Decreased fitness of restocked hybrid quails prevents fast admixture with wild European quails

Manel Puigcerver*, Ines Sanchez-Donoso, Carles Vilà, Francesc Sardà-Palomera, Eduardo García-Galea, José Domingo Rodríguez-Teijeiro

* Corresponding author. Tel: +34-934035036.

*Manuscript Click here to view linked References
Abstract

Restocking with non-native species for hunting purposes is a widespread practice in some Galliformes species that may result in the introgression of maladaptive alleles into native populations. Quails farmed for restocking are produced by interbreeding domestic Japanese quails (*Coturnix japonica*) with European quails (*Coturnix coturnix*). Massive releases of these animals could represent a threat to native European quails. In this study we radio-track 16 female native European quails and 51 female farm-reared quails over four breeding seasons in a single locality. Our results show that farmed female quails attracted more wild common quail males than European quail females, probably because they produce more rally calls. Here for the first time we show empirical evidence that European quails and restocked farmed quails interbreed in the wild. Further, hybrid farmed females and European females had similar probabilities of mating, nesting success, clutch size, fertility, hatching probability and chicks' survival probability. However, female farmed quail had higher mortality than European quail females, and their nests had a higher rate of predation. These last observations could explain why the two lineages do not appear completely admixed after more than 20 years of massive restocking practices. However, our results clearly show a lack of reproductive barriers in the wild and that introgression may not be completely prevented. An immediate ban of the release of non-native quails is necessary to preserve their genetic integrity. Thus, banning restocking with Japanese quail or hybrids is necessary to prevent the progressive introduction of maladaptive alleles into the European quail populations.
Keywords: anthropogenic hybridization, Coturnix coturnix, introgression, hybrid swarm, management, conservation.

1. Introduction

Anthropogenic hybridization, either resulting from the introduction of species or from the invasion of alien species due to the modification of habitats, may create serious conservation problems (Levin et al., 1996; Rhymer and Simberloff, 1996). Introductions may be accidental or part of a management plan, for example, to bolster endangered populations (Santos et al., 2009) or to increase hunting bags in the case of game species (Barbanera et al., 2010; Blanco-Aguilar et al., 2008). Restocking with non-native species for hunting purposes is a widespread management action for Galliformes (Casas et al., 2012; Derégnaucourt et al., 2002; Derégnaucourt et al., 2005; Porkert et al., 1997; Puigcerver et al., 2007; Tejedor et al., 2007). These restocking practices are carried out mainly with farm-reared birds, in most cases of doubtful genetic origin (Perennou, 2009), and thus constitute a real danger for native populations.

The European quail (Coturnix coturnix), also called common quail in Europe, is a migratory Galliform with a distribution from the British Islands to Lake Baïkal and from the Arctic Circle to the tropics (Del Hoyo et al., 1994). It is of conservation concern (SPEC 3) due to a large historical decline (Burfield, 2004). Even so, it is a very popular game bird with a high socio-economic value, especially in some Mediterranean countries. In Spain alone, which hosts the largest breeding population in Western Europe, more than 1,300,000 individuals were hunted annually during the period 1973-2010 (Yearbooks of Agro-alimentary Statistics of the Spanish Ministry of Agriculture, Fisheries and Food). Because of hunting interest in this species, restocking with farm-reared quails is a very common practice in several European countries such as Italy, Greece, the Republic of Serbia, Montenegro, Romania and Spain (Galli, 2003; Puigcerver et al., 2007; Rodríguez-Teijeiro et al., 1993; Tsiompanoulis et al., 2011). For example, in Catalonia (Northeast Spain), more than 68,000 farm-
reared quails have been restocked annually during the period 1990-2006
(personal communication from the Catalan Department of Agriculture, Farming,
Fisheries, Food and Environment) in an area with a wild population of between
about 5,000 and 21,000 males (Rodríguez-Teijeiro et al., 2004).

Recent genetic studies show that these farm-reared quails are hybrids of
European and domesticated Japanese (C. japonica) quails (Amaral et al., 2007;
Barilani et al., 2005; Chazara et al., 2010; Sanchez-Donoso et al., 2012) (in this
manuscript we use the term “hybrid” to refer to all individuals whose genomes
show extensive admixture of the two lineages, without limiting the definition to
first generation hybrids). The Japanese quail is distributed across East Asia,
including Japan. The natural ranges of the two species only overlap in the
surroundings of Lake Baikal in Russia (Fefelov, 1998) and in the Kentei region
in Mongolia (Kozlova, 1932). No natural hybridization has been reported.
However, hybrids of the two species generated in captivity are or have been
used for releases in different European countries, and, as a result, the
Japanese quail is considered an introduced species in Italy by the IUCN
(http://maps.iucnredlist.org/map.html?id=100600195; accessed on November 5
2013) and in Spain by the Spanish Government (Royal Decree 630/2013).
Thus, there is a real possibility that restocking could lead to the extensive
introgression of domestic Japanese quail alleles into the European quail gene
pool.

The European quail and the Japanese quail have almost identical habitat
requirements (Taka-Tsukasa, 1941), and experiments in captivity show that
they present only partial mate discrimination (Derégnaucourt and Guyomarc’h,
2003). Derégnaucourt et al. (2002) have also shown that hybridization between
European and domestic Japanese quail, and backcrosses between hybrids and
the parental species readily occurs in captivity and no differences have been
found in average fertility, hatch and chick survival rates between hybrid pairs
and European quails.
However, the arrival of Japanese quail alleles may represent a threat for European quails if they represent different adaptation to environmental conditions, co-adapted gene complexes or even sets of maladaptive alleles favourably selected in captivity. The European quail is a partially migratory species, whereas the domestic Japanese quail lost its migratory impulse during the domestication process (Derégnaucourt et al., 2005; Guyomarc'h 2003). As released hybrid quails have a lower frequency of migratory phenotypes (Derégnaucourt et al., 2005), the introgression of their genes into wild populations could cause a decrease in the migratory tendency of European quail populations. This could lead to a decrease of the European quail population density, as non-migratory quails are more likely to suffer seasonal depletion of food resources in winter and a longer hunting season.

At least in theory, hybridization between European and farmed quails is likely to lead to a rapid increase in the proportion of hybrids and admixed individuals in wild populations. Once admixture has begun it is difficult to stop, especially if hybrids are fertile and mate both with other hybrids and with both parental species (Allendorf et al., 2001). As a result, in a few generations this process might result in a hybrid swarm in which almost all individuals are of hybrid origin (Allendorf et al., 2001; Huxel, 1999), leading to the collapse of the European quail population. But this may not be just a theoretical threat. Hybrid individuals have been detected across Europe (Guyomarc'h, 2003; Rodríguez-Teijeiro et al., 1993), and genetic evidence for introgressive hybridization has been reported in Portugal (Amaral et al., 2007), Spain (Barilani et al., 2005) and France (Chazara et al., 2010). However, these studies do not provide evidence of hybridization occurring in the wild. Consequently, Guyomarc'h (2003) called for changes in European Union law to stop the introgression of Japanese quail genes by banning the production and commercialization of Japanese quails as well as the breeding of hybrid quails for restocking purposes. Finally, the European Union Management Plan for the European quail (period 2009-2011) has stressed the need to ban Japanese/hybrid quail releases throughout Europe and across the rest of the European quail distribution (Perennou, 2009).
However, in spite of this persistent threat, Puigcerver et al. (2007, 2012) monitored the phenotype and song in wild quail populations in Catalonia over a period of 28 years (from 1984 to 2011) and failed to detect an increase in the proportion of hybrids. At the same time, genetic analyses over a 15 year period (1996-2010) showed that an increase over time in the proportion of admixed individuals cannot be detected (Sanchez-Donoso et al., submitted). These data strongly suggest that despite the annual release of tens of thousands of hybrids, the introgression of Japanese quail alleles into the wild population is lower than initially expected.

The lack of an obvious increase in the proportion of admixed individuals can be explained by different factors:

a) A very high mortality rate of restocked hybrids, which could be poorly adapted to life in the wild, because they lack the ability to protect themselves against cold weather, anti-predator behaviour and the ability to find appropriate food (Guyomarc'h, 2003). High mortality is probably also due to hunting, since restocked individuals are usually released just before the opening of the hunting season, which starts before the birds are habituated to the new environment.

b) In spite of the lack of reproductive barriers in captivity, ecological or behavioural barriers could prevent admixture in natural conditions. There is no direct evidence of mating between European quails and farmed birds in natural conditions.

c) Mixed pairs (or pairs of farmed animals mating in the wild) could suffer high chick mortality (this could be due to causes such as lack of parental care resulting from adaptation to captivity, or susceptibility to parasites), as has been observed for other Galliformes. For example, Duarte and Vargas (2004) found a chick mortality rate of 91% in restocked farm-reared females of red-legged partridge (Alectoris rufa).
The aims of this study were to investigate whether massive restocking with farm quails of hybrid origin quails in one of the European countries where restocking with farm-reared quails is legal (Spain) may lead to extensive admixture with European quails in the wild, and to study mating and productivity differences between female wild European quails and females restocked from game farms. Finally, we investigate how these differences could contribute to explain why the proportion of admixed individuals is not clearly increasing through time in the wild population. Our results showed decreased survival and fitness for the released birds. The results also emphasized how the putative consequences of restocking practices cannot be directly inferred from just the number of individuals released.

2. Material and methods

In Spain, the country where the study has been carried out, the Law 42/2007 of Natural Heritage and Biodiversity allows restocking with native species but not with non-native ones or hybrids. In this case, restocking with European quail is allowed, but not with Japanese quail or hybrids. In our study, we have used farm-reared quails intended for restocking that were certified as European quails by the regional Administration based on a veterinarian analysis. However, these farm-reared individuals turned out to be hybrids (Sanchez-Donoso et al., 2012). As indicated below (see “Field Experiment Design”) we obtained all necessary permits required to carry out this study, and the released farmed birds that survived to the end of the study as well as their chicks were recaptured.

2.1. Study area
The study was carried out in a 1 km\(^2\) area in Northeast Spain (41º 25’N, 1º 23’E, 628 m above sea level), in a short and narrow valley with winter cereals (mainly barley and wheat) which constitutes a suitable habitat for European quail reproduction. The study area is surrounded by pine forest patches unsuitable for quails, but other cereal fields with quails are located less than 2 km away.

2.2. Field experiment design

The study was conducted during the breeding seasons of the period 2007-2010. The field work started around April 23\(^{rd}\), coinciding with the arrival of the first migrants, and finished around August 4\(^{th}\) with the end of the breeding season due to the harvest of cereals, which implies the loss of the breeding habitat. On average, the field work lasted 102.5 days (S.D=7.2) per breeding season.

During the period 2007-2009, 20 walk-in funnel traps (144 cm x 67 cm x 87 cm) were randomly distributed along the edge of the cereal plots facing the cereal. Inside these traps we put a smaller cage containing a sexual decoy (Rodríguez-Teijeiro et al., 2003; Sardà-Palomera et al., 2011). In ten of these traps, the sexual decoy was a hybrid female from a game farm close to the study area, in Catalonia (Spain). These farm-reared hybrids showed small phenotypic differences when compared to their wild counterpart (as in Guyomarc’h, 2003): they had shorter wing and longer tarsus.

Groups of male European quail have been shown to attract both males and females (Sardà-Palomera et al., 2011). For this reason, the remaining ten traps were set in five pairs to replicate the aggregations of males observed in the field (normally involving 2 to 4 males, pers. obs.). Each pair was set in parallel separated by about 5 meters. One trap of the pair contained one cage and the other one contained two cages, each cage containing one male decoy. Thus, each pair of traps represented an aggregation of 3 males (hereafter, male aggregation trap). Two of the male aggregation traps contained male European
quail captured in neighbouring areas and the remaining three contained male hybrid quail (Table 1).

In 2010, 19 walk-in funnel traps were placed in the study area. Six traps contained hybrid females as sexual decoy, while for comparative purposes three contained European quail females (captured in neighbouring areas and kept in a pen for several months). No changes were made with regard to male aggregation traps (Table 1).

Traps were checked every 2-3 days to keep disturbance caused by researchers to a minimum. Water was supplied from an aseptic 8-litres tank; food trays (with vitamin-supplemented wheat) had a capacity of 3 kilograms which allowed individuals to eat “ad libitum”. Cages had double wire to protect the quails against predators, and trap, which was protected against sunlight and rainfall, was sprayed at every visit with a mammal repellent. At every visit, food and water supplies were checked.

When a free-ranging male entered a funnel trap containing a female (either European quail or hybrid), we attached backpack radio transmitters (PIP-3 Biotrack button cell tags) to the females and we released them. The released female was replaced in the cage by another one of the same origin. Three days per week, the released individuals were monitored with a telemetry receiver (R1000, 148-174 Mhz; Communications Specialists, Inc., Orange, CA) and a three-element Yagi antenna to locate them and to check if they had mated and nested, following Rodríguez-Teijeiro et al. (2003). We consider that a female mated successfully when she succeeded in establishing a pair bond with a male, no matter whether this female would succeed in nesting or not (she could be predated before that). For nesting success we understand the success in nesting by a female, no matter whether this nest was finally predated or not. At the end of the study, hybrid radio-tagged individuals were captured and returned to captivity to avoid the risk of genetic pollution. A total of 67 individuals were radio-tagged (51 hybrid females and 16 European quail...
females). Table 2 shows the number of radio-tagged females and the number of nests found in each year of study.

Once a nest was located, we determined the clutch size. After 10-12 days of incubation (more than 60% of the incubation period), we took the eggs from the nest to put them in a Masalles G-180 THP incubator (Sant Cugat del Vallès, Barcelona, Spain) and raised the chicks in captivity. This procedure allowed us to know the number of fertilized eggs, the number of hatched eggs and the number of chicks surviving in captivity during the critical period of the first three weeks of life (while flying abilities are not yet developed) for European quail and hybrid females. Also, it allowed us to know the number of nests preyed upon during the 10 days of the incubation period that were monitored. After the study was completed, these chicks remained in captivity in a large pen.

In addition, telemetry also allowed finding dead individuals. Since females tend to stay in the same area after their release, we defined the known survival time for each female as the time from the release until its death or until the study period reached its end due to harvest (at that time we proceeded to the recapture of the radio-tagged individuals).

Blood samples (100 µl) from the jugular vein were taken and used to genetically identify the origin of all individuals used in this study as European quails or hybrids following Sanchez-Donoso et al. (2012). All individuals were genotyped for 11 unlinked autosomal microsatellite loci (from Kayang et al., 2002, 2004) and genotypes were analyzed with STRUCTURE 2.3.2 (Pritchard et al., 2000) and NEWHYBRIDS 1.1 (Anderson and Thompson, 2002).

The study strictly followed the requirements of the Spanish Law 5/1995 of protection of animals used in experimentation and for other research goals, and the Decree 214/1997, which regulates the use of animals for experimentation and for other research goals. The animal experimentation procedure for this study (number B99000035) was approved by the Ethics Committee on Animal
Experimentation of the University of Barcelona and by the Autonomic Government of Catalonia ("Direcció General del Medi Natural", "Departament de Medi Ambient i Habitatge"), which has all the competences in this subject. Moreover, the University of Barcelona institutional code of good research practices was followed (Vicerectorat de Recerca, 2010).

2.3. Data analysis

2.3.1 Attraction ability

The attraction of wild quails to traps was analysed with regard to the sex and origin (European quail or hybrid) of the individuals used as decoy. For each kind of trap (with a female decoy or a male aggregation decoy), the number of captures was modelled with Generalised Linear Models (GLM) as a function of the origin of the decoy in the trap. The number of captured wild quails was the response variable and the origin of the individuals acting as decoy was the independent variable of interest in both models. GLM models were constructed assuming a Poisson error distribution and log link function. They were tested for overdispersion (residual deviance/residual df>1) and the heterogeneity of residuals was assessed by visual examination of the figures. The number of traps with each kind of decoy was also added as an offset term because they were not equally represented not only between years, but also within years (Table 1). As female decoys do not attract wild females, an additional independent variable was the sex of the captured quails only for traps simulating aggregations of males. In this model, “male aggregation trap” was also added as a random factor because males and females captured in the same male aggregation trap are not independent observations. Thus, this model was a Generalised Linear Mixed Model (GLMM). Since only in 2010 hybrid females and European quail females were simultaneously used as decoys, the comparison of their mate attraction was carried out only in this year. The interaction between explanatory variables was initially added to the model and removed if not significant. To establish the significance of the full model we used a likelihood ratio test, comparing its deviance with that of the null model.
including only the intercept. To test the significance of the interaction between explanatory variables we compared the deviance of the full model with that of a corresponding reduced model without interactions. These models allowed us to test whether there were differences in the number of quails captured per trap and breeding season considering the two different decoys. We could also investigate differences between sexes in the degree they are attracted by male aggregations.

2.3.2 Female mating and breeding success.

A GLM was fitted for each variable related to female breeding success: 1) mating success (binary); 2) nesting success (binary); 3) clutch size (count); 4) fertilized eggs per laid egg (proportion); 5) nest predation (binary); 6) hatched eggs per fertilized egg (proportion); and 7) surviving chicks per hatched egg (proportion). Binary and proportion variables were fitted assuming a binomial error distribution and logit link function and clutch size was fitted assuming a Poisson error distribution and log link function. If a model presented overdispersion (residual deviance/df>1), the corresponding variable was refitted using, depending of the case, a quasi-Poisson or a quasi-binomial error distribution.

A factor representing years and its interaction with origin (hybrid or European) were also initially added to the models to take into account changing conditions across years. These additional factors were removed from the final models if no significant effect was found.

Since female mating and nesting success are not only influenced by female ability to mate and nest but also by their survival probability, when modeling those variables, we added as covariate the female known survival time. Thus, this covariate allowed the models to test for differences in female mating and nesting success due to their origin independently of possible differences due to different mortality. These models also allowed us to estimate how long it takes for a female to achieve 95% probability of mating or nesting.
2.3.3 Survival.
We used a Cox proportional hazards regression model (Cox, 1972) to assess
the effect of female origin on its survival during the breeding season. This model
assumed that the relative risk of death for both types of females (hybrid or
European quail) remained constant over time. This risk was estimated by the
model by considering the known survival periods. The model took into account if
the end of the known survival period of each female was due to death or to the
beginning of harvest. We also took into account the possible differences across
years, and the interaction origin-year. If the interaction was not significant, it
was removed from the models.

All analyses were conducted in R ver. 2.15.2 (R CoreTeam, 2012). GLM’s
models were fitted using the glm() function. Cox proportional hazards model
was fitted using the function coxph() present in the package survival
(Therneau, 2012). The significance of the factors added into a model were
evaluated performing an analysis of deviance with the function Anova()
available in the package car (Fox and Weisberg, 2011). In not overdispersed,
the test for the analysis of deviance for GLM and Cox models was a likelihood-ratio (χ^2). In overdispersed GLM, an F-test was used. The differences between
the levels of a significant factor were tested with the function esticon() from
the package doBy (Hervé, 2012). The p values obtained from esticon()
function were corrected using the p.adjust() function which controlled type I
errors performing a false discovery rate correction (Benjamini and Hochberg,
1995). Confidence intervals (CI) of the estimated parameters were calculated
for a 95 % confidence level.

3. Results
Genetic origin of all individuals was unambiguously assigned and according to
the expectations for wild (European quails) and farm (hybrid) quails (results not
shown). Analyses with STRUCTURE AND NEWHYBRIDS produced consistent results.

3.1. Attraction ability

In 2010, hybrid females acting as sexual decoys in walk-in funnel traps attracted 2.58 times more wild European quail males than did female European quails (confidence interval, CI: 1.16-6.87, $\chi^2_{1}=5.52$, p=0.019, Fig. 1a).

Male aggregation traps attracted 5.75 times more wild males than females (CI: 2.87-13.16, $\chi^2_{1}=20.85$, p<0.001, Fig. 1b). European quail male aggregation traps were 2.55 times more visited, by both wild males and females (interaction not significant), than hybrid male aggregation traps (CI: 1.48-4.58, $\chi^2_{1}=11.03$, p<0.001). The number of individuals entering the traps varied between years ($\chi^2_{3}=12.68$, p=0.005); thus, in 2008 only 0.5 individuals were captured per trap, whereas in the rest of years 3.5 individuals were captured. These results strongly suggest that: a) female hybrids are able to attract wild European quail males more effectively than female European quail; b) male aggregations attract more males than females (although we do not have precise information about the sex ratio in the study area; males are known to be several times more numerous than females in the area); c) hybrid male aggregations attract less wild quails (males and females) than European quail aggregations.

3.2. Female mating and breeding success

During the four years of the study, a total of 51 hybrid females and 16 European quail females were radio-tagged and monitored. The majority of the matings (94%) took place with a common quail male. For hybrid females, 61% (31) succeeded in mating, whereas 81% of European quail females (13) mated. Two hybrid females (4%) paired with freely roaming hybrid males. Mating probability was first modeled including “female origin” and “year” as factors, together with the “known survival period” of each female as covariate. Due to the low
frequency of matings with free-roaming male hybrids, male origin was not
included as a factor. This model showed a significant effect of year in female
mating probability ($\chi^2=8.24$, $p=0.041$). Mating probability in 2009 was higher
than in 2007 ($\chi^2=4.16$, $p=0.041$) and 2008 ($\chi^2=4.55$, $p=0.033$). This mating
probability also depended on the female known survival period ($\chi^2=37.68,$
p<0.001, Fig. 2a). But the model failed to show differences in the probability of
mating between hybrid and European quail females ($\chi^2=0.93$, $p=0.335$). On
average, the model shows that mating probability reached 95% 40.8 days (CI:
25.3-72.8) after the release of the female (Fig. 2a).

Radio-tracking of the 51 hybrid females monitored showed that 21 of them
(41%) nested, whereas of the 16 European quail females monitored, 11 of them
(69%) succeeded in nesting. In the model for nesting success, neither female
origin nor year had a significant effect. However, covariate “known survival
period” had a significant effect. None of the interactions were significant. For
these reasons, the final model was constructed using “female origin” as
independent variable and “known survival period” as a covariate. According to
this model, female origin did not have a significant effect on nesting success
($\chi^2=0.43$, $p=0.510$), whereas known survival period showed a strong influence
($\chi^2=25.94$, $p<0.001$, Fig. 2b). Females reached a 95% probability of nesting
49.6 days (CI: 27.7-99.2) after their release.

Factor “year” showed a significant effect only on fertility ($\chi^2=10.11$, $p=0.0182$).
Fertility in 2009 was lower than in 2007 ($\chi^2=6.61$, $p=0.010$). Since factor “year”
did not have a significant effect on clutch size, hatching success or chick
survival, it was excluded from these models. The final models did not show
differences between hybrid and European quail females regarding clutch size
($\chi^2=2.74$, $p=0.098$, Table 3), fertility ($\chi^2=0.01$, $p=0.915$, Table 3), hatching
success ($F_{(1,20)}=2.67$, $p=0.102$, Table 3), or chicks survival ($F_{(1,19)}=0.46,$
p=0.496, Table 3).
Finally, the probability of having the nest preyed upon was higher for female hybrids ($\chi^2_1 = 4.31, p=0.038$, Table 3), and did not change from year to year (initial model: $\chi^2_3 = 7.45, p=0.059$).

3.3 Survival

The mortality of the released hybrid females was 73% by the end of the annual study season; 23 of them were killed by predators (62% of the dead hybrid females) and 14 were found dead from unknown causes. This mortality rate is much higher than for European quail females (31%, 3 of them killed by predators and 2 found dead from unknown causes), clearly indicating that hybrid females have lower survival than European quail females. The Cox proportional hazards regression model revealed that there is a significant difference in the relative risk of death for females of different origin ($\chi^2_1 = 17.55$, $p<0.001$) and from different year ($\chi^2_3 = 12.47, p=0.006$). More specifically, 2010 was the worse year. In 2010, the risk of death for a female was 5.47 (CI: 1.89-15.84) times higher than in 2007 ($\chi^2_1 = 9.84, p=0.010$) and 3.54 (CI: 1.43-8.77) times higher than in 2009 ($\chi^2_1 = 7.5, p=0.018$). The risk of death of a hybrid female, once released, was 7.22 (CI: 2.52-20.65) times higher than that of a European quail female. Figure 3 shows the survival curves for European and hybrid quail females once released into the field. These curves show that 40.8 days after the release (time at which 95% of females have already mated, see section 3.2) survival probability was higher for European quails (0.7, CI: 0.51-0.96) than for hybrids (0.29, CI: 0.19-0.44). Similarly, by the time 95% of females had nested (49.7 days after release, see section 3.2), survival probability for female European quails was 0.68 (CI: 0.49-0.95), while for hybrids it was 0.27 (CI: 0.17-0.42).

4. Discussion

Previous studies have shown that, in captivity, there are not pre- or post-zygotic barriers preventing the interbreeding between European and Japanese quails or
between European quails and hybrids (Derégnaucourt et al., 2002; Derégnaucourt and Guyomarc'h, 2003; Taka-Tsukasa, 1941). However, other studies suggest that the massive releases of farm bred quails have not resulted in a hybrid swarm (Puigcerver et al. 2007, 2012), indicating that perhaps ecological or behavioural barriers acting in the wild maintain separation (Pierotti and Annet, 1993). Nevertheless, this does not seem to be the case. Our results show, for the first time, that European quails and hybrids interbreed in the wild. Thus, the presence of admixed individuals in European quail populations in different countries during the breeding season may be explained not just as a result of restocking practices (as suggested by Puigcerver et al. 2007), but also as the result of released hybrids reproducing in wild European quail populations.

Our results showed that female hybrids attract more wild common quail males than common quail females (Fig. 1). This could be due to the observation that they produced more rally calls from the trap, attracting more males (pers. obs.). This contrasts with the results by Derégnaucourt and Guyomarc'h (2003) who have shown that, in captivity, European quail females are very selective, emitting the greatest number of rally calls in response to mating calls from conspecific males, a lower number in response to mating calls produced by Japanese quail and an intermediate number responding to mating calls from hybrid males. A possible explanation for this difference could be that hybrid females produced more vocalizations because they were less stressed in a cage. Although we tried to minimize this effect by keeping wild-caught females in captivity for some months before starting the experiments, we cannot assess if the differences in behaviour are associated to the hybrid origin or are result of adaptation to life in captivity. In addition, female hybrids and European quails (Fig. 2a) had a similar probability of mating. These matings occurred mostly with European quail males (94%), which were much more abundant than hybrids in the area (Puigcerver et al., 2007). Therefore, mixed pairs formed in the wild are most likely formed by a hybrid female and a European quail male.
We did not know in advance whether our artificial hybrid male aggregations could attract wild European quails of both sexes, but we expected so because Sardà-Palomera et al. (2011) showed that European male aggregations attracted both males and females as a consequence of the mating system of the species. Our results show that wild European quail males, which have a complex polygamous mating system (Rodríguez-Teijeiro et al., 2003), are more attracted by artificial European quail male aggregations than to those of hybrid males, suggesting that natural European quail male aggregations found in the wild (Guyomarc'h et al., 1998) may be reasonably preserved despite the release of hybrids.

With regard to the breeding success of the females released from the traps together with a male, restocked hybrid females had similar mating and nesting success rates to European quail females. As in captivity (Derégnaucourt et al., 2002), fertility, hatching rate and chick survival rate (within the first three weeks of life) are also very similar between hybrid and European females (Table 3), although we evaluated chick survival after hatching the eggs in captivity, and this may not reflect survival rates in the wild. As farm-raised hybrid quails have been selected for life in captivity, their chicks should be expected to survive better in captivity than chicks coming from wild common quails. Therefore, the lack of differences in survival in captivity of chicks from hybrid and common quail does not imply similar survival in the wild. Since mating preferences do not show the existence of strong pre-zygotic barriers and the breeding success does not seem obviously lower, other mechanisms must explain why the proportion of hybrids has not been increasing in European quail populations (Puigcerver et al., 2007, 2012).

The reason for this may be found, at least in part, in the lower probability for female hybrids to survive long enough to mate and nest (Fig. 3). In addition, the nests of hybrid females are preyed upon more often (Table 3). These differences could contribute to explain why the massive releases of farmed quail have not resulted in a hybrid swarm. Mortality rates of restocked farm-reared
birds are usually higher than for native populations because they are poorly
adapted to the natural environment and lack the ability to defend themselves
against cold and to forage and select food in those conditions (Guyomarc'h,
2003). After hunting, predation is probably one of the main causes of mortality
for farm-reared hybrid quails, as happens for other farmed game bird species
due to the lack of an antipredatory behaviour (Guyomarc'h, 2003; McPhee,
2003). The same poor knowledge about the local conditions might explain the
higher nest predation rate for hybrid females.

It is unsurprising that hunting is the main cause of mortality for restocked farm
quails since these tend to be released immediately before the hunting season or
before special hunting events. We do not have data about the mortality during
the hunting season of hybrid quails that were present during the breeding
season compared to that of European quails. However, it seems reasonable to
consider that the same lack of anti-predatory behaviour would favour a higher
hunting pressure on hybrids, thus increasing their mortality rates, as suggested
by Guyomarc'h (2003), who reported 75% of restocked individuals from a total
of 4,959 hunted quails in a large hunting estate (64,000 ha) in France.

Previous field surveys spanning a long time period (Puigcerver et al. 2007,
2012) did not show an increase in the proportion of hybrids detected in nature.
This could apparently suggest that restocking European quail populations with
hybrid quails does not represent a conservation problem. However, our results
show that the two groups are not genetically isolated and that interbreeding
occurs in the wild. These observations seem incompatible, but can be explained
by the lower chances of survival and nesting of hybrid females in the wild, as
well as their higher rate of nest predation. This translates into a lower fitness for
the quails of hybrid origin. This lower fitness could be due either to carrying
maladaptive alleles of Japanese quail origin or to the adaptation to life in
captivity. This result is in agreement with the results of a 15-year-long genetic
study showing that the proportion of hybrid individuals in the population was not
increasing over time, but also emphasizing that the results were compatible with
a slow rate of introgression if hybrids had reduced fitness (Sanchez-Donoso et al. submitted). In this case, a slow introgression of farm alleles could be expected, which would translate into extensive admixture in some generations. Our results confirm reproduction and also lower fitness for the hybrids, and so we expect a progressive build-up of alleles of farm origin into the wild population. This is likely to affect the genetic composition of European quail populations, which could result in a decrease in the adaptive and evolutionary potential of the species.

Our results show that in the case of small populations of European quails, the interbreeding with restocked hybrids could represent a loss of homospecific matings and a reduction of the potential for population growth. It is paradoxical that restocking practices for this species, instead of increasing the long-term chances for survival, could result in a reduction of the genetic effective population size and evolutionary potential and could limit population growth. In addition, captive breeding of European quails for restocking could make sense if the species was under conservation concern; however, it is currently classified as “least concern” by the IUCN. In this case, restocking practices make no sense from the conservation point of view, especially considering that the introduction of farm-reared individuals in wild populations may lead to other threats, such as transmission of pathogens, that could cause substantial mortality in the native populations (Peeler et al., 2006).

The results obtained also emphasize how the putative consequences of restocking practices cannot be directly inferred from just the number of individuals released.

As reported in Casas et al. (2012) for the red-legged partridge (*Alectoris rufa*), public Administrations should ensure that releases for hunting purposes do not represent a threat for the conservation of native species and populations. These authors suggest some management strategies to control genetic introgression and help the original population structure to recover: 1) stop releases of hybrid...
birds; 2) implement effective inspection procedures for farms providing individuals for restocking; 3) promote management plans avoiding releases in areas where restocking programmes have not yet been performed, and where there is reliable evidence that populations consist of non-admixed individuals.

It is important to highlight that the results of this study suggest that some restocked individuals could have been interbreeding with native European quails during the last decades. Until we better understand the long-term consequences of the release of quails with—potentially—maladaptive genes, we believe all restocking programs involving Japanese quails or their hybrids within the natural distribution range of the European quail should be banned.

5. Acknowledgements

The authors are most grateful to the Catalan “Direcció General de la Recerca” (2009-SGR-481), the Spanish Science Ministry (CGL2004-05308/BOS and CGL2007-63199 projects), the “Federación de Caza de Euskadi” (2007 to 2009), the Catalan government for the “Ajuts per a la formacio i contractacio de personal investigador novell” (FI grant), the Andalusian Government (grant from the “Programa de Captación del Conocimiento para Andalucía” to CV), and to the Catalan Department of Environment, for their financial support. Ana Domínguez, Cristina Extremera, Marisa García and Irene Jiménez helped us with the field work. Jennifer Leonard revised the English text and provided comments. Four anonymous reviewers also provided helpful comments to improve the manuscript.

6. References

Gortazar, B.C., Villafuerte, R., Real, C., Martin, M., 2000. Success of Traditional Restocking of Red-legged Partridge for Hunting Purposes in Areas of Low

Puigcerver, M., Vinyoles, D., Rodríguez-Teijeiro, J.D., 2007. Does restocking with Japanese quail or hybrids affect native populations of common quail *Coturnix coturnix*? Biological Conservation 136, 628–635.

Table 1 – Number and types of traps used each breeding season.

<table>
<thead>
<tr>
<th>Sexual decoy in the trap</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>One hybrid female</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>One European quail female</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Hybrid male aggregation (3 males)*</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>European quail male aggregation (3 males) *</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>59</td>
</tr>
</tbody>
</table>

* Each one of these is composed by two traps and were intended to imitate groups of males found in European quail populations.

Table 2 – Number of females radio-tagged in each year of study. In brackets: number of nests found.

<table>
<thead>
<tr>
<th>Type of female</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>European quail females</td>
<td>1 (1)</td>
<td>2 (2)</td>
<td>2 (1)</td>
<td>11 (7)</td>
<td>16 (11)</td>
</tr>
<tr>
<td>Hybrid females</td>
<td>11 (8)</td>
<td>15 (4)</td>
<td>17 (8)</td>
<td>8 (1)</td>
<td>51 (21)</td>
</tr>
</tbody>
</table>
Table 3 - Nests variables.

Means and 95% confidence intervals (in parentheses) for clutch size, fertility, hatching success, chick survival during the first three weeks of life, and nest predation probability for both hybrid and European quail female nests.

<table>
<thead>
<tr>
<th>Variables studied</th>
<th>Hybrid female</th>
<th>European quail female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clutch size</td>
<td>9.14 (7.30-11.50)</td>
<td>11.09 (9.24-13.18)</td>
</tr>
<tr>
<td>Fertility</td>
<td>0.97 (0.88-0.99)</td>
<td>0.97 (0.88-0.99)</td>
</tr>
<tr>
<td>Hatching success</td>
<td>0.93 (0.80-0.98)</td>
<td>0.83 (0.72-0.92)</td>
</tr>
<tr>
<td>Chick Survival</td>
<td>0.85 (0.73-0.93)</td>
<td>0.79 (0.69-0.87)</td>
</tr>
<tr>
<td>Nest predation*</td>
<td>0.22 (0.08-0.41)</td>
<td>0**</td>
</tr>
</tbody>
</table>

* Significant differences depending on female origin.

**Confidence intervals cannot be calculated due to the lack of variability.
FIGURE CAPTIONS

Fig. 1. Female and male wild quails captured per trap and breeding season (mean ± se) as a function of decoy origin (European quail or hybrid originating from game farms) for two types of trap: a) one female used as decoy (only 2010 data) and b) a group of males used as decoy (from 2007 to 2010 data).

Fig. 2. Female mating (a) and nesting (b) probabilities as a function of the number of days in which females remained alive in the study area (known survival period). Adjusted functions: a) \(y=\text{inv.logit}(-1.79+0.12\cdot x)\); b) \(y=\text{inv.logit}(-2.81+0.12\cdot x)\). No differences were observed in these variables depending on female origin (European quail or hybrid). Dashed lines in both graphs show the time at which each Generalised Linear Model predicts a mating or nesting probability of 95%. Observations of both European and hybrid female quails, from which the models were built, are represented by circles and triangles respectively.

Fig. 3. Estimated survival probabilities (mean and 95% confidence intervals, based on a Cox proportional hazards regression model) for European (solid lines) and hybrid (dashed) female quails. Survival probabilities when mating (circles) and nesting (triangles) probabilities reach 95% (see Fig. 2) are represented to show that the probability of surviving long enough to mate and nest is higher for European quail females than for hybrid females.
Figure 1

The figure shows the captures per trap and breeding season for different decoy origins and trap types. The data is divided into two sections:

- **a) Female traps**: The graph indicates a significant difference in the number of captures between European and Hybrid decoys, with Hybrid decoys showing higher captures.
- **b) Male Aggregation traps**: Here, the captures are lower and show less variation, with Hybrid decoys again performing better than European decoys.

The error bars represent the variability in the data, indicating the confidence level of the captures per trap and breeding season.
Figure 3

The figure shows the survival probability over days since the release for different categories: European, Mating, Hybrid, and Nesting. The survival probability decreases over time, with distinct trends for each category. The graph includes shaded areas indicating the variability or uncertainty in the survival probability estimates.