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Abstract:  

The cost of a plant deploying its defences against invading pathogens has often been 

linked to altered photosynthesis, respiration or metabolite deficiency as resources are 

diverted towards defence. Defence responses have been shown to alter stomatal 

function. During R-gene elicited resistance responses of barley and oat to powdery 

mildew, stomata lock in an open configuration; displaying little or no closure in 

response to diurnal rhythms or abscisic acid. In consequence these plants exhibit greatly 

compromised tolerance to drought. Conversely, in response to rust fungal pathogens, 

major gene resistance was linked to stomatal locking shut which will have severe 

impacts on gaseous exchange, photosynthetic disruption through the over-reduction of 

redox active components and poorer cooling via the transpirational stream. Thus, 

stomatal locking is likely to result in a yield cost of resistance particularly in locations 

with higher light and / or prone to drought, and it is therefore imperative to define their 

underlying mechanisms. Based on current models for stomatal regulation, we here 

review various - R-gene, pathogen-associated molecular patterns (PAMPs) or toxins - 

defence linked events  and the signalling cascades that may influence guard cell 

function. More widely, we consider if stomatal dysfunction could be a feature of wider 

changes in primary metabolism where regulation of osmolytes is disrupted. This would 

integrate stomatal locking as one feature of wider cost of resistance phenomenon. As 

such, reduced stomatal lock-up could be used as a readily assessable marker for lines 

with lesser resistance penalty.  
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The plant defence buffet: Targets for agricultural exploitation. 

Crop breeding programmes often seek to exploit plant disease resistance mechanisms to 

increase yield. These efforts have led to the definition of constitutive and inducible 

defences. Constitutive defences include structural components and barriers including the 

presence and thickness of a waxy cuticle, size of stomatal pores and cell wall 

components (Ferreira et al., 2006, Veronese et al., 2003). Important pre-existing 

antimicrobial secondary metabolites – phytoanticipins - which include saponins, 

phenols and cyanogenic glycosides that tend to be concentrated in the outer plant cell 

layers are also important components of the constitutive plant tolerance (Osbourn, 

1999). However, much work has focused on induced defences (Dangl & Jones, 2001, 

Ferreira et al., 2006, Nurnberger et al., 2004) which are deployed only following a 

pathogen attack. Among these, the most well-characterised responses are the immune 

defences triggered by the interaction between host resistance (R) and pathogen encoded 

avr,genes which often leads to the elicitation of a localised programmed cell death 

known as the Hypersensitive Response (HR) (Mur et al., 2008). The HR is associated 

with cell wall reinforcement by lignification and oxidative cell-wall polymer cross-

linking (Bradley et al., 1992, Dickman & Fluhr, 2013), and with the activation of a 

series of “defence” genes including pathogenesis-related (PR) genes and the production 

of anti-microbial secondary metabolites known as phytoalexins (Mur et al., 2008). 

Introgression of R genes into elite crop varieties is a common strategy to increase 

resistance to disease.  

Although R-avr triggered resistance has been widely exploited in plant breeding 

programmes (McDowell & Woffenden, 2003), molecular dissection of elicitation events 

has revealed important roles for pathogen-associated molecular patterns (PAMPs) 
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(Nurnberger et al., 2004). PAMPs include diverse elicitors such as lipopolysaccharides 

(LPS), flagellin (a polymer of flg22) and fungal chitin whose recognition results in 

PAMP triggered immunity (PTI). Bacterial flagellin-receptors, which have been 

particularly well-characterised in Arabidopsis, are encoded by FLS1 and FLS2 genes 

expresing receptor kinases (Bauer et al., 2001, Gomez-Gomez & Boller, 2000). The 

treatment of flg22 induces callose deposition at the cell wall as well as PR gene 

expression (Chinchilla et al., 2007, Gomez-Gomez & Boller, 2000). Unsurprisingly, fls2 

mutant plants are more susceptible to the bacterial pathogen Pseudomonas syringae 

pathovar tomato (Pst) (Zipfel et al., 2004).  

A component of PTI is the formation of papillae (Underwood & Somerville, 2013). 

These are cell wall appositions which provide a structural barrier against pathogen 

penetration. This rapidly induced defence mechanism, involves oxidative cross-linking 

of cell wall-bound phenolic compounds, polysaccharide chains and proteins. This 

highlights the role of H2O2-production during papillae formation (Grant & Loake, 

2000). The formation of papillae is a highly complex phenomenon involving the 

targeted of constituents and H2O2 to a precise sites via vesicle trafficking (Schulze-

Lefert, 2004). The importance of papillae is well illustrated by considering the role of 

MLO proteins. MLO perturbs vesicle targeting to reduce papillae formation and this 

function is maintained by fungal pathogens to aid penetration (Miklis et al., 2007, 

Humphry et al., 2006). Thus, varieties encoding mlo alleles display durable resistance to 

pathogens such as powdery mildew (Humphry et al., 2006).   

R-avr responses do not occur in isolation from PTI and these have been elegantly 

integrated in the zig-zag model of immunity and susceptibility (Jones & Dangl, 2006). 
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Here, pathogen effectors have evolved to suppress PTI (“zig”) in effector triggered 

susceptibly (“ETS”), however, resistance genes have evolved to interact with individual 

effectors (thus, becoming avr proteins) to give rise to effector-triggered immunity (ETI) 

(“zag”).  

Cost of resistance   

The induced nature of many defences implies a plausible “cost for resistance”. Thus, 

introduction of genes which trigger the constitutive expression of these defences reduce 

the ecological fitness of a plant (Purrington, 2000) and limit the breeding and 

commercial success of resistant varieties (Brown, 2002). It also may limit the 

exploitation of defence-inducing agrochemicals, such as for example Actigard 

(Acibenzolar-S-methyl) that can impair plant development (Csinos et al., 2001, Ziadi et 

al., 2001). Costs may be associated with a given R gene or to a particular linked fitness 

reducing allele. In this latter situation, it can take many generations of successive 

backcrossing to start eliminating the linkage and this may be economically viable only 

if losses due to disease are considerably high due to intense pathogenic pressure 

(Brown, 2002, Purrington, 2000).  In addition, resistance costs are not only limited to R 

genes. Three independent mlo barley mutants exhibited a yield penalty of around 4%, 

possibly due to a reduction in photosynthate translocation to the developing grain as a 

result of necrotic leaf spotting that is particularly evident after heading (Kjaer et al., 

1990). Cell necrosis has also been linked to a 5-6% reduction in grain yield in wheat 

carrying Lr34 when grown in protected field trials (Singh & HuertaEspino, 1997).    

Costs of resistance are typically explained in terms of metabolic demands made by 

defence mechanisms having a detrimental effect on host fitness (Kliebenstein & Rowe, 
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2008, Walters & Boyle, 2005). This conforms closely to the ecologically “growth-

differentiation balance hypothesis”, which assumes that resources are limiting and 

defence inherently represents a diversion of resources (Herms & Mattson, 1992). 

Alternatively, the optimal defence theory suggests that defences have evolved in a given 

species reflecting a balance of life-cycle, the value of protecting a given organ and the 

metabolic cost of defence (Rhoades & Cates, 1976).  Thus, a short-lived plant such as 

Arabidopsis would invest little into constitutive defence and deploy defences mostly 

during flowering when defence would be costs-effective. Ecological costs could also 

result from negative effects of the interactions with microorganisms such as mycorrhizal 

fungi (Heil & Baldwin, 2002, Heil, 2001) or as a consequence of the activation of 

biotrophic defence mechanisms leading to increased susceptibility to necrotrophic 

pathogens (Kliebenstein & Rowe, 2008). Moving beyond these broad models, it is the 

task of the molecular biologist to define how signalling cascades and gene expression 

regulate resource allocation and how these are influenced by defence responses. Various 

molecular facets of how resistance costs are established are considered in various 

reviews within this special issue. We here consider the cost of resistance linked to 

stomatal lock-up during defence responses (Withers et al., 2011).  

Stomatal locking in resistance responses 

It is perhaps predictable that disease and the cellular disruption consequence of 

pathogenic infection processes involving the formation of infection structures or the 

production of toxins (Grimmer et al., 2012, Melotto et al., 2006) may impact on plant 

water relations (Ayres, 1976). However, earliest observations by, Smedegaardpetersen 

& Stolen, (1981) noted that barley plants inoculated with avirulent strains of powdery 

mildew, and hence without disease symptoms, reduced grain yield and weight by 7% 
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compared to uninoculated controls. This yield loss was linked to an 80% increase in 

respiration of resistant plants at 24 hours after inoculation, possibly to provide energy 

for defence reactions, (Smedegaard-Peterson and Stolen, 1981). More recently, costs 

associated with the barley-powdery mildew interaction have been related to 

photosynthesis and carbon metabolism. Thus, a reduction in photosynthesis was thought 

to be a result of the HR cell death itself and altered source-sink relations (Swarbrick et 

al., 2006).  

Further insights on the underlying causes of the costs of resistance have arisen from the 

study of the barley – powdery mildew, Blumeria graminis f. sp. hordei (Bgh), 

pathosystem highlighting the relevance of stomata in the resistance-derived costs. Thus, 

we observed that inoculated barley P01 (Mla1, HR mediated resistance) plants were 

more susceptible to drought, which suggested a possible effect of pathogen resistance 

on stomatal function. This was confirmed by measurements of leaf water conductance 

and direct stomatal apertures on LTSEM micrograpghs (Prats et al., 2006). Thus, in 

susceptible barley Pallas lines decreased stomatal opening respect to controls was 

observed during successive light periods whereas closure in the dark was similar to 

uninoculated leaves (Fig. 1A). By contrast, in the isogenic barley P01 the stomatal 

conductance following pathogen challenge was similar to that of uninoculated leaves 

from the second light period but crucially, after the onset of epidermal HR at about 24 

hours after inoculation (hai), stomata failed to close in the dark period (Fig. 1A). As the 

stomata of inoculated P01 failed to close in responses to exogenously applied ABA, we 

termed the loss of stomatal closure as ‘lock-up’ (Prats et al., 2006). Clearly, the 

resulting susceptibility to drought could contribute to costs of resistance especially 

where crops are fed from rain-water. Indeed, if episodes of extreme weather become 
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more prevalent, (Kumar, 2007) the contribution of stomatal-locking to the balance sheet 

of any resistance cost will be of increased significance.  

Other groups have also noted that infections of pathogens of various kinds; viruses, 

fungal and oomycete had effects on stomatal function (reviewed in Grimmer et al., 

2012). For example, in barley-infected Rhynchosporium secalis – stomata failed to close 

in the dark as symptoms developed which the authors linked to fungal production of 

cytokinins (Ayres & Jones, 1975). Lindsey & Gudauskas, (1975) noted decreased 

stomatal conductance within the chlorotic regions of maize leaves infected with Maize 

dwarf mosaic virus. Stomatal effects were also observed in bean leaves infected by 

Colletotrichum lindemuthianum (Meyer et al., 2001). In both cases, stomatal effects 

were linked to perturbed photosynthesis. In a key study, stomatal opening in the dark 

was observed in Vicia faba infected with Sclerotinia sclerotiorum and open stomata 

aided fungal emergence through the opposing leaf lamina. In this interaction, oxalate is 

a key virulence factor which appeared to antagonise ABA effects on the stomata 

(Guimaraes & Stotz, 2004). Other workers have also measured pathogen effects on 

water use efficiency (WUE) and instantaneous WUE (reviewed by Grimmer et al., 

2012). Most of these studies did not consist of detailed temporal studies where resistant 

and susceptible reactions were compared (e.g. Fig. 1A). Thus, it is difficult to deduce 

whether these alterations in stomatal aperture were equivalent to the “lazy” phenotype 

that we observed with Bgh inoculated Pallas or ABA-insensitive locking that we 

observed in cv. P01. Whilst, mechanistically the difference between stomatal laziness 

and locking may be one of degree; this cannot be assumed and each may arise from 

qualitatively different mechanisms.  
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Subsequent studies of the effect of pathogen attack on stomatal function have served to 

provide a platform based on which the underlying mechanisms will be defined (see 

below). A key observation was that stomatal lock-up ocurrs more likely when adjacent 

epidermal cells were dead (Prats et al., 2006). This suggested that the locking effect was 

close-proximity dependent and certainly this effects could not be transmitted from one 

leaf laminar to the other (Prats, unpublished). However, in soybean infected with 

Phytophthora sojae altered stomata function was observed up to 20 mm away from the 

site of interaction; although this effect was transitory and stomata began to open after 8 

h following challenge (McDonald & Cahill, 1999). Our findings naturally suggested the 

importance of cell-death to establish locking but crucially, chlorophyll fluorescence in 

stomata guard cells indicated that they were not themselves dead (Prats et al., 2010). 

Further studies in three near-isogenic Pallas barley lines carrying the single different R-

genes Mla1, Mla3 and MlLa which differed in the spatial and temporal execution of 

HR, confirmed the close relation between the elicitation of cell death and lock-up. In 

these lines, the timing and extend of the lock-up correlated with the specific HR 

characteristics conferred by each R gene, i.e. rapid epidermal cell death with Mla1,

mesophyll cell death under living but penetrated epidermal cells exhibiting a delayed 

cell death with Mla3 resistance, or delayed epidermal cell death coming from secondary 

attacks in MlLa resistance. The link of lock-up with cell death was further substantiated 

when examining mlo-mediated resistance mechanisms which are based on the formation 

of papillae. In Pallas isogenic line with mlo; P22, reduced stomatal closure in the dark 

was observed although this locking was linked to the considerable cell death observed 

in this genotype (Prats et al., 2006) as a consequence of uncontrolled H2O2 production 

following papilla formation (Piffanelli et al., 2002). By contrast, the mlo line Risø –R 

genotype exhibits very little cell death and it was notable that dark-associated stomatal 
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closure did not appear to be compromised compared to isogenic, Bgh susceptible, MLO 

line Risø S (Prats et al., 2006).  

One question arising from the apparent close-spatial dependence between cell death and 

stomatal locking is the relevance of the latter in the field. It was entirely possible that 

stomatal lock-up is a function of the use of high inoculation densities in controlled 

environmental conditions. However, lock-up was observed in barley following 

inoculation of Bgh even at very low inoculum densities. Thus, dark conductance of 

inoculated barley P02 (Mla3, HR mediated resistance) at 59 hai was significantly 

greater than uninoculated controls with spore densities as low as 5 conidia mm-2 and by 

155 hai even 1 conidia mm-2 induced a significantly higher dark conductance. In P01, 

inoculation with 10 to 50 conidia mm-2 caused significant increases in dark conductance 

at 59 hai although these were more obvious at 83 hai (Prats et al., 2010).  Furthermore 

experiments conducted in the field on Pallas, P01 and P22 showed patterns of stomatal 

conductance effects consistent with the results from controlled conditions even though 

inoculation densities were low at only 3% (Smith and Paveley, unpublished).  

Further studies have investigated the interactions of Brown rust (Puccinia hordei and P. 

triticina) in barley and wheat (Prats et al., 2007) highlighting the generality of the 

stomatal dysfunction following resistance responses but also the particularities derived 

from the specific infection/resistance processes engaged. In the cereal-rust interactions 

stomatal dysfunction following challenge with rust pathogens differed in extent 

depending on the R gene involved (Fig. 1B) but, whereas R gene resistance to powdery 

mildew caused stomatal lock-up, in the rust systems lock-shut of stomata during light 

periods was observed (Fig 1B, Prats et al., 2007). Such closure would perturb gaseous 
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exchanges and directly impact on photosynthetic CO2 fixation which, as light reactions 

would be maintained, would lead to conditions of excess excitation energy and 

increases in oxidative stress (Osmond et al., 1997, Mateo et al., 2004). Stomatal closure 

would also impede the transpiration stream resulting in thermoregulatory problems. 

Both features would impact on yield and therefore would represent a cost of resistance. 

Thus, considerations of stomatal locking mechanisms should considered stomatal lock-

up and lock-shut.   

Opening and closing stomata.  

Stomatal pores are essential  players in CO2 uptake for photosynthesis and plant cooling 

through the transpiration streams. The stomatal apertures are adjusted via flanking guard 

cell turgidity allowing modulation in response to diurnal cycles and a range of 

environmental cues. Before considering possible locking mechanisms, the means 

through which stomatal aperture are regulated must be considered. Space prevents a 

detailed consideration of stomatal regulation for which the reader may wish to consult 

some excellent reviews (Acharya & Assmann, 2009, Kim et al., 2010, Pandey et al., 

2007, Schroeder et al., 2001, Outlaw, 2003, Daszkowska-Golec & Szarejko, 2013).  

Plants control stomatal pore size through changes in the osmotic pressure of the guard 

cells influencing water import and export (Buckley, 2005) and key signalling events in 

the guard cell act to influence the mobilisation of osmotically-active metabolites (Fig. 2, 

3). Stomatal opening starts with proton export through the activation of a plasma 

membrane H+-ATPase in response to a number of stimuli including blue and red light, 

low CO2 concentrations and high humidity (Kim et al., 2010). H+ causes plasma 

membrane hyperpolarisation which causes a subsequent passive uptake of K+ by inward 
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rectifying K+ channels (K+
in) (Outlaw, 2003, Kim et al., 2010, Fan et al., 2008).  At least 

four, so-called shaker genes (KAT1, KAT2, AKT1 and AKT2) encoding K+
in channels are 

expressed in Arabidopsis guard cells (Lebaudy et al., 2008, Very & Sentenac, 2002). In 

order to balance K+ uptake, guard cell take up chlorine (Cl-) and nitrate (NO3
-) ions from 

the apoplast; in the latter case by the CHL1 nitrate transporter (Outlaw et al., 2002, Guo 

et al., 2003). It seems likely that the accumulation of these anions is insufficient to 

increase in turgor pressure needed to fully open stomata which also requires the 

mobilisation of starch and sugar (Rob et al., 2008). In diurnal rhythms, K+ taken up in 

the morning initiate starch mobilisation to form sucrose, which becomes the dominant 

osmotically active solute later in the day when levels of K+ and associated anions start to 

decrease. Starch is also mobilised to form malate which accumulates within the vacuole 

and also represents an important osmotically active metabolite (Schroeder et al., 2001; 

and Outlaw 2002).  Ion/osmolyte accumulation initiates H2O intake via aquaporins and 

so open stomata (Prado & Maurel, 2013) (Fig. 2).   

During stomatal closing, plasma membrane depolarisation is a key event arising from an 

efflux of Cl-, NO3
- and malate through plasma membrane anion channels. In response to 

blue light  H+ export is inhibited  (Zhang et al., 2004) whilst activation of Ca2+ channels 

mediate both influx of Ca2+ in protoplasts and increases in [Ca 2+]cyt in intact guard cells 

(Pei et al., 2000). Internal calcium increases activates two anion channels, known as 

rapid (R) and slow (S) type channels. The S form plays an important role in stimulus-

induced closure, and remain activated for passive anion – Cl- and NO3
- as well as 

malate2- efflux (Kim et al., 2010 and Outlaw, 2003). The S-type SLOW ANION 

CHANNEL-ASSOCIATED 1 (SLAC1) gene encodes a plasma membrane protein which 

contains a dicarboxylate/malate transporter. In line with the model, slac1 mutants over 
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accumulate anions within the guard cells and their stomata exhibit poorer closure on 

light-dark transition, low humidity, ABA, high CO2 concentrations and ozone. R type 

channel activity was not impaired in these mutants (Vahisalu et al., 2008, Negi et al., 

2008). Efflux of K+ through outward-rectifying K+ channels (K+
out), encoded by a single 

shaker gene GORK, follows membrane depolarisation (Kim et al., 2010 and Lebaudy et 

al., 2008). This K+ export along with cytosolic Ca2+ mediated inhibition of the H+-

ATPase and K+
in channels increases (make less negative) the osmotic potential of the 

guard cells. The osmotic potential is also increased through the mobilisation of malate 

to the vacuole and cellular export. Both malate and sucrose are also diverted to form 

starch or in the former case, also to gluconeogenic pathways (Willmer, 1996). The 

subsequent increase in osmotic potential causes water to move out, lowering the turgor 

pressure and reducing stomatal aperture (Schroeder et al., 2001). CO2 is a an important 

signal for stomatal closure and acts through its reduced form (HCO3
-) to activate S-type 

channels and thus plasma membrane depolarisation (Xue et al., 2011).   

The key role of ABA in regulating stomatal opening and closing is very well-

characterised (Wang & Song, 2008). A number of ABA receptors such as the 

Pyrabactin Resistance 1 (PYR1) /PYR1-LIKE (PYL) / Regulatory component of ABA 

receptor 1 (RCAR) family of proteins have been reported. Under increased ABA levels, 

the PYR/PYL/RCAR receptors inactivate the Type 2C serine/threonine protein 

phosphatases (PP2Cs; Abscisic Acid Insensitive 1 and2; ABI1 and ABI2), which leads 

to the activation of the Sucrose-Nonfermenting1–Related Subfamily2 (SnRK2s) protein 

kinases (Raghavendra et al., 2010) (i.e. SRK2D (SnRK2.2), SRK2I (SnRK2.3), and 

SRK2E (OST1/SnRK2.6; Umezawa et al., 2009). Within the context of guard cell, 

OST1 is known to act as a positive regulator of stomatal closure by activating SLAC1 
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and inhibiting KAT1 by phosphorylation (Sato et al., 2009). A crucial point further 

considered below is that OST1-mediated phosphorylation influences NADPH oxidase 

generated H2O2 (Sirichandra et al., 2009, Mustilli et al., 2002). H2O2 is known to close 

stomata probably via oxidative modulation of ABI1/ABI2 (Meinhard et al., 2002, 

Meinhard & Grill, 2001). The NADPH oxidase encoding genes AtrbohD and AtrbohF

are expressed in guard cells of Arabidopsis and double knockouts were required for a 

substantial reduction in ROS production and stomata closure (Kwak et al., 2003). Both 

ABA and ROS initiate the release of calcium from internal sources and, via Calcium 

Dependent Protein Kinases (CDPKs) activate anion (S and R) and K+
out (GORK) 

channels triggering stomatal closure (Schroeder et al., 200; Neill et al., 2003). It is likely 

that NO and H2O2 work together to bring about complete stomatal closure and there is 

growing evidence to suggest that H2O2 actually stimulates NO production (Neill et al., 

2008, Dubovskaya et al., 2011). ABA induced ROS and NO production lead to an 

increase in guard cell cytosolic calcium. H2O2 is thought to also increase Ca2+ in 

Arabidopsis guard cells by activating a plasma membrane Ca2+ permeable non-selective 

cation current (ICa) channel. Activation of these ICa channels by H2O2 and subsequent 

stomatal closure was impaired in ICa mutants although ABA still induced ROS (Pei et 

al., 2000)(Fig. 3).   

NO is another key player in the regulation of stomatal opening albeit the mechanism of 

its action is only now emerging. Both ABA and ROS are thought to initiate NO 

production from nitrate reductase activity.  NO acts through cGMP-mediated signaling 

(Wilson et al., 2009) as shown by inhibition of guanylate cyclase (GC); which produces 

cGMP, resulting in reduced ABA and NO induced stomatal closure in pea. Further, 

suppression of cyclic ADP ribose (cADPR) that is generated downstream of cGMP 
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mobilised Ca2+ from internal stores, also prevented stomatal closure. Other experiments 

have also linked NO mediated intracellular Ca2+ release and the regulation of guard cell 

K+ and Cl- channels to cGMP and cADPR dependent pathways (Wilson et al., 2009).  

The requirement of co-generation of NO and ROS to act via cGMP has recently been 

elegantly integrated into a signaling model based on nitrated cGMP (Joudoi et al., 

2013).  In this model, ROS and NO particularly O2
-, reacts to generate peroxynitrate 

(O2
- + ‘NO → .ONOO-) which nitrates NO initiated cGMP to form 8-nitro cGMP. 8-

nitro cGMP acts to initiate Ca2+ mediated S- (and most likely R type) channel 

activation, leading to membrane depolarisation (Fig. 3).

Considering possible mechanisms for stomatal locking.  

The apparently importance of cell death to stomatal locking could be given by an altered 

turgor balance of the epidermal stomatal complexes. Whereas guard cell turgor 

positively regulates stomatal opening, epidermal and subsidiary cell turgor provide a 

back pressure reducing stomatal aperture by around 50% (Buckley, 2005). The death of 

epidermal cells could relieve this back pressure resulting in stomatal pores to ‘lock-up’ 

(Prats et al., 2006). However, the link to cell death has been weakened in our recent 

work which has focused on nine oats genotypes infected with powdery mildew 

(Blumeria graminis f. sp. avenae) and the crown rust (Puccinia coronata f. sp. avenae). 

In this study, we observed that the histological pattern of cell death could not be 

correlated to stomatal responses which instead seemed linked to oat genotype. Instead, 

photosynthetic disruption –revealed by measures such as Fv/Fm – rather than HR better 

correlated with the patterns of stomatal locking. When light rates were increased, Fv/Fm 
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ratios were further reduced and stomatal dysfunction was augmented, most likely 

indicating a contribution from increased oxidative stress (Sanchez-Martín et al., paper in 

prep). Scharte et al., (2005) focusing on the interaction between tobacco (Nicotiana 

tabacum) and Phytophthora nicotianae demonstrated stomatal closure particularly at the 

interaction site linked to ROS production and a decline in photosynthesis extending 

farther from the infection site. To the chloroplastically generated ROS, NADPH oxidase 

generated ROS can be added as part of the cell death process (Torres, 2010). This 

elevated ROS would suppress the redox-sensitive PP2C2 phosphatase on the ABA 

signalling pathway to help initiate stomatal closure (Fig. 3). One means through which 

photosynthesis could be being affected may be via the signalling molecule NO, 

generated during the HR (Prats et al., 2005). Ordog et al., (2013) have recently 

demonstrated that applied NO caused near-immediate and dramatic loss in electron 

transport through PSII (as indicated by instantly decreases of photochemical 

fluorescence quenching coefficients [qP and qL] and PSII.). This was reversed when 

NO was removed. Within the context of the HR, NO could be generated for many hours 

(Mur et al., 2005) so the effects on photosynthesis could similarly persist. 

Wider comparison of events occurring following the elicitation of HR and the guard cell 

control reveals a series of common events. One early response in the elicitation of the 

HR is the activation of plasma membrane H+ ATPases to initiate an acidification of the 

apoplast (Zhou et al., 2000). However, pH changes in the apoplast are dynamic so that, 

at least in the case of powdery-mildew interactions with the barley, the longer term 

response – persisting for days, appears to be sub-stomatal alkalisation (Felle et al., 

2004) which could result in stomatal closure (Fig. 3). This could be via NADPH 

oxidase which pumps O2
- into the apoplast which via protonation consumes H+ ions 
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increasing pH (Segal et al., 1981). A direct link between pathogen–associated H+

ATPases and guard cell control has been provided by Liu et al., (2009). The plant 

defence suppressor RIN4 was found to interact with H+ATPases AHA1 and AHA2, and 

in rin4 mutants proton pumping was activated to open stomata (Fig. 3). Thus, the 

relative kinetics of apoplastic proton pumping or alkalisation or ROS generation could 

influence whether stomata open or close during pathogenic interactions. Additional 

factor to be considered is NO, the generation of which occurs during the HR and 

stomatal closing (Wilson et al., 2009).   

Taking all of these points together, it is entirely possible that the differential activation 

of H+ fluxes and ROS and NO generation by discrete R–gene and PAMP triggered 

events could explain stomatal open and closing in certain contexts. However, the 

persistence of the stomatal locking phenomenon for several days (see Fig. 1) would 

argue against models based solely on the transitory generation of common regulatory 

stomatal and defence signals. The logical implication is that there are additional factors 

contributing to stomatal locking following pathogen attack. One that should be 

considered is the increased respiratory metabolism that occurs to meet the demands 

made by defence responses (Bolton et al., 2008, Bolton, 2009).   

One metabolic consequence of the HR is the accumulation of malate as an important 

intermediary in the TCA cycle (Gupta et al., 2013) which integrates aerobic 

bioenergetic oxidation of carbohydrates, fatty acids and amino acids. Other workers 

have indirectly noted the pathogen-induced up-regulation of malate metabolism through 

increased malate dehydrogenase (NAD-malic enzyme) gene expression (Schaaf et al., 

1995). This HR-linked increased accumulation of malate could be an important 
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component of stomatal locking.  Further, transcriptional analysis of Lr34 mediated 

resistance suggested that up-regulation of genes associated with the TCA, glycolysis 

and the GABA shunted were maintained to at least 3 days but not 7 days (Bolton et al., 

2008). Increased respiration – malate accumulation would therefore be a long lasting 

effect influencing stomatal locking open. A key recent study has studied the role of 

malate removal following export from guard cell in the dark (Penfield et al., 2012). 

Phosphoenolpyruvate carboxykinase (PEPCK) is an enzyme involved in malate 

metabolism encoded by PCK1. pck1 mutants failed to exhibit stomatal closure and were 

referred to as “jammed” in the open position; a seemingly striking parallel to defence-

linked “locked” stomata. Thus, increased malate production during the HR could 

effectively mirror the effects of a lack of malate catabolism by PEPCK in the pck1 

mutant. This stated pck1-jammed stomata retained ABA responsive closure, indicating 

some key differences to stomatal locking (Penfield et al., 2012). The impacts of 

pathogen attack on primary metabolism with pathogen-challenged tissues being 

transformed from a sink to sources need also to be considered (Swarbrick et al., 

2006)..Thus, infected tissues displayed increased sucrose mobilisation, cell wall 

invertase activity and some gene expression more often associated with senescence 

(Scharte et al., 2005, Pageau et al., 2006). Indeed, pathogen-induced glutamate 

dehydrogenase will reduce glutamate to -ketoglutarate and thus represents a diversion 

of nitrogen assimilation in to the TCA cycle (Pageau et al., 2006).  In this context, it 

may be relevant that stomatal-lock open in powdery mildew inoculated barley was 

reduced in plants grown under conditions of low nitrogen which may reflect lower 

malate concentrations (Simpson et al., paper in prep). 
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All of these models for stomatal locking under-estimate possible contributions from the 

interacting pathogen. The fallacy to this approach was revealed by the seminal work of 

Melotto et al., (2006). Focusing on Arabidopsis infected with a virulent Pseudomonas 

syringae pv. tomato (Pst) strain, it was noted that following a transient reduction at 2 

h.a.i., stomatal apertures returned to be equivalent to controls by 4 hai. Detailed 

dissection of these responses indicated that the initial stomatal closure was a PAMPs 

response mediated by the FLS receptor. The transient stomatal closure resulted from the 

generation of NO and the effects of this were specifically countered by the Pst toxin 

coronatine (COR) which acted downstream of ABA/NO generation to relax guard cells 

and to aid penetration of the host (Melotto et al., 2006, Zeng & He, 2010). Other 

workers have identified additional components in bacterial PAMPs-induced stomatal 

closure including ethylene and ROS (Mersmann et al., 2010, Keinath et al., 2010). It 

seems to be entirely likely that in the absence of a toxin such as COR, PTI-triggered 

NO/ROS/ethylene production will result in the stomatal locking that has been observed 

by our groups. Koers et al., (2011) have examined reduced stomatal (“lazy”) opening 

during a virulent interaction involving Bgh and barley. Using microelectrodes, infection 

was linked to S-type (slow) anion channels efflux of anions from guard cells. Crucially, 

both closure and K+ extrusions could be mimicked through the application of chitosan 

as surrogate of the fungal PAMP chitin. Whilst these observations did not accord with 

the lock open that we observed with Mla1 mediated interactions, this work was an 

important demonstration that fungal PAMPs can influence stomatal responses.   

COR is not the only virulence factor which targets stomata. Oxalate is an important 

virulence factor produced by Sclerotinia sclerotiorum such that oxalate-pac1 mutants 

are less able to infect their hosts (Rollins, 2003). Exogenous application of oxalate 
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could counter ABA-induced stomatal closure and Arabidopsis ABA-insensitive mutants 

were more resistant to Sclerotinia sclerotiorum. Further analysis of this interaction has 

demonstrated additional roles for NO and other defence signals known to influence 

stomata, jasmonic and salicylic acids, in resistance to S. sclerotiorum (Perchepied et al., 

2010, Guo & Stotz, 2007, Daszkowska-Golec & Szarejko, 2013)  

Other pathogen-derived factors have also been shown to perturb stomatal function. 

Tentoxin, produced by Alternaria alternate causes irreversible stomatal closure by 

inhibiting chloroplastic H+ ATPases (Schadler et al., 1976). H+ ATPases are also 

targeted by another toxin, fusicoccin which are glucosides of tricyclic diterpene 

produced by Fusicoccum amygdali. In line with this target, application of fusicoccin to 

leaves results in reduced stomatal apertures (de Boer & de Vries-van Leeuwen, 2012).   

Concluding remarks 

Through the efforts of several groups changes in stomatal aperture are now well-

established features of plant-pathogen interactions. An underlying theme of this review 

has been to suggest that pathogen-associated stomatal effects could have very different 

underlying mechanistic causes; and here the “zig-zag” model may be useful (Dangl & 

Jones, 2001). With the available evidence it seems likely that plants could exhibit a 

PAMPs mediated stomatal closure in responses to pathogen attack. Considering this as a 

feature of PTI, an ETS component would be toxins such as Pst COR or as yet 

unidentified effectors which specifically target stomata to aid host penetration. Given 

that there is no evidence of recognition of toxin/s yet cryptic effectors within guard cell, 

the ETI component is that observed throughout the rest of the leaf laminar. It is clear 
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that the initiation ETI-linked to the HR, initiates several signaling cascades which were 

common to stomata signaling and these could contribute to a locking phenomenon. The 

persistence of the locking would also argue for the importance the photosynthetic / 

respiratory changes we have highlighted as being more important. This would suggest 

that stomatal locking is a symptom of changes in primary metabolism which have long 

been considered major causes of a cost of resistance (Smedegaardpetersen & Stolen, 

1981). If stomata-locking is a consequence for wider costs of resistance; this 

phenomenon becomes an immediately useful marker for resistance costs. Thus, it is 

possible to envisage screening of segregating populations in a breeding trial for stomatal 

locking as an inexpensive assay for costs. We are still a long way from this being a 

viable option but further mechanistic analyses will establish if it has any validity.    
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Figure  Legends 

Figure 1: Stomatal lock open and closed in response to fungal pathogens

(A) Time course of gl of healthy () and inoculated (▲) Pallas and Mla1 P01 barley 

leaves incubated under 12 h dark (shaded) / 12h light (unshaded).(A) readings taken 

mainly in the light. (B) Leaf water conductance in healthy (O) and Puccinia. triticina, 

isolate WBRS-04-02, attacked (▲) leaves of wheat lines Thatcher (susceptible), and 

Lr20 (resistant) in successive light (unshaded) and dark periods (grey shaded) after 

inoculation. Comparing within sampling times: NS = no significant difference; * = 

P<0.05; ** = P<0.01; *** P< 0.001.   

Figure 2: Events linked to stomatal opening

Stomatal opening is initiated through (I) the activation of a plasma membrane H+

ATPase pump resulting in apoplastic acidification. (II) Membrane hyperpolarisation 

activates inward rectifying K+ channels (K+in) and (III) to balance K+ uptake anion 

channels, take up chlorine (Cl-) and nitrate (NO3
-) ions from the apoplast; (IV) starch is 

also mobilised to form osmotically active malate and sugars. (V) Ion/osmolyte 

accumulation initiates H2O intake via aquaporins and so open stomata. Solid black 
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shapes represent inward channelling events; solid white shapes outward channelling 

events.  

Figure 3: Stomatal closing and possible interaction points with defence plant-pathogen 

interactions. 

Abscisic acid (ABA) is a well characterised hormone initiating stomatal closure (I) 

which  binds to a series of receptors of which RCAR (Regulatory component of ABA 

receptor 1) is shown. ABA-RCAR binding inhibits Type 2C serine/threonine protein 

phosphatases (PP2Cs) which otherwise act as negative regulators of ABA signalling 

leading to the activation of  SnRK2.2, -2.3, and -2.6/OST (II). OST1 positively regulate 

stomatal closure by activating S-type (SLAC1) anion export and inhibiting (KAT1) K+

in export by phosphorylation (III). The resulting membrane depolarisation suppress H+

ATPase export (IV). OST1 also activates NADPH oxidase to generate reactive oxygen 

species (ROS) which can aid in inactivating the redox sensitive PP2C protein (V).  ABA 

and H2O2 is thought to increase Ca2+ in Arabidopsis guard cells by activating a plasma 

membrane Ca2+ permeable non-selective cation current (ICa) channel and also from 

internal stores (VI). Increased in calcium will activate anion channel (S and R type) and 

K+
out (GORK) channels to aid in membrane depolarisation to close stomata (VII). Both 

ABA and ROS are thought to initiate NO production which in turn activates the 

synthesis of cGMP. Co-generation of NO and ROS nitrates cGMP to form 8-nitro 

cGMP (VIII) initiating Ca2+ mediated S- (and most likely R type) channel activation, 

leading to membrane depolarisation.(not shown on the diagram). Osmotic changes can 

come about the mobilisation of malate to the vacuole or cellular export and subsequent 

metabolism (IX). Malate can also feed into gluconeogenic pathways to pass into the 
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tricarboxylic acid cycle (TCA cycle) (X). Both malate and sucrose can be used in the 

biosynthesis of starch (XI).  

Pathogen and defence responses could influence stomatal function at several points. (i) 

ROS generated from pathogen-elicited NADPH oxidase or photosynthetic disruption 

could affect PP2C and increase Ca2+ in the guard cells contributing to closure of 

stomata. (ii) NO generated during R-gene ,(most likely linked to cell death) or 

pathogen-associated molecular patterns (PAMP) elicited responses, will cross-talk with 

stomatal regulation. Although NO acts on stomata differently according to 

concentration (Wilson et al. 2009); these events are likely to close stomata. (iii)  Very 

early H+ ATPase activation following the elicitation of the HR initiated transient 

apoplastic acidification which would open stomata but longer term alkalinisation (Felle 

et al. 2004) would result in closing. (iv) Guard cell H+ ATPases could be targeted by 

RIN4 interacting effectors to suppress activity and thus closing stomata or H+ ATPase 

activating effectors / toxins would promote stomatal opening. (v) Increased malate 

accumulation during the HR (Gupta et al., 2013) could affect the malate metabolism and 

export required to close stomata. Background image, electron micrograph of Blumeria 

graminis f. sp. hordei-elicited single cell death in Pallas Mla1 line P01 occurring 

adjacent to a stomata.  


