A realistic DFT potential energy surface of H_5^+ cluster

R. Prosmiti1, P. Barragán1, O. Roncero1, A. Aguado2, P. Villarreal1, G. Delgado-Barrio1

1 Instituto de Física Fundamental (CSIC), Serrano 123, 28006 Madrid, Spain
2 Departamento de Química Física, Facultad de Ciencias C-XIV, Universidad Autónoma de Madrid, 28049 Madrid, Spain

The potential energy surface of H_5^+ is characterized using density functional theory. The potential hypersurface is evaluated at selected configurations employing different functionals, and compared with results obtained from *ab initio* CCSD(T) calculations. The lowest ten stationary points (minima and saddle-points) on the surface are located, and the features of the short-, intermediate-, and large-range intermolecular interactions are also investigated. A detailed analysis of the surface's topology, and comparisons with extensive CCSD(T) results, as well as a recent *ab initio* analytical surface, shows that DFT calculations using the B3(H) functional represent very well all aspects studied on the H_5^+ potential; including the tiny energy difference between the minimum at 1-C_{2v} configuration and the 2-D_{2d} one corresponding to the transition state for the proton transfer between the two equivalent C_{2v} minima, as well as the correct asymptotic behavior of the long-range interactions. The calculated binding energy and dissociation enthalpies compare very well with previous benchmark coupled-cluster *ab initio* data, and with experimental data available.

Based on these results the use of such approach to perform first-principles molecular dynamics simulations could provide reliable information regarding the dynamics of protonated hydrogen clusters.

References