METHOD AND SYSTEM FOR CHARACTERIZATION OF NANO- AND MICROMECHANICAL STRUCTURES

MÉTODO Y SISTEMA DE CARACTERIZACIÓN DE ESTRUCTURAS NANO Y MICRO MECÁNICAS

Abstract: Method and system in optical microscopy based on the deflection of micro- and nanomechanical structures, upon impact of a laser beam thereon, which simultaneously and automatically provides a spatial map of the static deflection and of the form of various vibration modes, with vertical resolution in the subangstrom range. The invention comprises at least one mechanical structure, an incident laser beam sweeping the surface of the structure, an optometric detector for capturing the laser beam, and frequency excitation means that generate at least two sinusoidal signals at different frequencies in the mechanical structure.

Resumen: Método y sistema de microscopía óptica basada en la deflexión de estructuras micro y nanomecánicas al incidir un haz láser en ellas que provee simultáneamente y de manera automática un mapa espacial de la deflexión estática y de la forma de diversos modos de vibración con resolución vertical en el rango de subangstrom. Comprendiendo al menos una estructura mecánica, un haz láser incidente que barre la superficie de la estructura, un detector optométrico para la captura del haz láser y unos medios de excitación en frecuencia que generan al menos dos señales sinusoidales a diferentes frecuencias en la estructura mecánica.

— antes de la expiración del plazo para modificar las reclamaciones y para ser republicada si se reciben modificaciones (Regla 48.2(h))

Publicada:

— con informe de búsqueda internacional (Art. 21(3))
DESCRIPTIÓN

MÉTODO Y SISTEMA DE CARACTERIZACIÓN DE ESTRUCTURAS NANO Y MICRO MECÁNICAS

OBJETO DE LA INVENCIÓN

La presente invención se refiere en primer lugar a un método de caracterización de estructuras nano y micro mecánicas y en segundo lugar al sistema para llevar a cabo el método descrito. Dicha caracterización se lleva a cabo mediante la excitación de las estructuras nano y micro mecánicas mediante un haz láser, la excitación de las estructuras con señales a diferentes frecuencias y la medición de los distintos parámetros en función del haz láser reflejado. El campo de aplicación de la presente invención es el de la caracterización de la respuesta mecánica de nano y micro estructuras.

ANTECEDENTES DE LA INVENCIÓN

La miniaturización de dispositivos mecánicos en la micro y nanoeescala, llamados sistemas micro y nanomecánicos (MEMS y NEMS acrónimos del inglés microelectromechanical systems y nanoelectromechanical systems respectivamente), ha permitido el desarrollo de tecnologías avanzadas de barrido de los sensores mecánicos y tiene una importante relevancia en los campos de la electrónica y la generación de energía. El potencial de estos sistemas se basa en que su desplazamiento, en la escala de los nanómetros y su vibración es muy sensible a las fuerzas externas, las fuerzas generadas en el plano de su superficie y la masa añadida sobre ellos. Estos atributos implican que los sistemas micro y nanomecánicos combinados con sensores de desplazamiento ópticos o eléctricos se pueden aplicar en la detección de la fuerza entre dos moléculas o átomos con sensibilidad en el rango de los attonewton, así como para medir una masa depositada con sensibilidad en el zeptogramo
y a la vez hallar la constante elástica con resolución de kilopascales; o para aplicaciones en la detección sin marcadores de moléculas en la superficie a través de las fuerzas generadas. También se han usado MEMS y NEMS como filtros de radiofrecuencia, acelerómetros y giróscopos de gran precisión.

En el actual estado de la técnica, son conocidos los sistemas micro y nanomecánicos basados en voladizos que tienen un extremo fijo y uno móvil. En estos sistemas, lo que se detecta es normalmente la colocación y/o el movimiento del extremo libre. También son sobradamente conocidos los sistemas basados en voladizos fijados por ambos extremos de los que se puede detectar el movimiento de la parte central del mismo.

En lo sucesivo, cuando se expongan los antecedentes generales de la invención, se hará referencia a los voladizos que tienen un sistema fijo y uno libre cuya deflexión ha de ser medida (la deflexión se refiere al desplazamiento del extremo libre del microvoladizo) en respuesta a la luz, pero los avances en este tipo de arquitecturas son aplicables también a otros diseños citados anteriormente.

Cuando los voladizos se reproducen en la microescala, tipicamente con un espesor de 0.2-1 μm, anchura de entre 100-500 μm y longitud de 100-500 μm; éstos pueden flexionarse del orden de unos cuantos nanómetros en respuesta a fuerzas en el rango de piconewton. Es en este rango donde confluyen las fuerzas entre átomos, moléculas y biomoléculas que rigen muchas de las propiedades fisicoquímicas de los materiales así como muchos procesos fundamentales en la vida. Las deflexiones correspondientes de los microvoladizos pueden ser detectadas óptica y eléctricamente con una resolución de al menos 100 pm/Hz1/2.
En general, existen diversas técnicas para la lectura de la deflexión del voladizo, tales como la detección capacitiva, detección basada en corriente de túnel, interferometría óptica, lectura piezorresistiva así como las llamadas técnicas de deflexión de haz óptico. Este último es el método más extendido por su simplicidad, gran sensibilidad y la capacidad de medir en aire, mezclas de gases y fluidos sin entrar en contacto con los sensores de desplazamiento o la circuitería de lectura.

Como se ha comentado anteriormente, el procedimiento de deflexión de haz óptico es muy sensible y tiene la ventaja de que puede ser implementado fácilmente. Normalmente se emplea para la captura del haz reflejado un fotodetector segmentado que está partido en dos segmentos orientados paralelamente al eje de movimiento del voladizo. La deflexión del voladizo produce un desplazamiento del punto láser reflejado en el fotodetector. De esta manera, la diferencia en las fotocorrientes entre los dos segmentos es proporcional a la deflexión del voladizo.

Además de la deformación estática, se han medido las frecuencias de resonancias de las micro y nano estructuras para el barrido de superficies blandas en AFM y para el desarrollo de sensores que se basan en la adición de masas y la rigidez de las moléculas capturadas en la superficie de los voladizos. Normalmente se consideran los voladizos como estructuras que presentan una única frecuencia de resonancia (frecuencia de resonancia fundamental), excitándolas a las frecuencias cercanas a la frecuencia de resonancia, sin embargo las estructuras mecánicas presentan varios modos de vibración, a frecuencias más altas que la frecuencia fundamental.

Existe un interés creciente en el uso de modos de alta frecuencia para aumentar la sensibilidad y los límites de detección. Sin embargo es extremadamente complejo determinar la forma del modo a las frecuencias que
corresponden a las frecuencias de resonancia, muy importante para cuantificar e interpretar las medidas. El conocimiento de la forma del modos de vibración y la medida con precisión de las frecuencias correspondientes es de gran relevancia para el diseño de MEMS y NEMS en todos sus campos de aplicación.

También existen cuestiones sobre el comportamiento dinámico de los voladizos que no han sido resueltos tales como: el efecto del estrés de superficie en las propiedades de resonancia o el acoplamiento entre modos de vibración inducido por el amortiguamiento viscoso, los elementos elásticos o por el contacto intermitente. La llegada de las simulaciones mediante elementos finitos y el aumento creciente de la velocidad de procesado por ordenador está arrojando luz sobre estas cuestiones. Sin embargo, estas simulaciones son muy costosas en tiempo e ignoran los defectos e imperfecciones inherentes a los procesos de micro y nano fabricación. Por otro lado, los parámetros libres en la simulación, como el tamaño de la cuadrícula o la definición de las condiciones de contorno y condiciones de pretensado de la estructura no siempre se pueden elegir o determinar de manera realista, por lo que las simulaciones sólo pueden servir como una guía en el diseño de MEMS y NEMS pero no como una herramienta capaz de simular de manera realista el comportamiento de estas estructuras. La medida experimental de la forma de los modos de vibración y determinación de sus frecuencias es una herramienta críticamente necesaria; esta herramienta es el objeto de la invención presentada.

microscopy”] (WLI acrónimo del inglés White Light Interferometry) han demostrado una habilidad significativa en la caracterización de los sistemas nanomecánicos. SDLV puede obtener imágenes con gran sensibilidad de la vibración, fuera del plano de estos sistemas en el rango sub-angstrom y resolución lateral submicrométrica. WLI da información de la topografía con una resolución vertical de 1-10 nm. Adicionalmente, la implementación de la iluminación estroboscópica en WLI ha permitido el análisis de modos de vibración, aunque el proceso es lento, el ancho de banda limitado y la resolución todavía insuficiente.

Así, a pesar del estado de la técnica existente se necesitan todavía técnicas que puedan dar información simultánea del comportamiento estático y dinámico de los sistemas nanomecánicos con alta sensibilidad de manera rápida y simple.

Concretamente los sistemas más utilizados actualmente para el análisis del movimiento/desplazamiento dinámico, WLI LDVP (Láser Doppler Vibrometer) no pueden obtener simultáneamente la información del movimiento del micro o nano estructura la deformación estática y el movimiento a diversas frecuencias de vibración, siendo necesario realizar más barridos, uno en cada escenario de frecuencia.

Adicionalmente aunque estas técnicas pueden ser prácticas para medir el movimiento/desplazamiento de elementos individuales, muchos usos prácticos de los sistemas de medición de elementos micro y nanomecánicos requieren el uso de matrices de gran número de elementos micromecánicos que comprendan una pluralidad de voladizos dispuestos en una formación y que funcionen en paralelo, proporcionando así mayor velocidad y multifuncionalidad. En esta invención se propone que los sistemas de deflexión por haz láser son adecuados para medir tanto el comportamiento estático como el dinámico de los elementos/voladizos, por ejemplo: la deflexión máxima, el valor medio de la deflexión, la
amplitud a una frecuencia de referencia (el elemento puede ser excitado de manera externa mediante una fuerza de excitación que oscila a una frecuencia de referencia), una fase del movimiento con respecto a una señal excitadora, una frecuencia, etc. El desplazamiento estático, la amplitud, la frecuencia, etc., medidos pueden ser relacionado con un objeto que ha de ser medido y que interactúa con el voladizo, y con las señales utilizadas para estimular el objeto y/o al voladizo.

Aunque la técnica de deflexión de haz óptico puede resolver deflexiones de hasta 0.1 nm, la implementación de esta técnica para la lectura en matrices de microvoladizos ha resultado un tema complejo de manera que no existe ningún sistema, técnica o método que permita obtener la respuesta de varios alineamientos de sistemas micro y nano mecánicos a diferentes frecuencias simultáneamente. La presente invención provee de una técnica de microscopia óptica basada en el método de la deflexión de un haz que provee simultáneamente y de manera automática de un mapa espacial de la deflexión estática y de la forma de cinco modos de vibración con resolución vertical en el rango de subangstrom.

DESCRIPCIÓN DE LA INVENCIÓN

En primer lugar la presente invención se refiere a un método de caracterización de estructuras nano y micro mecánicas. Para ello la presente invención hace uso de al menos una estructura mecánica que podrá ser una estructura nanomecánica o una estructura micromecánica. Dicha estructura mecánica podrá estar formada por una o más capas siendo cada una de dichas capas de materiales diferentes. Además también podrían aparecer capas de, por ejemplo, oxido sobre capas metálicas que deberán ser tenidas en cuenta a la hora de realizar el procedimiento de caracterización considerándolas como una capa más de la estructura. También se ha previsto la aplicación del citado
método sobre una matriz de estructuras mecánicas compuestas por estructuras nanomecánicas, estructuras micromecánicas y una combinación de las mismas. Así el método objeto de la presente invención comprende las siguientes fases:
- definir un sistema de coordenadas en el que los ejes X e Y se corresponden con el plano de superficie de la estructura mecánica;
- excitar la estructura mecánica mediante una señal compuesta por al menos dos señales sinusoidales a diferentes frecuencias;
- barrer de forma automática mediante un haz láser el plano de superficie de la estructura mecánica;
- capturar un haz láser reflejado del plano de superficie de la estructura mecánica mediante un detector óptico u optométrico situado previamente en la trayectoria del haz reflejado obteniendo unos vectores de pendiente en el plano X y en el plano Y del plano de superficie de la estructura mecánica;
- realizar un transformada rápida de Fourier de los vectores de pendiente en los planos X e Y;
- definir una máscara basada en la intensidad del haz láser reflejado;
- aplicar la máscara a unas componentes dinámicas de los vectores de pendiente en los planos X e Y obteniéndose un vector de datos normal al plano de superficie estático y multifrecuencia; y,
- reconstruir una topografía y una forma de los al menos dos modos de vibración mediante un método de integración iterativo en dos dimensiones del vector de datos normal.

En una realización particular de la invención, se ha previsto que las al menos dos señales sinusoidales con las que se excita la estructura mecánica tengan una frecuencia que coincide con las frecuencias de unos modos de vibración de la estructura mecánica.

En otra realización de la invención se ha previsto que el método de integración iterativo en dos dimensiones sea un
método de reconstrucción de imagen en estereografía fotométrica.

En otra realización de la invención la excitación de la estructura mecánica comprende realizarse mediante un actuador piezoelectrónico situado en contacto con la estructura mecánica de manera que dicho actuador transmite la excitación a la estructura de forma directa.

En otra realización de la invención la excitación de la estructura mecánica se realiza calentando mediante un elemento calefactor las capas que forman la estructura mecánica lo que provoca la vibración de la estructura. De esta manera, la estructura mecánica se calienta y enfriá a las frecuencias de elección para producir una expansión/contracción de la estructura mecánica. En este caso particular, la estructura deberá estar formada por al menos dos capas de materiales diferentes, ya que al responder de forma distinta los dos materiales a la temperatura se generar fuerzas entre las capas que provocan la excitación del conjunto de la estructura mecánica.

No obstante, las técnicas para excitar la estructura mecánica son muy variadas y sobradamente conocidas en el estado de la técnica, siendo algunos ejemplos de ellas: excitación optotérmica, excitación acústica, excitación piezoelectrónica, excitación magnética, etc.

Un segundo objeto de la presente invención es un sistema de caracterización de estructuras nano y micro mecánicas para llevar a cabo el procedimiento descrito anteriormente. Dicho sistema al menos comprende:

- al menos una estructura mecánica seleccionada entre una estructura nanomecánica, una estructura micromecánica, partes de ellas y una combinación de las mismas;
• un láser para la emisión de un haz láser sobre la estructura mecánica;
• medios de guiado de la estructura mecánica en los ejes X e Y, siendo los ejes X e Y los ejes que definen el plano de superficie de la estructura mecánica;
• un detector optométrico para la captura del haz láser que se refleja sobre la estructura mecánica; y,
• un medio de excitación en frecuencia que genera al menos dos señales sinusoidales a diferentes frecuencias en la estructura mecánica.

Así pues, el sistema objeto de la presente invención utiliza la técnica de deflexión de un haz que puede detectar simultáneamente la deflexión/deformación estática y de la forma de varios modos de vibración de una pluralidad de elementos, siendo preferentemente estos elementos: elementos micro y nanomecánicos o partes de ellos, con resolución vertical en el rango de sub-angstrom en una única medida.

En una realización preferente del sistema, la estructura mecánica es un voladizo seleccionado entre un microvoladizo y un nanovoladizo.

En otra realización de la invención, el detector optométrico es un detector de posición linear bidimensional.

En otra realización de la invención el sistema comprende amplificadores corriente-tensión que transforman las corrientes generadas en el detector de posición en: la tensión de salida en el eje X, la tensión de salida del eje Y y la tensión de la intensidad del haz reflejado.

En otra realización particular de la invención, el medio de excitación en frecuencia está seleccionado entre un actuador piezoeléctrico y medios de excitación térmicos. Nótese que los medios de excitación dependerán en cualquier
caso de la técnica seleccionada, de entre las pertenecientes al estado de la técnica, para generar la excitación del sistema mecánico. En una realización más preferente, los medios de excitación térmicos son un láser modulable en frecuencia enfocado sobre una superficie de la estructura mecánica. Para llevar a cabo la excitación en frecuencia de la estructura mecánica mediante medios térmicos, la estructura mecánica deberá estar formada por al menos dos capas de distinto material.

Preferentemente, la presente invención se ha previsto para su uso con sistemas micro y nanomecánicos basados en voladizos que tienen un extremo fijo y uno móvil. No obstante, la presente invención también puede ser aplicada, de manera similar, a otros elementos mecánicos como pueden ser sistemas basados en voladizos fijados por ambos extremos de los que se puede detectar el movimiento de la parte central del mismo. Igualmente se aplica a otras estructuras micro y nanomecánicas que son susceptibles de moverse, deformarse o que son flexibles como pueden ser tambores, membranas, cavidades, rebordes, etc. También se ha previsto su uso en nanohilos de silicio, que suelen ser la extensión de los voladizos a pequeña escala o los microsistemas acústicos de ondas de superficie (SAW, acrónimo del inglés surface acoustic wave) y de volumen (BAW, acrónimo del inglés bulk acoustic wave) donde se puede emplear la presente invención para la medida de la deformación del material activo, piezoeléctrico; y en general otro tipo de micro o nano sistema donde tenga lugar un cambio en la reflectividad, la deformación, el estrés o el movimiento como puede ser un microespejo en forma de disco o prisma transparente, translúcido u opaco que presenta un cambio en la reflectividad al ser iluminado o una estructura multicapa.

BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1.- Muestra un ejemplo de realización del sistema de caracterización del desplazamiento del extremo de un microvoladizo, objeto de la presente invención.

Figura 2.- Las figuras 2a y 2b muestran una representación esquemática del desplazamiento del haz láser reflejado en un detector de posición lineal bidimensional (PSD acrónimo del inglés photo sensitive detector) debido al cambio de la pendiente mostrada a lo largo de los ejes X e Y respectivamente del microvoladizo.

Figura 3.- Muestra una representación esquemática de un ejemplo de realización del método de caracterización para la excitación/detección multifrecuencia, objeto de la presente invención.

Figura 4.- Muestra la representación en 3 dimensiones de un ejemplo de realización del desplazamiento estático fuera del plano y la forma de cinco modos de vibración de un sensor de microvoladizos.

Figura 5.- Las figuras 5a y 5b muestran representaciones en 3 dimensiones de las componentes longitudinales (a) y transversales (b) de los estreses de superficie generados en la superficie del voladizo de la figura 4 derivado de su curvatura.

Figura 6.- Muestra los perfiles de los estreses de superficie longitudinales y transversales a lo largo del eje longitudinal del voladizo se muestran en las figuras 5a y 5b.

DESCRIPCIÓN DE VARIOS EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN

Seguidamente se realizan, con carácter ilustrativo y no limitativo, una descripción de varios ejemplos de
realización de la invención, haciendo referencia a la numeración adoptada en las figuras.

Tal y como se muestra en la figura 1, el método y sistema objeto de la presente invención se basa en el barrido automático en dos dimensiones de un haz láser muy focalizado a través de la superficie de un sistema mecánico, un ejemplo es el de un microvoladizo, y la recolección del haz reflejado en la superficie del PSD bidimensional orientado ortogonalmente al rayo reflejado.

Se muestra de manera esquemática una disposición convencional de los elementos para la medición de una deflexión de haz óptico. Una fuente (1) de luz (normalmente un láser) emite un haz de luz (2) enfocada (directamente o mediante el uso de elementos ópticos intermedios, como espejos) sobre la estructura mecánica (3), cuyo desplazamiento ha de ser medido, por ejemplo, sobre el extremo de un voladizo (3). El extremo fijo del voladizo (3) está anclado a un actuador piezoeléctrico (7). Preferentemente la deflexión del haz reflejado (5) se mide con un PSD ortogonal (4), pero también podría emplearse un fotodetector segmentado, un fotodetector de detección continua de ubicación, una formación de fotodetectores, etc.

Así, en primer lugar se define un sistema de coordenadas donde el plano X-Y es el plano de la superficie del microvoladizo (3) e X e Y están a lo largo de las direcciones de barrido del haz (2). Así el desplazamiento fuera del plano del voladizo (3) ocurre a lo largo del eje Z. El haz incidente (2) está en el plano X-Z y el fotodetector (4) está orientado con un eje a lo largo de la dirección Y. Con esta configuración, las fotocorrientes a lo largo de los ejes del fotodetector (4) (determinadas por las coordenadas de haz láser reflejado (5) en el fotodetector (4)) son linealmente proporcionales a la pendiente del voladizo (3) a lo largo de las direcciones X
e Y en el punto de reflexión (6). A su vez, para la realización del barrido del haz (2) sobre la superficie del voladizo (3) se ha previsto que el actuador piezoeléctrico (7) este fijado a un primer micropositionador (8) que se desplaza en el plano XZ y que a su vez se desplaza sobre un segundo micropositionador (9) que se desplaza en el plano YZ.

La figura 2a muestra la deflexión del microvoladizo (3) con su consiguiente desplazamiento en el plano X-Z (14) al incidir el haz láser (2). En el fotodetector (4) se observa el desplazamiento del haz reflejado (5) en el eje Z debido a la deflexión del microvoladizo (3), ya que inicialmente dicho microvoladizo (3) se encuentra en el plano X-Y (10) incidiendo el haz reflejado (5) en un primer punto (11) del fotodetector (4). Posteriormente, debido a la incidencia del haz (2) en el punto de reflexión (15), el voladizo (3) sale del plano X-Y desplazándose el haz reflejado (5) en el eje Z hasta un segundo punto (12) del fotodetector (4). Así se pueden medir fácilmente los desplazamientos (13) del haz reflejado (5) debido a la deflexión del microvoladizo (4). La figura 2b muestra otro ejemplo de realización en el que la deflexión del microvoladizo (4) genera un desplazamiento (13) del haz reflejado (5) en el fotodetector en el eje Y.

En la figura 3 se muestra un ejemplo de realización del método y sistema descrito en la presente invención. Para obtener datos reales del comportamiento dinámico de un voladizo (15), dicho voladizo (15) es excitado por una señal (16) compuesta de la suma de cinco señales sinusoidales dependientes del tiempo a diferentes frecuencias (\(w_1-w_5\)). Estas señales se eligen de manera que sus frecuencias coincidan con las frecuencias de los modos de vibración y la amplitud de cada componente de las frecuencias se sintoniza para obtener respuestas similares de la amplitud en el voladizo (15). La señal (16) se aplica a través de un bimorfo (estructura formada por dos capas de dos materiales activos) piezoeléctrico (17) situado cerca
de la base del voladizo (15). El método puede ser extendido a más frecuencias pero se han elegido cinco frecuencias para limitar la cantidad de datos generados.

Una vez el haz incidente (18) se proyecta sobre el microvoladizo (15) y el haz reflejado (19) es capturado digitalmente por un amplificador sintonizado integrado en el fotodetector (20), los datos brutos de las señales de las pendientes del fotodetector (20) son multiplexadas en amplitudes estáticas y en cuadratura respecto de cada componente de la frecuencia de la señal de excitación (16). De esta manera, para cinco frecuencias \((w_1-w_5)\) en un único escaneado se obtienen 23 imágenes (21): las pendientes estáticas \(X\) e \(Y\); y la reflectividad; y las amplitudes en fase y en cuadratura de las pendientes \(X\) e \(Y\) a las cinco frecuencias de excitación\((w_1-w_5)\).

Tras el barrido del haz (18) sobre el voladizo (15), el sistema define una máscara (22) basada en la componente continua (23) de la intensidad del haz de luz reflejado (19) que da la forma del voladizo (15). Esta máscara (22) se aplica a las componentes dinámicas de las pendientes \(X\) (24) e \(Y\) (25) para obtener el vector normal a la superficie del voladizo (15) estático y multifrecuencia. Para la reconstrucción de la topografía (27) y la forma de los cinco modos de vibración excitados (28), se adopta un método de integración en 2 dimensiones (26) utilizado para la reconstrucción de la imagen en estereografía fotométrica para calcular la altura a través del vector normal de datos.

A continuación se describen ejemplos de realización en los que se han realizado experimentos sobre microvoladizos comerciales para la obtención de sus frecuencias de resonancia, formas modales y estrés de superficie. Para demostrar que la técnica produce resultados correctos se han realizado simulaciones de elementos finitos como comprobación del concepto y de la capacidad del método, así
como del sistema objetos todos ellos de la presente invención.

Así, en un ejemplo de realización particular se aplica una técnica para la determinación de la distribución espacial del estrés de superficie y la forma modal (forma física que tiene la estructura a la frecuencia de resonancia normalizada) de los primeros 22 modos naturales de vibración de un sensor comercial con ocho voladizos (marca Concentris®) que ha sido recubierto con una fina lámina de oro. Las dimensiones de los voladizos son 500 μm de longitud, 100 μm de anchura y 1 μm de espesor.

Las fotocorrientes son convertidas en tensiones eléctricas a través de amplificadores corriente-tensión integrados en el fotodetector para obtener tres tensiones de salida que dan las pendientes X e Y de la superficie y la intensidad del haz láser reflejado. Como las fotocorrientes se normalizan respecto a la fotocorriente total, los valores de las pendientes no son sensibles a las fluctuaciones de intensidad y las variaciones de las propiedades ópticas de la superficie. En los experimentos, se ha orientado el voladizo a lo largo de la dirección X, de manera que las variaciones en los canales de las pendientes X e Y pueden relacionarse con el movimiento flexural y torsional del voladizo.

La señal de excitación del sensor empleada consiste en la suma de cinco señales a diferentes frecuencias. Las frecuencias se eligen para coincidir con las frecuencias de resonancias de modos de vibración diferentes. Una transformada rápida de Fourier de los canales del PSD correspondientes a la pendiente en X y a la pendiente en Y de la muestra revela los desplazamientos estáticos y multimodales fuera del plano. La intensidad del canal del PSD se usa como máscara para obtener la forma del voladizo. Para reconstruir la topografía y la forma de los cinco
modos de vibración, se adopta un método de integración iterativo.

La figura 4 muestra la topografía resultante la forma del voladizo (29) y la forma de cinco modos de vibración (30-34) obtenidos en un único barrido de la invención consistente en 512 líneas a una velocidad de una línea por segundo. El tiempo de adquisición por pixel es de alrededor de 2 ms. Los datos de topografía muestra que el voladizo (29) esta doblado hacia abajo (de la cara donde hay oro a la cara donde hay silicio) alrededor de 22 μm. Este doblamiento es consecuencia del alto estrés residual compresivo desarrollado durante la evaporación térmica de una capa de 50 μm de oro. Las cinco frecuencias de excitación, 4.58 kHz, 158.2 kHz, 594.6 kHz, 825.1 kHz y 1031 kHz, corresponden con los modos naturales de vibración 1°, 6°, 14°, 17° y 22°, respectivamente, del voladizo. Una característica notable de la técnica es el alto margen de frecuencias, desde pocos kHz hasta 1 MHz, exhibidos en la caracterización dinámica. Este rango puede ser aumentado todavía más mejorando el ancho de banda de la electrónica de lectura del PSD. Es importante destacar que aunque el uso de altos modos de vibración es ventajoso (en términos de sensibilidad debidos tanto a la frecuencia más alta y el factor de calidad) el conocimiento de la forma del modo de vibración es absolutamente necesario para la obtención de medidas cuantitativas.

La figura 5 muestra medidas cuantitativas del cálculo del estrés residual en superficie del voladizo descrito en la figura 4 que demuestran lo ventajoso de la presente invención.

Se ha derivado la distribución espacial en dos dimensiones del estrés de superficie calculando la curvatura local y aplicando la relación de Euler-Bernoulli entre el par de torsión y la curvatura. Las Figuras 5(a) y 5(b) muestran el mapa espacial de las componentes longitudinales (35) y transversales (36) del estrés de superficie. El anclaje del
voladizo se encuentra en uno de los lados cortos (37) de la representación de los mapas espaciales mostrados. Los perfiles de los estreses de superficie longitudinales (38) y transversales (39) a lo largo del eje longitudinal del voladizo se muestran en la figura 6. Las imágenes de las figuras 5(a) y 5(b) tienen una longitud de 320 μm y una anchura de 70 μm. Este tamaño se ha escogido para señalar la región de voladizo cercana al voladizo donde existen curvaturas no uniformes y para excluir los bordes del voladizo donde la medida de curvatura es muy ruidosa.

Los resultados demuestran claramente que el estrés de superficie no es uniforme ni isotrópico a través del voladizo. El valor absoluto del estrés de superficie longitudinal es máximo cerca del anclaje y decae hasta un valor constante a una distancia del anclaje de alrededor del doble de la anchura del voladizo.

Se hace hincapié en el ruido de la medida de curvatura debido al ruido inherente producido en las derivadas numéricas. En este contexto, la deflexión del haz láser de barrido presenta ventajas para la cuantificación de los estreses en el plano en estructuras micromecánicas. Sin embargo, cuando el desplazamiento fuera del plano se mide directamente, como es el caso de las medidas interferométricas, el cálculo de la curvatura requiere de la derivada segunda de medida, dando lugar a un ruido de amplificación de dos pasos. De forma más ventajosa, la técnica de deflexión de haz mide directamente la pendiente, por lo que reduce los pasos de derivación numérica a uno. Lo que es más, la técnica de deflexión de haz es extremadamente sensible, con ruido por debajo de 100 pm/Hz1/2 que es aproximadamente diez veces menor que el ruido de los sistemas de interferometría de luz blanca, la técnica estándar para hacer imágenes desplazamientos estáticos fuera del plano en estructuras micromecánicas.
En otro ejemplo de realización de la invención, se ha realizado la comparación de la forma modal experimental obtenida mediante el método de caracterización de estructuras micro y nano mecánicas objeto de la presente invención frente a una simulación mediante el método de elementos finitos. Para ello se ha realizado la caracterización de los primeros 22 modos de un sensor microvoladizo.

Las frecuencias naturales y formas modales de los microvoladizos se simularon mediante el método de elementos finitos (FEM, acrónimo del inglés finite element modelling) usando el paquete de software comercial Comsol 4.2. Se simuló un microvoladizo recubierto de oro de longitud 500 μm, anchura 100 μm, y espesor del sustrato y del recubrimiento 950 nm y 50 nm respectivamente (dimensiones nominales de los microvoladizos usadas en los experimentos).

El proceso de simulación consistió en dos pasos secuenciales. Primero, se calculó las tensiones estáticas del voladizo cuando éste es sujeto a un cambio de temperatura uniformemente distribuido. El valor de temperatura se eligió para conseguir un doblamiento del voladizo, debido al efecto bimetalico, similar al encontrado experimentalmente por el estrés generado en el recubrimiento con oro. La simulación ha incluido los efectos de gran deformación que salen de las no linealidades geométricas.

Así, el tensor de tensión de Green y el segundo tensor de estrés de Piola Kirchnoff se usan y la solución se consigue usando una formulación total Lagrangiana. En el segundo paso de la simulación, se obtuvieron las frecuencias propias incluyendo la deformación estática del voladizo obtenida previamente en el primer paso de la simulación. Un estudio de convergencia se realizó afinando los elementos de la malla hasta que el error relativo en la frecuencia
natural del voladizo estuviera por debajo de 10^{-4}. Esto corresponde con una malla de 500000 elementos aproximadamente.

Como se indicó en el ejemplo de realización anterior, la cara recubierta de oro de los microvoladizos presenta un gran estrés residual que da lugar a un doblamiento del voladizo significativo. Para poder comparar los experimentos con rigurosas simulaciones FEM, se ha introducido el efecto del estrés superficial en las simulaciones. Estas muestran que aunque el estrés de superficie apenas modifica la vibración del modo de vibración en nuestras condiciones, sí induce un cambio significativo de la frecuencia de los modos de vibración, dependiendo dicho cambio del tipo de modo (flexural, torsional y en forma de U). Así, para se ha obtenido una desviación de la frecuencia teórica a la obtenida mediante la simulación menor del 5% para los seis primeros modos de vibración, aumentando hasta un 10% para los modos de vibración con forma de U.

Estos resultados muestran la habilidad de la presente técnica para obtener rápidamente la forma multimodal de la vibración de los sistemas micro y nanomecánicos y la capacidad de unir este comportamiento dinámico con el campo estrés/tensión del sistema mecánico.
REIVINDICACIONES

1.- Método de caracterización de estructuras nano y micro mecánicas, que comprende al menos una estructura mecánica seleccionada entre una estructura nanomecánica y una estructura micromecánica, estando formada la estructura mecánica por al menos una capa donde cada capa es de un material distinto, caracterizado porque comprende las siguientes fases:
- definir un sistema de coordenadas en el que los ejes X e Y se corresponden con el plano de superficie de la estructura mecánica;
- excitar la estructura mecánica mediante una señal compuesta por al menos dos señales sinusoidales a diferentes frecuencias;
- barrer de forma automática mediante un haz láser el plano de superficie de la estructura mecánica;
- capturar un haz láser reflejado del plano de superficie de la estructura mecánica mediante un detector óptico /optométrico situado previamente en la trayectoria del haz reflejado obteniendo unos vectores de pendiente en el plano X y en el plano Y del plano de superficie de la estructura mecánica;
- realizar un transformada rápida de Fourier de los vectores de pendiente en los planos X e Y;
- definir una máscara basada en la intensidad del haz láser reflejado;
- aplicar la máscara a unas componentes dinámicas de los vectores de pendiente en los planos X e Y obteniéndose un vector de datos normal al plano de superficie estático y multifrecuencia; y,
- reconstruct una topografía y una forma de los al menos dos modos de vibración mediante un método de integración iterativo en dos dimensiones del vector de datos normal.

2.- Método de caracterización de estructuras nano y micro mecánicas, según la reivindicación 1, caracterizado porque las al menos dos señales sinusoidales tienen una frecuencia
que coincide con las frecuencias de unos modos de vibración de la estructura mecánica.

3.- Método de caracterización de estructuras nano y micro mecánicas, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el método de integración iterativo en dos dimensiones es un método de reconstrucción de imagen en estereografía fotométrica.

4.- Método de caracterización de estructuras nano y micro mecánicas, según una cualquiera de las reivindicaciones anteriores, caracterizado porque la excitación de la estructura mecánica comprende realizarse mediante un actuador piezoeléctrico situado en contacto con la estructura mecánica transmitiéndole la excitación de forma directa.

5.- Método de caracterización de estructuras nano y micro mecánicas, según una cualquiera de las reivindicaciones 1 a 3, caracterizada porque la excitación de la estructura mecánica se realiza calentando mediante un elemento calefactor la al menos una capa que forma la estructura mecánica.

6.- Sistema de caracterización de estructuras nano y micro mecánicas, para llevar a cabo el procedimiento descrito en una cualquiera de las reivindicaciones anteriores, caracterizado porque comprende:
 • al menos una estructura mecánica seleccionada entre una estructura nanomecánica, una estructura micromecánica y partes de ellas;
 • un láser para la emisión de un haz láser sobre la estructura mecánica;
 • medios de guiado de la estructura mecánica en los ejes X e Y, siendo los ejes X e Y los ejes que definen el plano de superficie de la estructura mecánica;
 • un detector optométrico para la captura del haz láser que se refleja sobre la estructura mecánica; y,
- un medio de excitación en frecuencia que genera al menos dos señales sinusoidales a diferentes frecuencias en la estructura mecánica.

7.- Sistema de caracterización de estructuras nano y micro mecánicas, según la reivindicación 6, caracterizado porque la estructura mecánica es un voladizo seleccionado entre un microvoladizo y un nanovoladizo.

8.- Sistema de caracterización de estructuras nano y micro mecánicas, según una cualquiera de las reivindicaciones anteriores, caracterizado porque el detector optométrico es un detector de posición linear bidimensional.

9.- Sistema de caracterización de estructuras nano y micro mecánicas, según la reivindicación 8, caracterizado porque comprende amplificadores corriente-tensión que transforman las corrientes generadas en el detector de posición en: la tensión de salida en el eje X, la tensión de salida del eje Y y la tensión de la intensidad del haz re flejado.

10.- Sistema de caracterización de estructuras nano y micro mecánicas, según una cualquiera de las reivindicaciones anteriores caracterizado porque el medio de excitación en frecuencia está seleccionado entre un actuador piezoelectrico y medios de excitación térmicos.

11.- Sistema de caracterización de estructuras nano y micro mecánicas, según la reivindicación 10, caracterizado porque los medios de excitación térmicos son un láser modulable en frecuencia enfocado sobre una superficie de la estructura mecánica.
FIG. 4
FIG. 5

FIG. 6
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

B82Y35/00 (2011.01)
B81C99/00 (2010.01)
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
B82Y, B81C

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPODOC, INVENES, WPI, TXTEN, COMPENDEX, BIOSIS, EMBASE, INSPEC, MEDLINE, XPAIP, XPESP, XPESP2, XPIEE, XPI3E, Internet

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KOSAKA P et al. Simultaneous imaging of the topography and dynamic properties of nanomechanical systems by optical beam deflection microscopy. JOURNAL OF APPLIED PHYSICS, 24/03/2011, VOL. 109, No. 6, Pages: 64315 a 64315-5, ISSN 0021-8979, <DOI: 10.1063/1.3561812></td>
<td>6-10</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance.
 "E" earlier document but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure use, exhibition, or other means.
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents, such combination being obvious to a person skilled in the art
 "&" document member of the same patent family

Date of the actual completion of the international search
24/10/2013

Date of mailing of the international search report
(28/10/2013)

Name and mailing address of the ISA/
OFFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Facsimile No.: +34 91 349 53 04
Form PCT/ISA/210 (second sheet) (July 2009)

Authorized officer
A. Figuera González

Telephone No. +34 91 3495516
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of documents, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>BURDESS, JS et al. A System for the Dynamic Characterization of Microstructures. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 01/12/1997, Vol. 6, No. 4, Pag. 322-328 <DOI: 10.1109/84.650129></td>
<td>6, 7, 10</td>
</tr>
<tr>
<td>Y</td>
<td>MURALI KRISHNA GHATKESAR et al. Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. NANOTECHNOLOGY, 07/11/2007, VOL. 18, No. 44, Pags: 445502, ISSN 0957-4484, <DOI: 10.1088/0957-4484/18/44/445502></td>
<td>8, 9</td>
</tr>
</tbody>
</table>
INFORME DE BÚSQUEDA INTERNACIONAL

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD

B82Y35/00 (2011.01)
B81C99/00 (2010.01)

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)

B82Y, B81C

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)

EPODOC, INVENES, WPI, TXTEN, COMPENDEX, BIOSIS, EMBASE, INSPEC, MEDLINE, XPAIP, XPESP, XPESP2, XPIE, XPI3E, Internet

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las reivindicaciones nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>KOSAKA P et al. Simultaneous imaging of the topography and dynamic properties of nanomechanical systems by optical beam deflection microscopy. JOURNAL OF APPLIED PHYSICS, 24/03/2011, VOL. 109, No. 6, Pags: 64315 a 64315-5, ISSN 0021-8979, <DOI: 10.1063/1.3561812></td>
<td>6-10</td>
</tr>
</tbody>
</table>

En la continuación del recuadro C se relacionan otros documentos

Los documentos de familias de patentes se indican en el anexo

* Categorías especiales de documentos citados:
 "A" documento que define el estado general de la técnica no considerado como particularmente relevante.
 "E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.
 "L" documento que puede plantear dudas sobre una reivindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).
 "O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.
 "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reivindicada.

"T" documento ultrior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.

"X" documento particularmente relevante: la invención reivindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado.

"Y" documento particularmente relevante: la invención reivindicada no puede considerarse que implique una actividad inventiva cuando el documento se asocia a otro u otros documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.

"&" documento que forma parte de la misma familia de patentes.

Fecha en que se ha concluido efectivamente la búsqueda internacional: 24/10/2013

Fecha de expedición del informe de búsqueda internacional: 28/10/2013

Nombre y dirección postal de la Administración encargada de la búsqueda internacional:

OFICINA ESPAÑOLA DE PATENTES Y MARCAS

Paseo de la Castellana, 75 - 28071 Madrid (España)

Nº de fax: +34 91 349 53 04

Formulario PCT/ISA/210 (segunda hoja) (Julio 2009)

Funcionario autorizado

A. Figueroa González

Nº de teléfono: +34 91 3495516
DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las reivindicaciones nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>BURDESS, JS et al. A System for the Dynamic Characterization of Microstructures. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 01/12/1997, Vol. 6, No. 4, Pag. 322-328 <DOI: 10.1109/84.650129></td>
<td>6, 7, 10</td>
</tr>
<tr>
<td>Y</td>
<td>MURALI KRISHNA GHATKESAR et al. Higher modes of vibration increase mass sensitivity in nanomechanical microcantilevers. NANO-TECHNOLOGY, 07/11/2007, VOL. 18, No. 44, Pags: 445502, ISSN 0957-4484, <DOI: 10.1088/0957-4484/18/44/445502></td>
<td>8,9</td>
</tr>
</tbody>
</table>