), i.e. field/global significance was obtained.155

Since HDD values for the major U.S. cities are directly traded at the CME GLOBEX156

electronic platform, the statistical forecasting and cross-validation procedure is explicitly ap-157

plied to the respective station data. In other words, the weather derivative product ‘heating158

degree days for U.S. cities’ is directly forecasted in this step of the study. As visualized159

in Fig. 1b, the station-specific results are in close agreement with those obtained from re-160

analysis data. With a rmsess of up to 47% and an r of up to 0.85 for the case of the161
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DJF-HDD in Houston (Texas), considerable forecast skill is yielded for the southern U.S.162

cities. Note that r is significant at a test level of at least 1% for each of the 6 major cities of163

the southern United States (exception: Jacksonville, where r is significant at a test level of164

5%). An overview of the validation results for the Southern cities, including rmsess, r and165

the p − value is given in Tab. 1. As an example, observed and forecasted time series are166

shown in Fig. 1c for Houston (Texas).167

4. Discussion168

The statistical forecasting method proposed in this study is expected to be of interest for169

both the buyers and sellers of the weather derivative market, in order to decide on whether170

to close a contract or not. For instance, on the basis of the forecast for DJF 2011/12 (see171

Fig. 1c), which was available on the 1st of November 2011 and turned out to be reasonably172

correct, an energy supplier fearing financial loss in case the standard deviation for DJF-173

HDD is largely negative might have insured against this risk. In contrast, on the basis of the174

forecast for DJF 2009/10, which also turned out to be reasonably correct, he probably would175

not have done so. In turn, if the forecast for DJF 2011/12 would have been available for176

the insurer, he/she probably would have raised the premium/price for the above mentioned177

insurance.178

In swap contracts, the ‘fair strike’ (i.e. the strike for which the expected pay-off is zero) is179

usually defined as the unconditional/climatological mean of the observed time series of DJF-180

HDD (Jewson and Brix 2005). However, in those regions where DJF-HDD are predictable181

(see Fig. 1a), this definition should be reconsidered since the expected value for the DJF-182

HDD following a large (small) Eurasian snow cover increase in October is larger (smaller)183

than the unconditional mean. As a possible solution for this problem, the ‘fair strike’ could184

be defined as a the mean value conditioned to the index for October Eurasian snow cover185

increase. However, the sample size of this index is small to-date (n = 15, due to the limited186
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availability of daily snow cover data), which, presently, would be one argument against the187

calculation of conditional means.188

Finally, it should be noted that the inter-annual variability of the boreal winter climate is189

not solely driven by Eurasian snow cover (Kushnir et al. 2006; Fletcher and Saunders 2006;190

Folland et al. 2012). Moreover, due to the short sample size available to date, possible non-191

stationarities in the described teleconnection cannot be currently assessed. Consequently,192

the proposed statistical forecasting scheme should be re-evaluated in the future.193

5. Conclusions194

This study has shown that DJF accumulated heating degree days over a large and highly195

significant fraction of the Northern Hemisphere extratropics can be skillfully predicted from196

Eurasian snow cover increase in the previous October. For this purpose, simple linear re-197

gression has been applied as a statistical forecasting method which has been validated in a198

one-year-out cross-validation framework. With a root mean square error skill score of up to199

47% and a Pearson correlation coefficient of up 0.85, the forecast skill at 6 major cities of the200

southern United States is significant at a test level of up to 0.1%, and, thus, is very unlikely201

a product of chance. Since the latter variables are directly traded as weather derivative202

products, it is important to communicate this expert knowledge to the respective sellers and203

buyers (i.e. from the energy sector) in order to guarantee fair trading.204
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Table 1. Forecast skill in terms of the root mean square error skill score (rmsess, in %),
the Pearson correlation coefficient (r) and the p-value of the Pearson correlation coefficient
(pval, in %). Also given are the Weather Bureau Army Navy (WBAN) station numbers.

Name Station number rmsess r pval in %
Atlanta 13874 36.9 0.78 0.07
Dallas/Fort Worth 03927 31.8 0.73 0.19
Houston 12960 47.0 0.85 0.01
Little Rock 13963 24.3 0.65 0.82
Jacksonville 13889 19.9 0.60 1.78
Raleigh/Durham 13722 28.4 0.70 0.36
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List of Figures305

1 Panel (a): One-month lead forecast skill for DJF accumulated heating degree306

days, calculated upon 2m air temperatures from ERA-Interim, in terms of the307

root mean square error skill score, the latter calculated with respect to the308

climatological mean. Results are from a one year-out cross-validation for the309

DJF-seasons between 1997/98 and 2011/12 (n=15). Panel (b): as (a) but310

using in-situ station data. The forecast skill for the six named stations is311

significant in terms of the p-value of the Pearson correlation coefficient (see312

Tab. 1 for more details. Panel (c): Forecasted vs. observed DJF-HDD for313

Houston (Texas). 18314
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Fig. 1. Panel (a): One-month lead forecast skill for DJF accumulated heating degree
days, calculated upon 2m air temperatures from ERA-Interim, in terms of the root mean
square error skill score, the latter calculated with respect to the climatological mean. Results
are from a one year-out cross-validation for the DJF-seasons between 1997/98 and 2011/12
(n=15). Panel (b): as (a) but using in-situ station data. The forecast skill for the six
named stations is significant in terms of the p-value of the Pearson correlation coefficient
(see Tab. 1 for more details. Panel (c): Forecasted vs. observed DJF-HDD for Houston
(Texas).
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