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ABSTRACT

Supersymmetric backgrounds in M-theory often involve four-form flux in addition to pure

geometry. In such cases, the classification of supersymmetric vacua involves the notion of

generalized holonomy taking values in SL(32,R), the Clifford group for eleven-dimensional

spinors. Although previous investigations of generalized holonomy have focused on the cur-

vature RMN (Ω) of the generalized SL(32,R) connection ΩM , we demonstrate that this local

information is incomplete, and that satisfying the higher order integrability conditions is an

essential feature of generalized holonomy. We also show that, while this result differs from

the case of ordinary Riemannian holonomy, it is nevertheless compatible with the Ambrose-

Singer holonomy theorem.
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1 Introduction

The connection between holonomy and supersymmetry is a close and important one. The

notion of a supersymmetric background is simply one where some fraction of the supersym-

metry variations vanish. In particular, for bosonic field configurations, we are invariably led

to the vanishing of the gravitino transformation

δψM ≡ DMǫ = 0, (1.1)

where DM is the supercovariant derivative. The number of preserved supersymmetries is

then equal to the number of linearly independent solutions of the Killing spinor equation

(1.1). Thus the goal of enumerating supersymmetric vacua is essentially one of classifying

all solutions to the above Killing spinor equation.

A necessary condition for the existence of Killing spinors is obtained from the integrability

of the Killing spinor equation (1.1)

MMN ǫ ≡ [DM ,DN ]ǫ = 0. (1.2)

However, it ought to be evident that this simply measures the effect of parallel transporta-

tion of a spinor around an infinitesimal loop along the M and N directions of the base

manifold. By the Ambrose-Singer theorem [1], this is in general related to the Lie algebra

of some holonomy group Hol(D) acting on the spinors. For the case of a Riemannian con-

nection, so that DM is identified with ∇M , the gravitational covariant derivative, the first

order integrability condition directly yields the conventional Riemannian holonomy group

Hol(∇) ⊆ SO(n) where SO(n) is the Riemannian structure group for an n-dimensional ori-

entable Euclidean manifold with a metric. In this case, the analysis is quite familiar, and

holonomy groups have been classified by Berger in [2] for the Euclidean case, and partially

extended to the Lorentzian case by Bryant in [3].

In practice, in order to obtain Killing spinors, one often starts with the integrability

condition (1.2) and not directly with the Killing spinor equation (1.1), as the integrabil-

ity condition is only algebraic in ǫ. For the case of a Riemannian connection, use of the

Ambrose-Singer theorem demonstrates that the integrability condition (1.2) is also a suf-

ficient condition for the existence of Killing spinors. However, it has been observed that

this is no longer the case for more general connections. This is perhaps most evident in

the squashed 7-sphere compactification of M-theory [4, 5], where left-squashing preserves
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N = 1 supersymmetry in four dimensions while right-squashing leaves no unbroken super-

symmetries at all. Yet, at the same time, first order integrability of the form (1.2) cannot

distinguish between the two cases; only by going to second order integrability can the issue

of the existence or non-existence of Killing spinors be resolved [6].

This question of whether the algebra generated by the curvature [expressed in the first

order integrability condition (1.2)] agrees or does not agree with the algebra of the holonomy

group has until now been mostly ignored in the study of generalized holonomy [7, 8, 9]. At

present we will focus on generalized holonomy in eleven-dimensional supergravity. In this

case, the bosonic fields are the metric gMN and 3-form potential with 4-form field strength

F(4). The fermionic superpartner is simply the gravitino, with transformation

DM ≡ ∂M + 1
4
ΩM = ∇M − 1

288
(ΓM

NPQR − 8δN
MΓPQR)FNPQR. (1.3)

Here ΩM is considered to be a generalized connection, consisting of the conventional Rie-

mannian connection as well as the flux-induced term and taking values in the space of forms

Λ∗(R1,10) (which is identical to the Clifford algebra of the Dirac matrices). Actually it is

only the even part of the Clifford group that is relevant; as a result the generalized structure

group is SL(32,R) [8], which is considerably larger than the Riemannian structure group

SO(1, 10).

The idea behind generalized holonomy is simply to consider the holonomy of the gener-

alized connection ΩM . Since ΩM takes values in the generalized structure group, we see that

the generalized holonomy group is a subgroup of SL(32,R). Furthermore, as shown in [8], for

a background preserving n supersymmetries, the generalized holonomy must be contained in

SL(32 − n,R) ⋉ nR
32−n. As a result, the issue of classifying supersymmetric vacua may be

mapped into one of classifying the generalized holonomy groups as subgroups of SL(32,R).

Expressions for the generalized curvature of a background preserving n supersymmetries

were given in [10] (including the conjectured preonic case [11], with n = 31) by relating the

notions of Killing and preonic spinors, and an investigation of basic supersymmetric config-

urations of M-theory was performed in [12], where a large variety of generalized holonomy

groups were obtained. However, one of the striking results of the analysis of [12] was the fact

that identical generalized holonomies may yield different amounts of supersymmetries. This

shows that knowledge of the holonomy group is insufficient to fully classify the background,

and that knowledge of the decomposition of the 32-component spinor under Hol(D) is also
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needed.

At a more technical level, it was also seen in [12] that in many cases the complete Lie

algebra of Hol(D) was not obtained from first order integrability (1.2), so that in particular

the algebra had to be closed by hand. This issue is rather suggestive that the generalized

curvature at a local point carries incomplete information of the generalized holonomy group,

in apparent violation of the Ambrose-Singer theorem (but in agreement with the issue of left-

versus right-squashing of S7 mentioned above). However a careful reading of the Ambrose-

Singer theorem indicates that Holp(D) at a point p is spanned by elements of the generalized

curvature (1.2) not just at point p, but at all points q connected to p by parallel transport

(see e.g. [13], p. 388 or [14], p. 33). Thus there is in fact no contradiction. Furthermore, this

is rather suggestive that satisfying higher order integrability (representing motion from p to

q) is in fact a necessary condition for identifying the proper generalized holonomy group,

and that it is the Riemannian case that is the exception.

These issues have led us to the present work, where we explore the interplay of higher

order integrability and generalized holonomy. We begin by revisiting the generalized holon-

omy of the M5-brane and M2-brane solutions of supergravity, and show that higher order

integrability yields precisely the ‘missing’ generators that were needed to close the algebra.

Other than this, however, the generalized holonomy groups SO(5) ⋉ 6R
4(4) for the M5-brane

and SO(8) ⋉ 12R
2(8s) for the M2-brane identified in [12] are unchanged. Following this, we

turn to the squashed S7 [4, 5], where the situation is considerably different.

The importance of higher order integrability was of course previously recognized in [6]

for the case of the squashed S7. Here, we reinterpret the result of [6] in the language of

generalized holonomy, and confirm the statement of [15] that while first order integrability

yields the incorrect result Hol(1)(D) = G2 ⊂ SO(7) ⊂ SO(8), higher order integrability

corrects this to Hol(D) = SO±(7) ⊂ SO(8), where the two distinct possibilities SO−(7) and

SO+(7) arise from left- and right-squashing, respectively. Since the spinor decomposes as

either 8s → 7 + 1 or 8s → 8 in the two cases, this explains the resulting N = 1 or N = 0

supersymmetry in four dimensions [15].

In the following section, we provide a brief review of higher order integrability and then

proceed to reexamine the generalized holonomy of the M5-brane and M2-brane solutions of

supergravity. For both cases, we find that the higher order conditions close the holonomy

algebra but otherwise do not affect the results of [12]. In section 3 we turn to the squashed
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S7 example and show that for this case higher order integrability is essential in obtaining

the correct holonomy group from the curvature. Some of the details of this example are

relegated to an Appendix.

2 Generalized curvature and higher order integrability

We start by defining the generalized curvature and n-th order integrability conditions. For

a generalized covariant derivative of the form (1.3)

DM ≡ ∂M + 1
4
ΩM , (2.1)

first order integrability (1.2) yields

MMN ≡ [DM(Ω),DN(Ω)] = 1
4
(∂MΩN − ∂NΩM + 1

4
[ΩM ,ΩN ]) ≡ 1

4
RMN(Ω), (2.2)

where RMN(Ω) is the curvature of the generalized connection Ω; in particular, RMN (Ω) =

RMNPQΓPQ + · · ·. It is a familiar result that, when contracted with ΓM , the first order

integrability condition ΓMRMN (Ω)ǫ = 0 yields an expression compatible with the bosonic

equations of motion [16, 10], which for eleven-dimensional supergravity read

RMN = 1
12

(
FMPQRFN

PQR − 1
12
gMNF

PQRSFPQRS

)
, (2.3)

d ∗ F(4) + 1
2
F(4) ∧ F(4) = 0. (2.4)

Higher order integrability expressions may be obtained by taking generalized covariant

derivatives of (2.2). Here we make the definition precise by taking the chain of expressions

MAMN ≡ [DA,MMN ] = 1
4
DA(Ω)RMN (Ω), (2.5)

MABMN ≡ [DA,MBMN ] = 1
4
DA(Ω)DB(Ω)RMN (Ω). (2.6)

...

It ought to be evident that the higher order integrability conditions correspond to measuring

the generalized curvature RMN(Ω) parallel transported away from the original base point

p. In this sense, the information obtained from higher order integrability is precisely that

required by the Ambrose-Singer theorem in making the connection between Holp(D) and the

curvature of the generalized connection.
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Note that we take ΩM in (2.1) to include the Levi-Civita connection on the base in

addition to the generalized connection on the Clifford bundle. In this sense, we actually

work with a generalized connection in TM × Cliff(M). Writing

DM = ∂M + 1
4
ΩM = ∇M + 1

4
Ω̃M , (2.7)

where

Ω̃M = − 1
72

(ΓM
NPQR − 8δN

MΓPQR)FNPQR (2.8)

in the case of eleven-dimensional supergravity, the integrability expressions (2.2), (2.5) and

(2.6) are equivalent to

MMN = 1
4
RMN(Ω) = 1

4
RMNABΓAB + 1

2
∇[M Ω̃N ] + 1

9
Ω̃[M Ω̃N ],

MAMN = DA(Ω)MMN = ∇AMMN + 1
4
[Ω̃A,MMN ],

MABMN = DA(Ω)MBMN = ∇AMBMN + 1
4
[Ω̃A,MBMN ],

... (2.9)

We occasionally find these expressions useful for direct computation.

2.1 Generalized holonomy of the M5-brane

As examples of how higher order integrability may affect determination of the generalized

holonomy group, we first revisit the case of the M5- and M2-brane solutions of supergravity.

The generalized holonomy of these solutions, as well as several others, was originally inves-

tigated in [12]. For vacua with non-vanishing flux, including the brane solutions, it was seen

that the Lie algebra generators obtained from first order integrability, (2.2), are insufficient

for closure of the algebra. In particular, additional generators must be obtained by further

commutators. In [12], this was done by closing the algebra by hand. In the present context,

however, additional commutators are readily available from the higher order integrability

expressions, (2.9).

It turns out that, for the M5-brane, working up the third order integrability is sufficient to

close the algebra. To see this, we recall the M5-brane solution is given in isotropic coordinates

as

ds2
11 = H

−1/3
5 dx2

µ +H
2/3
5 d~y 2,

Fijkl = ǫijklm∂mH5, (2.10)
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where H5(~y ) is harmonic in the six-dimensional transverse space spanned by the {yi}, and

ǫijklm = ±1 is a density. Computation of the supercovariant derivative (1.3) in this back-

ground yields a generalized connection of the form [12]

Ωµ = Ωνi
µ Kµi, Ωi = −1

3
∂i lnH5Γ

(5) + 1
2
Ωjk

i T̂jk, (2.11)

when acting on spinors. Here we have highlighted the Lie algebra structure by introducing

a set of generators

T̂ij = Γīj̄P
+
5 , Kµ = ΓµP

+
5 , Kµi = Γµ̄īP

+
5 , Kµij = Γµ̄īj̄P

+
5 , (2.12)

where Γ(5) ≡ 1
5!
ǫijklmΓīj̄k̄l̄m̄ and P+

5 ≡ 1
2
(1+Γ(5)) is the half-BPS projector, and the overlined

indices refer to local frame indices. The component expressions for Ωνi
µ and Ωjk

i are

Ωνi
µ = −2

3
H

−1/2
5 ∂i lnH5, Ωjk

i = 8
3
δi[j∂k] lnH5. (2.13)

Even before addressing integrability, we see that ΩM includes the generator Γ(5) in addition

to T̂ij and Kµi. However, the connection itself is not physical, and we see below that the

terms proportional to Γ(5) drop out in generalized curvatures (and hence do not contribute

to generalized holonomy).

The first order integrability of the generalized connection, given by (2.2), was computed

in [12]. The result was

Mµν ≡ 1
4
Rµν = 0,

Mµi ≡ 1
4
Rµi = H

−1/2
5

[
1
6
(∂i∂j lnH5 − 2

3
∂i lnH5∂j lnH5) + 1

18
δij(∂ lnH5)

2
]
Kµj ,

Mij ≡ 1
4
Rij =

[
2
3
(∂l∂[i lnH5 − 2

3
∂l lnH5∂[i lnH5)δj]k − 2

9
(∂ lnH5)

2δk
[iδ

l
j]

]
T̂kl. (2.14)

At this point, it was noted that the generators T̂ij and Kµi do not form a closed algebra, as

both Kµ and Kµij are missing. Thus the algebra of the holonomy group, with generators

(2.12), was obtained only after closing the algebra by hand. In fact we now see that the

higher order integrability relations, expressed as (2.9), give rise to a sequence of additional

commutators which are precisely the ones necessary to ensure closure of the algebra.

For the M5-brane, the second order integrability conditions, defined by (2.5), take on the

form

Mµνλ = Mρi
µνλKρi, Mµνi = 1

2
M jk

µνiT̂jk, Mµij = Mνk
µijKνk + 1

2
Mνkl

µijKνkl,

Miµν = 0, Miµj = Mνk
iµjKνk + 1

2
Mνkl

iµjKνkl, Mijk = 1
2
M lm

ijkT̂lm, (2.15)
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where the component factors M ···
AMN are functions of H5 and its derivatives. For example,

Mρi
µνλ = 1

36
H−3/2[∂j lnH5∂j∂i lnH5 − 1

3
∂i lnH5(∂H5)

2]ηµ[νδ
ρ
λ],

M jk
µνi = 4

9
H−1[∂[j lnH5∂

i∂k] lnH5 − δi[j∂
l lnH5∂

l∂k] lnH5]ηµν . (2.16)

The other factors arising in (2.15) are similar. However, we will not need their explicit

forms. We simply note that one additional generator Kµij arises at second order. However,

the algebra is not closed until third order integrability (2.6) is taken into account, since

one additional commutator is necessary to provide the Kµ generator. In the case of the

M5-brane, no additional information is gained beyond the third order integrability level. In

fact, the identification of the proper generalized holonomy group

HolM5 = SO(5)+ ⋉ 6R
4(4), (2.17)

is unchanged from the presentation of [12]. All that has arisen from higher order integrability

of the M5-brane is closure of the algebra on the same set of generators that were present at

first order.

2.2 Generalized holonomy of the M2-brane

The analysis of the M2-brane is similar to that of the M5-brane. The supergravity solution

takes the form

ds2 = H
−2/3
2 dx2

µ +H
1/3
2 d~y 2,

Fµνρi = ǫµνρ∂iH
−1
2 , (2.18)

where ǫµνρ = ±1 and H2(~y ) is a harmonic function in the transverse space. Following [12],

we introduce a set of generators

T̂ij = Γīj̄P
+
2 , Kµi = Γµ̄īP

+
2 , Kµijk = Γµ̄̄ij̄k̄P

+
2 , (2.19)

where P+
2 = 1

2
(1+Γ(2)) with Γ(2) = 1

3!
ǫµνρΓ

µ̄ν̄ρ̄. In this case, the generalized connection takes

the form

Ωµ = Ωνi
µ Kνi, Ωi = 2

3
∂i lnH2Γ

(2) + 1
2
Ωjk

i T̂jk, (2.20)

where

Ωνi
µ = −4

3
H

−1/2
2 ∂i lnH2δ

ν
µ, Ωjk

i = 4
3
δi[j∂k] lnH2. (2.21)
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First order integrability yields the generalized curvature

Mµν ≡ 1
4
Rµν = 0,

Mµi ≡ 1
4
Rµi = 1

18
H

−1/2
2

[
6(∂i∂j lnH2 + 2∂i lnH2∂j lnH2) − (∂ lnH2)

2δij
]
Kµj,

Mij ≡ 1
4
Rij =

[
−1

3
(∂l∂[i lnH2 − 1

3
∂l lnH2∂[i lnH2)δj]k − 1

18
(∂ lnH2)

2δk
[iδ

l
j]

]
T̂kl, (2.22)

which is similar in structure to that of the M5-brane (2.14). The ‘missing’ generator Kµijk

of (2.19) is obtained by the commutation of T̂ij with K̂µk. This arises in second order inte-

grability via either DiRµj or DµRij . The general structure of the second order integrability

expressions are as follows:

Mµνλ = Mρi
µνλKρi, Mµνi = 1

2
M jk

µνiT̂jk +Mνk
µνiKνk, Mµij = Mνk

µijKνk + 1
6
Mνklm

µij Kνklm,

Miµν = 0, Miµj = Mνk
iµjKνk + 1

6
Mνklm

iµj Kνklm + 1
2
Mkl

iµj T̂kl, Mijk = 1
2
M lm

ijkT̂lm. (2.23)

In this case, working to second order in integrability is sufficient to guarantee closure of the

holonomy algebra. The group generated by (2.19) was identified in [12] to be

HolM2 = SO(8)+ ⋉ 12R
2(8s). (2.24)

It ought to be noted that the generalized connection ΩM contains complete information

about the generalized holonomy of the spacetime, as the complete set of integrability con-

ditions (2.9) may be obtained through commutators and derivatives of ΩM . In this sense,

the algebra of the holonomy group can never be larger than the algebra obtained through

the generators in ΩM itself. However it can certainly be smaller. This is apparent for the

M5-brane, where the Γ(5) generator is absent in the generalized curvature RMN (Ω) and its

derivatives and also for the M2-brane, where Γ(2) is absent. For these examples, and in fact

for all vacua considered in [12, 17], the generators appearing in ΩM and those appearing

in RMN(Ω) are nearly identical. As a result, the generalized holonomy group may be cor-

rectly identified at first order in integrability, and the higher order conditions only serve to

complete the set of generators needed for closure of the algebra.

A different situation may arise, however, if for some reason (such as accidental symme-

tries) a greatly reduced set of generators appear in RMN (Ω). In such cases, examination of

first order integrability may result in the misidentification of the actual generalized holonomy

group. What happens here is that the algebra of the curvature RMN(Ω) at a single point p

forms a subalgebra of the holonomy algebra. It is then necessary to explore the curvature at
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all points q connected by parallel transport to p in order to determine the actual holonomy

algebra itself. Although this never occurs for Riemannian connections, we demonstrate be-

low that this incompleteness of first order integrability does arise in the case of generalized

holonomy.

3 Higher order integrability and the squashed S7

For an example of the need to resort to higher order integrability to characterize the gen-

eralized holonomy group Hol(D), we turn to Freund-Rubin compactifications of eleven-

dimensional supergravity. With vanishing gravitino, the Freund-Rubin ansatz for the 4-form

field strength [18]

Fµνρσ = 3mǫµνρσ, µ = 0, 1, 2, 3, (3.1)

with m constant and all other components vanishing, leads to spontaneous compactifications

of the product form AdS4 × X7. Here X7 is a compact, Einstein, Euclidean 7-manifold.

Decomposing the eleven-dimensional Dirac matrices ΓM as

ΓM = (γµ ⊗ 1, γ5 ⊗ Γm), µ = 0, 1, 2, 3, m = 1, . . . , 7, (3.2)

where γµ and Γm are four- and seven-dimensional Dirac matrices, respectively, and assuming

the usual direct-product split ǫ(xµ)⊗η(ym) for eleven-dimensional spinors, the Killing spinor

equation (1.1) splits as

Dµǫ =
(
∂µ + 1

4
ωµ

αβγαβ +mγµγ5

)
ǫ = 0, (3.3)

Dmη =
(
∂m + 1

4
ωm

abΓab − i
2
mΓm

)
η = 0. (3.4)

Since AdS4 admits the maximum number of Killing spinors (four in this case), the number N

of supersymmetries preserved in the compactification coincides with the number of Killing

spinors of the internal manifold X7, that is, with the number of solutions to the Killing

spinor equation (3.4). Therefore we only need to concern ourselves with the Killing spinors

on X7.

An orientation reversal of X7 or, alternatively, a sign reversal of F(4), provides another

solution to the equations of motion (2.3), (2.4) and, hence, another acceptable Freund-Rubin

vacuum [5, 19]. For definiteness, we shall call left-orientation the solution corresponding to
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the choice of sign of F(4) in (3.1), that leads to the Killing spinor equation (3.4), and right-

orientation the solution corresponding to the opposite choice of sign of F(4):

(right) Fµνρσ = −3mǫµνρσ , µ = 0, 1, 2, 3, (3.5)

leading to the Killing spinor equation

(right) Dmη =
(
∂m + 1

4
ωm

abΓab + i
2
mΓm

)
η = 0. (3.6)

From either (3.4) or (3.6), we see that the generalized connection Dm takes values in

the algebra spanned by {Γab,Γa} and therefore the generalized structure group is SO(8).

Notice, however, that both Killing spinor equations (3.4) and (3.6) share the same first order

integrability condition [4, 19]

Mmnη ≡ [Dm,Dn]η = 1
4
Rmnη ≡ 1

4
Cmnη = 1

4
Cmn

abΓabη = 0, (3.7)

where Cmn
ab is the Weyl tensor of X7 (thus demonstrating that, in this case the generalized

curvature tensor is simply the Weyl tensor). Thus first order integrability is unable to

distinguish between left and right orientations on the sphere. Then it might be possible that

spinors η solving the integrability condition (3.7) will only satisfy the Killing spinor equation

for one orientation, that is, satisfy (3.4) but not (3.6) (or the other way around). In fact, the

skew-whiffing theorem [5, 19] for Freund-Rubin compactifications proves that this will, in

general, be the case: it states that at most one orientation can give N > 0, with the exception

of the round S7, for which both orientations give maximal supersymmetry, N = 8. Since the

preserved supersymmetry N is given by the number of singlets in the decomposition of the 8s

of SO(8) (the generalized structure group) under the generalized holonomy group Hol(D),

it is then clear that, in general, each orientation must have either a different generalized

holonomy, or the same generalized holonomy but a different decomposition of the 8s.

To illustrate this feature, consider compactifications on the squashed S7 [5, 4]. This

choice for X7 has the topology of the sphere, but the metric is distorted away from that

of the round S7; it is instead the coset space SO(5) × SU(2)/SU(2) × SU(2) endowed with

its Einstein metric [5, 4]. The compactification on the left-squashed S7 preserves N = 1

supersymmetry whereas that on the right-squashed S7 has N = 0; put another way, the

integrability condition (3.7) has one non-trivial solution, corresponding in turn to a solution

to the Killing spinor equation (3.4) (making the left-squashed S7 preserve N = 1), but not to
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a solution to (3.6), which in fact has no solutions (yielding N = 0 for the right-squashed S7).

On the other hand, an analysis of the Weyl tensor of the squashed S7 shows that there are

only 14 linear combinations Cmn of gamma matrices in (3.7), corresponding to the generators

of G2 [4, 19]. Though appealing, G2 cannot be, however, the generalized holonomy since the

8s of SO(8) would decompose as 8s → 8 → 7 + 1 under SO(8) ⊃ SO(7) ⊃ G2 regardless of

the orientation, giving N = 1 for both left- and right-squashed solutions. We thus conclude

that in this case the first order integrability condition (3.7) is insufficient to determine the

generalized holonomy.

The resolution to this puzzle is naturally given by higher order integrability. In the case of

the squashed S7, it turns out that the second order integrability condition (2.5) is sufficient.

For a general Freund-Rubin internal space X7 this condition reads [6]

Mlmnη ≡ 1
4
[Dl, Cmn]η = 1

4

(
∇lCmn

abΓab ∓ 2imCmnl
aΓa

)
η = 0 , (3.8)

the − sign corresponding to the left solution, and the + to the right. For the squashed

S7, we find that only 21 of the Mlmn are linearly independent combinations of the Dirac

matrices. The details are provided in the Appendix. Following the notation of [4, 19], we

split the index m as m = (0, i, î), with i = 1, 2, 3, î = 4, 5, 6 = 1̂, 2̂, 3̂; then, with a suitable

normalization, the linearly independent generators may be chosen to be

C0i = Γ0i + 1
2
ǫiklΓ

k̂l̂, Cij = Γij + Γîĵ , Ciĵ = −Γiĵ − 1
2
Γjî + 1

2
δijδ

klΓkl̂ − 1
2
ǫijkΓ

0k̂, (3.9)

Mij = Γîĵ ∓ 2
3

√
5imǫijkΓ

k̂, Mi = Γ0̂i ∓ 2
3

√
5imΓi, M = δklΓkl̂ ± 2

√
5imΓ0, (3.10)

the − sign in front of m corresponding to the left solution and the + to the right. Notice that

there are 8 linearly independent generators in Ciĵ of (3.9), since δklCkl̂ ≡ C11̂ + C22̂ + C33̂ = 0.

The 14 generators C0i, Cij , Ciĵ span G2 [4, 19], and are the same as those obtained from

the first integrability condition (3.7), while the 7 additional generators Mij , Mi, M were

not contained in (3.7). Taken together, they generate the 21 dimensional algebra of SO(7),

regardless of the orientation, provided

m2 =
9

20
, (3.11)

in agreement with the Einstein equation for the squashed S7 [19].

The embedding of SO(7) into SO(8) is, however, different for each orientation. We

use SO(7)− to denote the embedding corresponding to the left solution and SO(7)+ the

11



right. While the spinor η transforms as an 8s of the generalized structure group SO(8),

the decomposition of the 8s is different under left- and right-squashing. With our Dirac

conventions, it turns out that 8s → 7 + 1 under SO(8) ⊃ SO(7)−, giving N = 1 for the

left-squashed S7, while 8s → 8 under SO(8) ⊃ SO(7)+, giving N = 0 for the right-squashed

S7.

Since SO(7) is the subgroup of SO(8) that yields the correct branching rules of the 8s

of SO(8), we conclude that second order integrability is sufficient in this case to identify

all generators of the Lie algebra of Hol(Dm). Hence the generalized holonomy group of the

Freund-Rubin compactification on the squashed S7 is precisely SO(7). In this case, it is

the embedding of SO(7) in SO(8) (with corresponding spinor decomposition 8s → 7 + 1 or

8s → 8) that determines the number of preserved supersymmetries. This indicates that,

for generalized holonomy, knowledge of the holonomy group and the embedding are both

necessary in order to understand the number of preserved supersymmetries. While this was

already observed in [12, 8] for non-compact groups, here we see that this is also true when

the generalized holonomy group is compact.

The analysis of the squashed S7, along with the brane solutions of the previous section,

highlights several features of generalized holonomy. For the squashed S7, the generalized

holonomy algebra is in fact larger than that generated locally by the Weyl curvature at a

point p. In this case, the algebra arising from lowest order integrability is already closed,

but is only a subalgebra of the correct holonomy algebra. It is then mandatory to examine

the second order integrability expression (3.8) in order to identify the generalized holonomy

group. On the other hand, for the M2- and M5-branes, lowest order integrability, while

lacking a complete set of generators, nevertheless closes on the correct holonomy algebra,

and no really new information is gained at higher order.

Of course, in all cases, complete information is contained in the generalized connection

ΩM itself. However, examination of ΩM directly can be misleading, as it may contain gauge

degrees of freedom, which are unphysical. This is most clearly seen in the case of the round

S7, where Ωm = ωab
mΓab − 2imΓm is certainly non-vanishing, while the generalized curvature

Rmn, given by the Weyl tensor, is completely trivial.

For generalized holonomy to be truly useful, we believe it ought to go beyond simply a

classification scheme, and must yield methods for constructing new supersymmetric back-

grounds. In much the same way that the rich structure of Riemannian holonomy teaches us

12



a great deal about the geometry of Killing spinors on Riemannian manifolds, we anticipate

that the formal analysis of generalized holonomy via connections on Clifford bundles may

one day lead to a similar expansion of knowledge of supergravity structures and manifolds

with fluxes. While much remains to be done, as we have only highlighted a few examples,

we hope that a more complete understanding of higher order integrability for the curvature

of generalized connections will soon lead to a better appreciation of the geometry behind

generalized holonomy.
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A Second order integrability for the squashed S7

In this Appendix we present the details of the derivation of the linearly independent gener-

ators (3.9) and (3.10) of the generalized holonomy group Hol(Dm) = SO(7) of the squashed

S7, associated to the second order integrability condition (3.8). For convenience, we rewrite

(3.8) with a modified normalization

Mabc = 5
(√

5∇aCbcdeΓ
de −m′CbcadΓ

d
)
, (A.1)

where we have defined

m′ = 2
√

5im, (A.2)

and have chosen the − sign in front of m′ for definiteness.
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To obtain Mabc, we have computed both the Weyl tensor Cbcad (given in [19]) and its

covariant derivative ∇aCbcde. We obtain, for the non-vanishing generators:

M00j = 4Γ0ĵ − ǫjklΓ
kl̂ − 2m′Γj , (A.3)

M00ĵ = 4Γ0j + ǫjklΓ
kl + 2m′Γĵ , (A.4)

M0ij = 2ǫijkΓ
0k̂ + Γiĵ − Γjî , (A.5)

M0iĵ = −ǫijkΓ0k + Γij − 3Γîĵ +m′ǫijkΓ
k̂ , (A.6)

M0̂iĵ = −3Γiĵ + 3Γjî − 2m′ǫijkΓ
k , (A.7)

Mh0j = ǫhjkΓ
0k̂ + 2Γhĵ + δhjδ

klΓkl̂ + Γjĥ + 2m′δhjΓ0 , (A.8)

Mh0ĵ = −ǫhjkΓ
0k + Γhj + 3Γĥĵ −m′ǫhjkΓ

k̂ , (A.9)

Mhij = δhiΓ0ĵ − δhjΓ0̂i + 4ǫij
kΓhk̂ − ǫhijδ

klΓkl̂ − ǫij
kΓkĥ + 2m′(δhjΓi − δhiΓj) , (A.10)

Mhiĵ = 2δhiΓ0j + δijΓ0h + δhjΓ0i + (2ǫjklδhi − 1
2
ǫhklδij − 1

2
ǫiklδhj)Γ

kl − 3ǫhi
kΓk̂ĵ

+m′(2δhiΓĵ − δijΓĥ + δhjΓî) , (A.11)

Mhîĵ = 3δhiΓ0ĵ − 3δhjΓ0̂i + 3ǫhi
kΓkĵ − 3ǫhj

kΓkî + 2m′(ǫhijΓ0 + δhjΓi − δhiΓj) , (A.12)

Mĥ0j = −6Γĥĵ + 2m′ǫhjkΓ
k̂ , (A.13)

Mĥ0ĵ = 3Γjĥ − 3δhjδ
klΓkl̂ −m′(2δhjΓ0 + ǫhjkΓ

k) , (A.14)

Mĥij = 6ǫij
kΓk̂ĥ + 2m′(δhjΓî − δhiΓĵ) , (A.15)

Mĥiĵ = 3δhjΓ0̂i − 3δijΓ0ĥ − 3δhiǫjklΓ
kl̂ − 3ǫij

lΓhl̂

+m′(−ǫhijΓ0 − 2δhjΓi + δijΓh − δhiΓj) , (A.16)

Mĥîĵ = 6δhjΓ0i − 6δhiΓ0j − 6ǫij
kΓkh + 4m′(δhjΓî − δhiΓĵ) . (A.17)

Not all the generators included in (A.3)–(A.17) are linearly independent, however. After all,

they are built up from Dirac matrices {Γab,Γa}, that is, from generators of SO(8), so at most

28 can be linearly independent.

In fact, only 21 linearly independent generators are contained in (A.3)–(A.17), as we

will now show. Some redundant generators are straightforward to detect, since the Bianchi

identities for the Weyl tensor, ∇[aCbc]de = 0 and C[bca]d = 0 place the restrictions

M[abc] = 0 . (A.18)

Further manipulations show that only the generators (A.11) and (A.16) are relevant, the

rest being linear combinations of them. The generators (A.4), (A.6), (A.9), (A.13), (A.15)
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and (A.17) are obtained from (A.11):

M00ĵ = 1
5
δkl(Mklĵ +Mkjl̂ +Mjkl̂) , (A.19)

M0iĵ = 1
5
ǫ[i|

kl(4Mk|j]l̂ −M|j]kl̂) − 1
5
ǫij

kδlmMlmk̂ , (A.20)

Mi0ĵ = −1
5
ǫ[i|

kl(Mk|j]l̂ − 4M|j]kl̂) − 1
5
ǫij

kδlmMlmk̂ , (A.21)

Mĵ0i = −ǫ[i|kl(Mk|j]l̂ −M|j]kl̂) , (A.22)

Mĥij = Mjiĥ −Mijĥ , (A.23)

Mĥîĵ = 1
5
(Mhiĵ −Mhjî +Mihĵ −Mjhî) − 4

5
δkl(δhiMklĵ − δhjMkl̂i) , (A.24)

while (A.3), (A.5), (A.7), (A.8), (A.10), (A.12) and (A.14) are linear combinations of (A.16):

M00j = 1
3
δkl(Mk̂jl̂ −Mĵkl̂) , (A.25)

M0hj = −1
3
ǫh

kl(Mk̂lĵ + 3Mĵkl̂) + 1
3
ǫj

kl (Mk̂lĥ + 3Mĥkl̂) , (A.26)

M0ĥĵ = ǫh
kl(Mk̂lĵ + 2Mĵkl̂) − ǫj

kl(Mk̂lĥ + 2Mĥkl̂) , (A.27)

Mh0j = −1
6
ǫh

kl(2Mk̂lĵ + 5Mĵkl̂) + 1
6
ǫj

klMĥkl̂ , (A.28)

Mhij = 1
2
δkl

(
δhi(Mk̂lĵ − 2Mĵkl̂) − δhj(Mk̂l̂i − 2Mîkl̂)

)

+7
3
(Mĥiĵ −Mĥjî) +Mîjĥ −Mĵiĥ − 2

3
ǫh

klǫij
m(Mk̂lm̂ + 4Mm̂kl̂) , (A.29)

Mhîĵ = Mîhĵ −Mĵhî , (A.30)

Mĥ0ĵ = ǫh
kl(Mk̂lĵ +Mĵkl̂) − ǫj

klMĥkl̂ , (A.31)

Moreover, both (A.11) and (A.16) contain redundant generators. The following combi-

nations obtained from (A.11):

C0i = 1
6
δklMikl̂ , (A.32)

Cij = − 1
30
ǫ[i|

kl(Mk|j]l̂ − 9M|j]kl̂) − 1
30
ǫij

kδlmMlmk̂ , (A.33)

Mij = 1
6
Mĵ0i = −1

6
ǫ[i|

kl(Mk|j]l̂ −M|j]kl̂) (A.34)

(the expressions of which in terms of Dirac matrices are the first two equations in (3.9)

and the first equation in (3.10), respectively) are linearly independent. Thus (A.11) [and so

(A.4), (A.6), (A.9), (A.13), (A.15) and (A.17)] can be uniquely written in terms of them:

Mhiĵ = 2δhiC0j + δijC0h + δhjC0i + (2ǫj
klδhi − 1

2
ǫh

klδij − 1
2
ǫi

klδhj)Ckl

−3δhiǫj
klMkl − 3ǫhi

kMkj . (A.35)
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Similarly, the following combinations contained in (A.16):

Ciĵ = 1
3
ǫi

klMĵkl̂ − 1
6
ǫj

kl(Mk̂l̂i +Mîkl̂) , (A.36)

Mi = 1
12
δkl(Mk̂l̂i − 2Mîkl̂) , (A.37)

M = −1
6
ǫhijMĥiĵ (A.38)

(which can be written in terms of Dirac matrices as in the final equation of (3.9) and the last

two equations of (3.10), respectively) are linearly independent. Hence (A.16) [and so (A.3),

(A.5), (A.7), (A.8), (A.10), (A.12) and (A.14)] can be uniquely written in terms of them:

Mĥiĵ = 6δhiǫj
klCkl̂ − 2ǫij

k(Ckĥ − 2Chk̂)

+6δhjMi + 3δihMj − 3δijMh − ǫhijM . (A.39)

In summary, the linearly independent generators associated to the second order integra-

bility condition (3.8) are the 21 linearly independent generators (3.9) and (3.10), namely

{C0i, Cij , Ciĵ , Mij , Mi,M} (notice that Ciĵ contains 8 generators, since it is traceless), which

close into an algebra whenever m2 takes the value required by the equations of motion,

m2 = 9
20

. Since the only condition for the generators to close the algebra is placed on m2,

they will close regardless of the orientation (i.e., of the sign of m). In fact, they generate

the 21-dimensional algebra of SO(7), for both orientations.

Note that, by further choosing linear combinations of (3.9), the 14 generators {C0i, Cij ,

Ciĵ} of G2 may be re-expressed in symmetric form

Γ11̂ − Γ22̂, Γ11̂ − Γ33̂,

Γ0̂i + Γjk̂, Γ0̂i + Γĵk, (i, j, k = 123, 231, 312)

Γ0i + Γĵk̂, Γ0i − Γjk, (i, j, k = 123, 231, 312). (A.40)

The 7 additional generators {Mij , Mi, M} of (3.10) extending (A.40) to SO(7) may also be

simplified in appropriate linear combinations. One possible set of generators is given by:

Γ11̂ ± iΓ0,

Γ0̂i ∓ iΓi,

Γĵk̂ ∓ iΓî, (i, j, k = 123, 231, 312). (A.41)
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