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Abstract

Conventional 2D ultrasonic arrays are formed by
square elements, which have a limit of λ/2 spacing.
In this paper we present two apertures, which are
based on segmented annular (SA) arrays that have
the property of producing lower grating lobes and,
consequently, that allow increasing the size of the
elements. With the purpose of designing apertures
of medium size (D=30λ) with a reduced number of
active elements (<250), several thinned squared
and segmented-annular arrays are here analyzed. A
thinning technique valid for SA arrays that is a
modified version of the vernier sparse method
("single vernier") is presented. The paper shows
that SA arrays may produce images with similar
properties than squared arrays, but with a signal
intensity around 20 dB above.

1 Introduction
Two-dimensional (2-D) ultrasonic arrays are useful
for volumetric imaging in medicine, because they
produce steered and focused beams throughout a
volume of interest. Typical 2-D arrays are based on
a squared matrix configuration, where the array
elements are the cells of the matrix [1]. Due to the
aperture periodicity, the inter-element spacing is
maintained near λ/2 in order to avoid grating lobes
[2]. This condition gives rise to several problems:
first, the number of array elements becomes too
high in relation to the number of channels of the
existing ultrasonic imaging systems. A second
problem derives from the small size of the elements
that causes a great increase in the electrical
impedance and, consequently, a reduction in the
signal to noise ratio [1].

Recently, thinning techniques have been proposed
to reduce the number of active elements without
producing a notable deterioration of the image. One
approach eliminates periodicity, and therefore
grating lobes, by randomly selecting a subset of
elements from the array transducer [2]. As a

consequence of random sparse, sidelobes form a
“pedestal” surrounding the main beam, whose level
is inversely proportional to the number of active
elements. A different approach uses two
complementary arrangements for transmitting and
receiving (T-R) as a way of suppressing grating
lobes. Concretely, in Reference [3] using a vernier
scale the elements can be separated by distances of
multiple of λ/2. In both methods, the number of
active elements can be reduced by one order of
magnitude with good results on the beam-forming
properties of the array. However, the dramatic
reduction of the ultrasonic energy due to the
extremely low emitting area of sparse arrays is still
a great drawback of the imaging system. For
instance, the transmission-reception transducer area
of a 30λ-diameter aperture is 714λ2, and it is
reduced to 64λ2 for a 256-channel imaging system
of λ/2 inter-element spacing.

In this work, we present a different approach for
3D medical imaging that is based on 2-D
segmented annular (SA) arrays. Circular arrays
have lower periodicity and, consequently, lower
grating lobes than squared arrays. This
characteristic allows SA array transducers to have
inter-element spacing larger than λ/2 and, at the
same time, to increase the size of elements in
relation to squared arrays [4].

Our goal is to design apertures with a reduced
number of active elements that can be controlled by
an imaging system with up to 256 channels. In the
following sections we make a theoretical
comparison of the image properties of squared and
segmented annular arrays of medium size
(D=30λ). All simulations are based on the
following example: an array with D=15mm
emitting waves into water with 3MHz of central
frequency and 50% of relative bandwidth.
Comparisons are made in pulse-echo for a target
point deviated 30º in elevation from the array axis
and considering a fixed focus in transmission and
dynamic focusing in reception.
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2 Array configurations
Five aperture configurations have been considered
in our comparisons. The first one (C1) is a full
array formed by 0.5λ*0.5λ square elements spaced
at a distance of λ/2 (figure 1-a) within a 30λ
diameter aperture. This array has 2828 elements
that are active in transmission and in reception and
the active area is 707λ2. Although the array does
not fulfill the designing conditions due to the
excessive number of elements, its beam
characteristics are considered a "gold standard" for
comparisons with the rest of apertures.

The second aperture (C2) is a ring divided array
whose elements are formed by annular segments
with λ*λ of medium size, which are spaced λ
(figure 1-b). The full aperture contains 707
elements, which are active in transmission and in
reception. This configuration also fails to fulfill the
designing conditions, but it is analyzed to show the
capability of annular arrays in relation to dense
squared arrays, after dividing by four the number
of elements.

Configurations C3 and C4 are sparse designs from
C1 for the purpose of reducing the number of
active elements. C3 is formed by randomly
selecting 230 active elements from C1 (sampling
factor = 1/12). In order to increase diversity, two
different random distributions have been used for
transmission and reception (Figure 1-c). C4 has
been formed from C1 by applying a third-order
vernier sparse technique [3]. In this case (Figure 1-
d), the receipt aperture is formed by sampling C1
with a pitch of 3 in the two main directions of the
array and the transmission aperture is formed in a
similar way but with a pitch of 2. In this way, two
complementary apertures are obtained with 308
elements each (the reducing factor is 1/9) and 77λ2

of active area.

The fifth configuration has been created from C2,
applying a modified version of the vernier
technique (figure 1-e) in the following way: in the
tangential direction, we apply a third-order vernier
reduction, selecting in all rings one active element
every three elements in reception and every two
elements in transmission; however, we do not
apply any reduction in the radial direction. By this
way, the number of active elements of the full
aperture is divided by 3, becoming an aperture of
230 elements and 230λ2 of active area.

Figure 1. Arrays studied in this paper (dimensions are
given in units of λ): (a) squared pattern array with λ/2
interspacing, (b) segmented annular array (SAA) with λ
interspacing, (C) random sparse R-T arrays (C),
vernier sparse R-T arrays (D), R-T vernier sparse from
SAA
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3 Computational method
For simulations we assume a 2-D array lying in the
Z=0 plane of a Cartesian coordinate system. We
consider that the elements ideally vibrate like
pistons with a velocity v(t). The array emits sound
waves, which propagate with a velocity c through a
homogeneous liquid medium of density ρ. We
consider an infinitely rigid baffle for boundary
conditions and, therefore, a constant obliquity
factor β=2. The pressure waveform p(.) radiated
over a field point x (r,φ,θ) (given in spherical
coordinates) is:
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Where hi(.) is the spatial impulse response function
of the ith array element located at ix (ri,φι,π/2), (*)
indicates temporal convolution, hA(.) is the array
impulse response and Ti are time delays for
focusing the beam at the point x F (rF,φF,θF) :
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The transmit-receive mode case has been simulated
considering that the received signal s(t) due to a
reflecting point in x  is given by:
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where T
Ah  and R

Ah  are the transmit and receive
impulse response functions of the array. In general,
these functions are not coincident, because both the
aperture and delay functions for transmitting and
receiving are different.

There are several works which describe methods to
calculate the impulse response function of a
squared transducer [5] or a segment of annulus [6].
In this case, we will directly compute the Railley
integral according to the method indicated in ref.
[7]. Dividing the elements into square cells of side
s (s≤λ/8), the impulse response corresponding to
the ith element can be calculated by:
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where k=1…N refers to the square cells within the
ith array element.

4 Simulation results
Our simulations have been made in pulse-echo for
a target point deviated 30º in elevation from the
array axis and considering fixed focus in

transmission at a distance that is half of the far-
field (rF=60mm) and dynamic focusing in
reception. We assume that the transducer size is
D=15mm, and that itemits into water (c=1500m/s)
a gaussian pulse of 3MHz central frequency
(λ=0.5mm) and of 1.5MHz bandwidth at –6dB.
Two different 2-D images are analyzed: Figure 2
shows beam plots, which have been obtained at the
focal distance (r=60mm), scanning the array in the
elevation direction (-60º≤θ≤60º) and in the azimuth
direction (0º ≤φ≤ 180º). Figure 3 shows B-class
images of the φ = 0º plane, which have been
obtained scanning the beam in elevation (–
90º≤θ ≤+90º), for target points at several depths in
the range of 20mm≤r≤120mm. These two-
dimensional plots have been drawn for the
following contour levels: -20dB, -30dB, -40dB and
-50dB.

4.1 Full array transducers
Figure 1(a) shows a squared pattern dense array,
with 2828 elements (C1). Figure 2(a) shows the
image of a target point, which is deviated 30º from
the array axis, and which has been obtained in the
conditions above cited.  This can be taken as a gold
standard in relation to other array configurations.

Table 1 shows the computed width of the main
beam for different amplitude levels. The width at –
6dB approximates to the theoretical value given in
[8]:
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Due to the side lobes, the width at –40dB is 8.8º,
which is relatively high. An explanation for this
lies in the non-regular perimeter of the aperture.
The main advantage of using λ/2 interelement
spacing is that grating lobes are very low. In figure
2(a) we can observe that grating lobes are
concentrated in the main directions of the array
starting from θ=-40º and growing to –60dB.

C1 C2 C3 C4 C5

α (-6dB) 2.2º 2.4º 2.3º 2.5º 2.2º

α (-20dB) 4.2º 4.4º 4.4º 4.5º 3.8º

α (-40dB) 8.8º 8.3º 6.7º 7.5º 11º

Table 1: Angular width of the main beam at
different levels (in dB).
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Figure 3. Relative B-class images (normalized in
depth) for target points at (20≤r≤120mm θ=30º,
φ=0º) for the sparse arrays: C3 (c), C4 (d), C5 (e).
(Axis: r(mm),θ(º). Contour levels: -20dB, -30dB, -
40dB, -50dB). Lower part: Lateral response in
amplitude : C3 (-), C4 (..), C5(--). Axis: [θ(º), peak of
amplitude (dB)]

Figure 2. Beam profiles for a target point at
(r=60mm, θ=30º, φ=0º) for the five array
configurations: C1 (a), C2 (b), C3 (c), C4 (d), C5
(e). Vertical axis: amplitude in dB,  Horizontal
axis: θ
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This is a very reasonable contrast level for medical
imaging, where a contrast of –50dB is typically
demanded [2], but this solution requires controlling
an excessive number of array elements. In order to
reduce the number of elements without loosing
active area, the element size must be increased.
However, an increase in grating lobes will
excessively reduce the image contrast (i.e.: using a
squared array D=30λ with 707 elements λ∗λ,
grating lobes will increase to –19dB).

Figure 1(b) shows a ring divided array (C2) with
707 elements of size λ∗λ. The beamplot
characteristics can be observed in figure 2(b) and
the main beam width is given in Table 1. From the
table values, we can deduce a slight deterioration in
the upper part of the beam, which is mainly due to
the greater size of the elements. However, the
regular perimeter of the array makes the main lobe
at –40dB to be narrower than in the C1 case. On
the other hand, ring divided arrays produce grating
lobes, which spread over a large area, but their
amplitude is reduced. In Figure 2(b), the grating
lobe level of C2 is –48dB, which can still be
allowed for ultrasonic imaging.

4.2 Sparse array transducers
The number of elements can be reduced by
selecting a fraction of the elements in reception and
in transmission. There are several ways of
designing sparse apertures without greatly
increasing grating lobes. Figure 1(c-d) shows two
types of sparse arrays typically proposed in
literature, which have been derived from the
squared aperture C1. The random sparse array has
230 elements, which is reasonably near 256, the
maximum number of channels of the imaging
systems. A third-order vernier array is used,
implying 308 elements in the aperture (>256). In
contrast to random arrays where we can select the
number of elements at will, the reduction of a
vernier array of nth order is N/n2 (N: elements of
the full array), which supposes a serious limitation
in the choice of the number of elements. In our
case, a fourth order vernier will give an aperture
with only 176 elements, far from 256.

Figure 1(e) shows a sparse aperture designed from
the annular array C2. The thinning function is a
modified version of the vernier method (we call the
single-vernier method), because the selection is
only in the tangential direction but not in the radial
one. In this way, the sparse reduction is N/n, which
that allows a better design than the above
mentioned typical verniers. In this case, we have
chosen a third-order single-vernier, resulting in 230
elements in the aperture. In this case, the aperture

with pitch=2 occupies a fraction of the array area,
typically reducing the aperture diameter. In our
case, we present another solution by selecting the
outer part of the array.

From Figure 2, the image properties at the
transmission-reception focal plane can be analyzed.
From Table 1 it is deduced that the main beam of
C5 is narrower up to –34dB, mainly due to the ring
effect. From that level, side lobes widen the beam
more than the other solutions. On the other hand,
the main beam width of random sparse arrays is
narrower than the vernier ones, for two reasons.
First they do not have the first side lobe, which is
caused by the array border, and second, the vernier
array has lower resolution due to the small size of
the transmission aperture. Looking at the secondary
lobes, we can observe that apertures C3 to C5 give
results very similar in amplitude around –45dB,
although the vernier solution has the grating lobes
at elevation angles farther from the steering
direction. This is an advantage if we consider soft
baffle in the boundary conditions, as these
amplitudes would be affected by a factor of
approximately cos(θ). However, it should be noted
is that C5 is formed by λ*λ elements, while C3 and
C4 are λ/2*λ/2.

Figure 3 (c-d) shows the beam behavior for a large
depth, from D2/24λ (20mm) to the farfield distance
(120mm). The level contours correspond to –20dB,
-30dB, -40dB and –50dB. With respect to the main
lobe, we can observe that C5 has a narrower main
beam for levels upper –30dB for practically all
distances from 40mm. In this sense, the random
sparse array also has very good behavior for levels
higher than –40dB. On the other hand, for all
distances from 35mm, the three apertures present
B-class images with a secondary lobe level under –
40 dB. In this sense, the random sparse array C3
has a greater density of secondary lobes, while the
vernier C4 shows the lower density.

If we consider only normalized parameters, from
Figures 2 and 3 it is deduced that the sparse arrays
analyzed here present an almost similar capability
for generating ultrasonic images. However, a great
advantage of C5 can be observed in the lower part
of Figure 3, where the peak of amplitude of the
received signals is represented as a function of the
elevation θF of the target point. Comparing the
curves from C3 and C5 (they have the same
number of elements), it is observed that C5
produce signals 24 dB above C3 for the normal
direction (θ=0º) and 17 dB above for θ=30º. The
larger drop of the C5 curve is due to the narrower
radiation pattern of elements in C5. The C4 array
produces a curve very similar to C3 but it is 5dB
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above because of its greater number of elements
20log(NC4/NC3)2.

5 Conclusions
We have analyzed the capability of segmented
annular (SA) arrays for ultrasonic imaging in
medicine. In this sense, we have shown that SA
arrays allow designing 2-D array transducers with
inter-element spacing larger than λ/2. We have
made theoretical simulations for 5 array
configurations of medium size (D=30λ). Two SA
array configurations whose elements have a size of
λ*λ have been analyzed: (a) the full array with 707
elements and (b) a third-order "single vernier"
array with 230 elements. From simulations we
deduce the following conclusions for medium
apertures: (1) SA array transducers allow applying
vernier techniques only in one direction ("single
vernier") and, consequently, the reduction is
proportional to the vernier order. This facility is
useful for adjusting better the number of active
elements to the image system capability; (2) a
sparse SA array transducer produces images of
similar quality to that of typical sparse squared
arrays, but it may produce signals which are 20 dB
of higher intensity. (3) As SA array transducers
allow designs with elements several times larger
than typical squared arrays (four times in the
examples of this work), the problem of electrical
impedance and, consequently, of the signal to noise
ratio typical of squared arrays is reduced.
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