1	Influence of the microwave absorbent and moisture content on the
2	microwave pyrolysis of an organic municipal solid waste
3	D. Beneroso, J.M. Bermúdez, A. Arenillas, J.A. Menéndez*
4	Instituto Nacional del Carbón, CSIC, Apartado 73, 33080 Oviedo, Spain
5	* Corresponding author. Tel.: +34 985 118972; Fax: +34 985 297672
6	E-mail address: <u>angelmd@incar.csic.es</u>
7	Abstract
8	Microwave pyrolysis is presented in this study as a recycling approach for municipal
9	solid waste treatment. The process is based on the conversion of solid waste to syngas
10	(CO + H ₂) by means of a microwave absorbent. Experiments to characterise the syngas
11	produced were performed using the char obtained from the pyrolysis of a municipal
12	solid waste as microwave absorbent in the microwave power range of 150 - 450 W and
13	in an absorbent-to-waste ratio range of $0.2:1 - 1:1$ (wt.% : wt.%). A rich-syngas fraction
14	with a high H ₂ content (c.a. 50 - 55 vol.%) was obtained and analysed by means of

15

16

17

18

19

21 Keywords

cost of the process.

22 Microwave Absorbent, Pyrolysis, Municipal Solid Waste, Syngas, Waste Valorisation

Response Surface Methodology through the interaction between the microwave power

and absorbent-to-waste ratio. Moreover, a positive effect of the moisture content on gas

production is attained since gasification of the char occurs. Thus, the simple use of a

cheap waste-derived char leads to a reduction in the microwave power and economic

23

24 **1. Introduction**

Municipal solid waste (MSW) consists mainly of waste from households (60-90%). 25 though similar wastes from other sources such as commerce or public institutions are 26 also included. According to Eurostat, which is the statistical body of the EU, MSW 27 generation in Europe has remained stable at about 260 Mt per year since 2002 [1]. 28 Various management alternatives are available for the treatment of MSW such as 29 landfilling, incineration, recycling or composting. In recent years, recycling has 30 increased, although landfilling still remains the most widely used method of disposal, in 31 spite of its several drawbacks, such as the leaching of dangerous chemicals into the soil 32 and the release of methane to the air. However, this gap has narrowed in the last few 33 years. In the EU the landfill/recycling MSW weight ratio was 56/17 in 2001 compared 34 to 37/25 in 2011 [2]. 35

Pyrolysis technology has emerged not only as a very effective way of MSW disposal but also as an attractive technology for valorising these residues by producing fuels or precursors of valuable chemicals, such as syngas ($CO + H_2$). As an example, the SYNPOL project [3] aims to produce new biopolymers via the fermentation of syngas from waste materials.

Several studies have been carried out on MSW pyrolysis [4-7]. In general, the syngas content of the gas fraction produced in pyrolysis processes is not very high, since it is mixed with large amounts of CO₂, CH₄ and light hydrocarbons. As a way to improve the syngas concentration and, especially, the H₂ content, several researchers have proposed catalytic pyrolysis. In such cases, the role of the catalyst, such as dolomite [4], is to crack the heavy compounds in order to obtain lighter gases. However, the same effect can be achieved by means of microwave irradiation, without the need to add a

catalyst to the system, as demonstrated in previous studies [8-10]. Microwaves are able 48 49 to generate microplasmas, which promote heterogeneous catalytic reactions, but not all materials can be heated by means of microwave irradiation, since some materials are 50 transparent to microwaves. To solve this problem, the addition of carbon-rich materials 51 has been proposed to absorb microwaves [11-14]. The material to be pyrolysed is then 52 heated by conduction. Use of the char obtained from MSW pyrolysis process as 53 microwave absorbent is an attractive solution since it avoids the addition of materials 54 that might increase the cost of the process. 55

The microwave pyrolysis of MSW has been performed previously by Gedam and 56 Regupathi [15], but it is still at an early stage of development. In the study of Gedam 57 and Regupathi, both the microwave power and irradiation time were varied. Although a 58 minimum value of power was required to carry out the pyrolysis of MSW, the addition 59 of different carbon materials that served as microwave absorbents allowed the pyrolysis 60 to proceed at a lower microwave power. Surprisingly, no hydrogen was produced other 61 than trace concentrations, providing a gas rich in CO, CO₂ and CH₄. So far the effect of 62 the amount of microwave absorbent on MSW pyrolysis has not received much attention. 63 However, this parameter has been studied in relation to other materials. The microwave 64 induced pyrolysis (MIP) of microalgae with various microwave absorbents, such as 65 activated carbon, CaO, SiC or microalgae char has been carried out by Hu et al. [16]. 66 These authors found that there was a specific proportion of absorbent-to-microalga at 67 which the liquid fraction was maximised, depending on the absorbent used. Oil palm 68 69 shell biomass was recently subjected to MIP in a study by Salema and Ani [17], which showed the importance of the quantity of microwave absorbent added to the oil palm 70 71 shell as a method of controlling the pyrolysis temperature in an overhead stirrer reactor. 72 The authors reported that an increase in microwave absorbent led to a decrease in the

73 pyrolysis temperature and in turn in to higher solid fraction yields. All of these studies

vere focused on maximising the liquid fraction yield. However, to the best of our

knowledge, no studies have been aimed at maximising the gas fraction yield.

76 Herein, we report for the first time on a statistical model based on Response Surface

77 Methodology (RSM) designed to assess the combined effect of microwave power and

ratio of microwave absorbent-to-waste upon the amount and characteristics of the

real syngas generated from MIP. In addition, the effect of moisture content of the MSW is

80 evaluated.

81 **2. Materials and Methods**

82 2.1. Materials

83 The sample selected for this study was an organic fraction from a municipal solid waste, supplied by BEFESA Gestión de Residuos Industriales S. L. (Seville, Spain) in two 84 forms: wet (with a moisture content of c.a. 45 wt.%) and dry (with a moisture content of 85 c.a. 1.5 wt.%). The dry and wet fractions will be labelled as D and W respectively. 86 Proximate and ultimate analyses were performed to characterise the composition of the 87 feedstock samples. The moisture, ash content and volatile matter data (from a LECO 88 TGA-601) are summarised in Table 1 together with the ultimate analysis results (a 89 LECO-CHNS-932 micro-analyser and LECO-TF-900 furnace were used). Metallic 90 91 content of the ashes from the organic MSW was determined by means of atomic absorption spectroscopy. 92 The gases were analysed in a Varian-CP3800 gas-chromatograph equipped with a TCD 93

94 detector and two columns connected in series. The first column was 80/100 Hayesep Q

95 (2 m x 1/8 in. x 2mm) and the second column was a 80/100 Molesieve 13X (1.5 m x 1/8

- in. x 2 mm). The second column was bypassed by a six-port valve for the analysis of
- CO_2 and hydrocarbons. The TCD was calibrated with a standard gas mixture.
- 98
- **Table 1.** Proximate and ultimate analyses of the organic fraction from MSW and metal

100	content	of	the	ashes.

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Proximate Analysis (wt.%)				Ultimate Analysis (wt.%) ^a				
Metal content of ashes (mg _{metal} / kg _{MSW})FeZnMnCrCuPbNi	Moisture	Ash ^a	Volatile matter ^a C			Ν	S	Cl	O^{c}
Fe Zn Mn Cr Cu Pb Ni	1.5 ^b	30.3	61.1	39.4	5.2	1.5	0.4	0.9	22.3
			Metal content of	ashes (mg _{met}	_{al} / kg _{MSV}	W)			
8896 183 83 59 45 31 18	Fe	Zn	Mn	Cr	Cu		Pb		Ni
6670 165 65 57 1 5 51 16	8896	183	83	59	45		31		18

102 ^a Dry basis

103 ^b Moisture content of D. In the case of W, moisture content is 45 wt.%

^c Calculated by difference

105

106 2.2 Microwave induced pyrolysis

The pyrolysis of D and W was carried out in a microwave oven which consisted 107 basically of a microwave magnetron with a maximum output power of 2 kW operating 108 at 2450 MHz and a single mode cavity where the sample was irradiated using powers 109 ranging from 150 to 450 W. The single mode cavity allows a well-defined electric field 110 in a relatively small volume due to the superposition of incident and reflected waves, 111 and causes the microwave field to focus on a given location [18]. The reflected power is 112 regulated until it is reduced to zero by means of stub tuners. About 3 g of sample (on a 113 dry basis) was placed on an inert bed inside a quartz reactor. The reactor was purged 114 with N_2 for 30 minutes at a flow rate of 50 mL_{STP} min⁻¹. The N_2 flow rate was then set 115 to 10 mL_{STP} min⁻¹ for the pyrolysis experiments in order to ensure an oxygen-free 116 atmosphere. 117

118	As mentioned in previous studies on microwave induced pyrolysis of biomass, it is also
119	necessary to mix the MSW fraction with an appropriate microwave absorbent to achieve
120	the high temperatures required for pyrolysis [11-14]. The char obtained from the prior
121	pyrolysis of D and W at 800 °C in an electrical furnace was used as microwave
122	absorbent in different absorbent-to-waste ratios (0.2:1, 0.4:1 and 1:1), in order to
123	evaluate the influence of this parameter on the characteristics of the syngas. Preliminary
124	experiments showed that lower values of absorbent-to-waste ratio prevented the
125	pyrolysis of the MSW fraction.
126	The experiments lasted 1 hour, but the time chosen for the calculation of the parameters
127	was 40 minutes, since by this time all the MIP experiments would have reached 90% of
128	total syngas production.
129	The volatiles released from the pyrolysis of both organic fractions were passed through
130	a condensing system cooled by a cryogenic solution of water and NaCl. The liquid
131	fraction was recovered from the condensing system by dissolving it in CH ₂ Cl ₂ . It was
132	then subjected to further evaporation to remove the solvent at 40 °C. The non-
133	condensable gases were collected at intervals of 10 minutes in Tedlar sample bags and
134	then analysed by gas chromatography. The composition of the gaseous fraction was
135	determined from the composition of each bag and the N_2 flow rate.
136	2.3 Statistical model
137	RSM is a widely used technique for the optimisation of a set of parameters. This
138	methodology assesses the combined effect of a set of independent variables on response
139	variables by means of three-dimensional surface plots. The experimental response

- variables are fitted to a mathematical model by multiple regression analysis, which is
- 141 then subjected to statistical evaluation by means of the analysis of variance (ANOVA)

in order to determine whether the model and model parameters are significant on the 142 basis of the *p*-value to within a certain level of confidence, e.g. at 95%. In the field of 143 MIP, only a few studies employ RSM [19,20], but none of them are focused on the 144 influence of the microwave power or on the effect of the microwave absorbent on the 145 syngas produced. 146 As mentioned at the end of Section 1, three factors were selected as the independent 147 variables used to model the characteristics of the gas obtained from the MIP of the 148 organic fraction of municipal solid waste: the microwave power (P, expressed in watts), 149 the absorbent-to-waste ratio (A, wt.% : wt.%) and the moisture content (M, wt.%). The 150

values of *P* ranged from 150 W to 450 W and those of *A* from 0.2:1 to 1:1. Additional
experiments were performed on the W fraction (45 wt.% of moisture) to evaluate the

influence of the water content on the pyrolysis process.

154 In order to model the gas fraction evolved during the MIP, the following response

variables were characterised: the syngas concentration, i.e. $CO + H_2$ concentration in the

156 pyrolysis gases (S, vol.%); the syngas production (SP, $L_{STP} g_{MSW}^{-1}$) and the H₂, CO,

157 CO_2 and CH_4 concentrations in the gas fraction (vol.%). The experimental design is

shown in Table 2.

159 The experimental results for D and W were fitted using a polynomial quadratic equation 160 (Eq. (2.1)) by means of Design Expert® software to correlate the response variables 161 R(P,A) to the independent variables P and A within the model parameters: the offset 162 term (α), the linear effects (β, γ) the squared effects (δ, ε) and the interaction term (ζ):

163

164
$$R(P,A) = \alpha + \beta P + \gamma A + \delta P^2 + \varepsilon A^2 + \zeta P A \qquad (2.1)^{`}$$

165

Experiment	Р (W)	A (wt.% absorbent : wt.% residue)	<i>M</i> (wt.%)
1	150	0.2:1	1.5
2	150	0.4:1	1.5
3	150	1:1	1.5
4	250	0.2:1	1.5
5	250	0.4:1	1.5
6	250	1:1	1.5
7	350	0.2:1	1.5
8	350	0.4:1	1.5
9	350	1:1	1.5
10	450	0.2:1	1.5
11	450	0.4:1	1.5
12	450	1:1	1.5
13	150	0.2:1	45
14	150	1:1	45
15	450	0.2:1	45
16	450	1:1	45

Table 2. Experimental design for the MIP of organic MSW.

168

169

170 **3. Results and Discussion**

171 3.1 Syngas production models

172	The main objective of this study is to characterise the syngas generated by the	
173	microwave induced pyrolysis of municipal solid waste and determine its compo	sition
174	and production. The relationships between the factors P and A and the responses	s S and
175	SP are illustrated Fig. 1(a)-(b). Qualitatively, an increase in the microwave power	er
176	directed at the sample leads to a higher syngas concentration and production. Fa	ctor A
177	seems to have only a slight effect on the responses studied. The regression mode	els
178	calculated to predict S (vol.%) and SP ($L_{STP} g_{MSW}^{-1}$) are expressed as follows:	
179		
180	$S = 75.247 + 0.087P - 0.787A + 0.024PA - 1.171 \cdot 10^{-4}P^2 - 7.885A^2$	(3.1)
181	$SP = 0.039 + 1.765P - 0.393A + 3.395 \cdot 10^{-5}PA - 1.870 \cdot 10^{-6}P^2 + 0.253A^2$	(3.2)

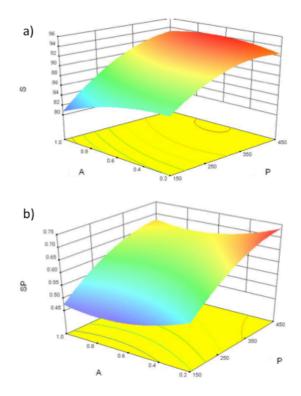


Figure 1. Response surface plots based on syngas concentration (S, vol.%) (a), and syngas production (SP, $L_{STP} g_{MSW}^{-1}$) (b), as a function of microwave power (P) and absorbent-to-waste ratio (A).

186

```
To statistically quantify the influences of the P and A factors, ANOVA tests were
187
       performed. In Table 3, the model p-values << 0.05 suggest that both models are
188
189
       significant to within a 95% confidence level. In the case of the syngas concentration
       model (Eq. 3.1), the linear term for microwave power (P) has the greatest effect on the
190
       H_2 + CO content due to the extremely low p-value (<0.0001). In contrast, the influence
191
192
       of the microwave absorbent quantity, although significant, is not as great. The term for
193
       the absorbent-to-waste ratio (A) has a significant effect on S with a p-value of 0.0012. In
       the case of the syngas production model, the terms P and A were found to be significant
194
195
       factors too.
```

Source	Sum of squares	Degree of freedom	Mean Square	F value	<i>p</i> -value	Significance (to within a 95% confidence level)	R^2 Adj- R^2
		Respo	onse: Syngas d	composition	(S, vol.%)		
Model	179.697	5	35.939	109.125	< 0.0001	Significant	
Р	145.264	1	145.264	441.072	< 0.0001	Significant	
A	10.904	1	10.904	33.109	0.0012	Significant	0.989
PA	10.359	1	10.349	31.423	0.0014	Significant	0.980
P^2	16.450	1	16.450	49.948	0.0004	Significant	
A^2	2.204	1	2.204	6.692	0.0414	Significant	
		Respons	e: Syngas pro	oduction (SP	, $L_{STP} g_{MSW}$	¹)	
Model	0.068	5	0.014	52.400	0.0010	Significant	
Р	0.062	1	0.062	235.94	< 0.0001	Significant	
Α	0.005	1	0.005	17.78	0.014	Significant	0.985
PA	1.932·10 ⁻⁵	1	$1.932 \cdot 10^{-5}$	0.074	0.799	Not significant	0.966
P^2	0.003	1	0.003	10.770	0.031	Significant	
A^2	0.001	1	0.001	5.700	0.075	Not significant	

199 From the surface plots of the regression models (Fig. 1(a)-(b)), it is possible to

200 determine the effect exerted by *P* and *A* on the response variables in the experimental

space studied. At a low microwave power (150, 250 and 350 W), a high A leads to a

decrease in both the syngas concentration and production, although at 450 W the trend

of S seems to change, since a maximum appears at A = 0.4:1. Anyway, the

204 concentration of syngas in the gas fraction obtained over the entire range of

experimental conditions studied is considerable (>80 vol.% in all the cases). In short,

the MIP of MSW is very selective towards syngas.

207 To investigate the fit of the model, the *R*-squared and Adjusted *R*-squared values were

evaluated. As can be observed in Table 3, the S model has an R^2 value of 0.989,

indicating that the model variation of 98.9% for the syngas concentration is attributable

to the independent variables and only 1.1% of the total variation could not be explained

by the model. The value of $Adj-R^2$ is also very high, lending further support to the high

significance of the model proposed. In the case of the SP model, similar conclusions can

be drawn.

Of the two factors (i.e. microwave power and the absorbent-to-waste ratio), microwave 214 215 power plays the more important role in MIP. Nevertheless, it is important to emphasize that without the presence of a microwave absorbent, it would be impossible to carry out 216 217 the MIP experiments and that its presence allows the microwave power to be reduced, as mentioned by Gedam and Regupathi [15]. These authors found that with a single 218 mode cavity, the MIP of MSW was not possible without the addition of a microwave 219 220 absorbent, unless the microwave power was higher than 450 W. However, the addition of carbonaceous absorbents such as charcoal with an A value of 0.5:1 allowed MSW to 221 be pyrolysed even at 100 W. In a more recent study by Hu et al. [16], the authors 222 223 performed the MIP of microalgae without any absorbents but at powers higher than 750 W. They also found that the addition of small amounts of solid residue obtained from 224 225 the microalgae promoted gas production.

226 3.2 Gas component models

The response surface models corresponding to the major components of the gas fraction 227 (i.e. H₂, CO, CO₂ and CH₄) are shown in Fig. 2(a)-(d). From the trends of these models, 228 229 it can be seen that the concentrations of the most valuable components (H₂ and CO) were favoured by the power irradiated at the sample. As observed by Hu et al. [16], the 230 higher the microwave power is, the higher the temperature reached inside the bulk, 231 232 since both the microwave density and the microwave energy absorbed by the bulk increase. As a consequence, the endothermic reactions leading to the formation of 233 syngas are favoured [9]. On the other hand, the addition of absorbent to MSW seems to 234 have little effect on the gas concentrations. To assess the effects of both factors more 235 effectively, the following regression models for H₂, CO, CO₂ and CH₄ (vol.%) were 236 237 obtained:

238

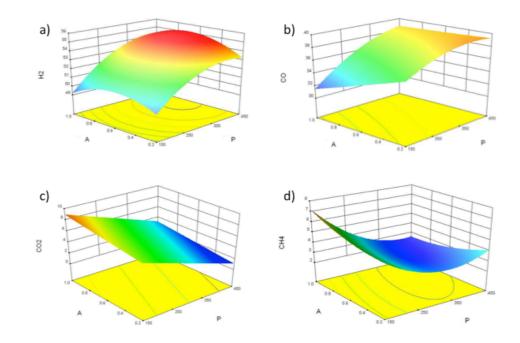


Figure 2. Response surface plots based on H₂ (a), CO (b), CO₂ (c) and CH₄ (d)
concentrations (vol.%) in the gas fraction as a function of microwave power (P) and
absorbent-to-waste ratio (A).

243

244	$H_2 = 42.367 + 0.048P + 8.242A + 6.475 \cdot 10^{-5}PA - 6.183 \cdot 10^{-5}P^2 - 8.162A^2$	(3.3)
245	$CO = 32.870 + 0.039P - 9.013A + 0.018PA - 5.533 \cdot 10^{-5}P^2 + 0.271A^2$	(3.4)
246	$CO_2 = 9.114 - 0.019P + 2.693A$	(3.5)

247
$$CH_4 = 9.768 - 0.039P + 1.524A - 0.015PA + 6.508 \cdot 10^{-5}P^2 + 2.667A^2$$
 (3.6)

248

ANOVA tests were carried out as in Section 3.2. The model *p*-values << 0.05 (Table 4)
imply that all the models are significant to within a confidence level of 95%. In the case
of the hydrogen concentration model (Eq. 3.3), the only significant term is the

- microwave power linear term (*P*) since its *p*-value is 0.0029. No significance was found
- for the other terms. In the case of the CO model (Eq. 3.4), both the *P* and the *A* terms

- have significance, their *p*-values 0.0028 and 0.0310 being respectively. For CO₂, a
- linear model was found to be the most accurate (Eq. 3.5). Both linear terms were found
- to be significant for the CO_2 model. However, the trend of the CO_2 model was the
- 257 opposite to that of the CO model. This is because CO and CO₂ are related by
- 258 *Boudouard*'s equilibrium (Eq. 3.7):
- 259

260
$$C + CO_2 \leftrightarrow 2 CO$$
, $\Delta H^0 = 173 \, kJ \, mol^{-1}$ (3.7)

Table 4. ANOVA for the gas fraction component models.

Source	Sum of squares	Degree of freedom	Mean Square	F value	<i>p</i> -value	Significance (to within a 95% confidence level)	R^2 Adj- R^2
		Response	e: Hydrogen d	concentratior	1 (H2, vol.%)		
Model	37.809	5	7.562	5.726	0.0277	Significant	
Р	30.811	1	30.811	23.330	0.0029	Significant	
A	0.195	1	0.195	0.148	0.7138	Not significant	0.827
PA	0.727	1	0.727	0.550	0.4862	Not significant	0.682
P^2	4.588	1	4.588	3.474	0.1116	Not significant	
A^2	2.361	1	2.361	1.788	0.2297	Not significant	
	R	esponse: Ca	arbon monoxi	de concentra	tion (CO, vo	l.%)	
Model	62.265	5	12.453	6.967	0.0175	Significant	
Р	42.210	1	42.210	23.615	0.0028	Significant	
A	14.045	1	14.045	7.857	0.0310	Significant	0.853
PA	5.566	1	5.566	3.114	0.1281	Not significant	0.731
P^2	3.674	1	3.674	2.055	0.2016	Not significant	
A^2	0.003	1	0.003	0.002	0.9708	Not significant	
	1	Response: C	arbon dioxid	e concentrati	on (CO ₂ , vol.	.%)	
Model	63.830	2	31.910	50.230	< 0.0001	Significant	0.010
Р	53.770	1	53.770	84.640	< 0.0001	Significant	0.918
Α	10.050	1	10.050	15.830	0.0032	Significant	0.899
Response: Methane concentration (CH ₄ , vol.%)							
Model	20.628	5	4.126	6.032	0.0246	Significant	
Р	13.455	1	13.455	19.672	0.0044	Significant	
A	0.146	1	0.146	0.213	0.6606	Not significant	0.834
PA	3.706	1	3.706	5.419	0.0588	Not significant	0.695
P^2	5.083	1	5.083	7.431	0.0344	Significant	
A^2	0.252	1	0.252	0.369	0.5661	Not significant	

263

From Fig. 2(b)-(c) it can be observed that the maximum CO_2 concentration corresponds

to the conditions at which the CO concentration is minimised (low power and a high

quantity of microwave absorbent) and vice versa. This behaviour could be due to the 267 268 fact that, as A increases, the bulk temperature decreases as stated in another study by Salema and Ani [17] and that the lower power leads to lower temperatures, shifting Eq. 269 3.7 to the side of reactants since it has an endothermic enthalpy $(173 \text{ kJ mol}^{-1})$. 270 Finally, in the CH₄ model (Eq. 3.6), P is the only significant factor since it has p-value 271 of 0.0044, and its trend is similar to that of the CO₂ model. Endothermic reforming 272 reaction of methane (Eq. 3.8) is favoured at high power and so CO and H₂ production 273 from these reactions is greater. 274

275
$$CH_4 + CO_2 \leftrightarrow 2H_2 + 2CO, \Delta H^0 = 247 \, kJ \, mol^{-1}$$
 (3.8)

From the mathematical models presented above (Eqs. 3.3-3.6), it can be seen that the 276 277 microwave power has a positive effect on H₂ and CO production, but a negative effect on the production of CO₂ and CH₄. Moreover, the addition of larger quantities of 278 absorbent to MSW inhibits the production of CO but favours the production of CO₂. 279 Table 4 shows that factor A has no significance for the H₂ and CH₄ response variables in 280 the experimental set-up employed in this study. Anyway, it would seem that the 281 282 hydrogen model would not represent the physical process very well since the absorbent would modify the pyrolysis temperature and, hence, affect the production of hydrogen. 283 284 As scale-effects may be masking this point, larger scale experiments are being carried 285 out by our research group.

An interesting point in relation to the quality of the syngas produced is the H_2/CO ratio,

especially in regard to its future use. For example, in the case of methanol synthesis

from syngas, a H_2/CO ratio of around 2 would be the ideal [21]. In this work, it was

found that from the microwave pyrolysis of MSW, this parameter does not vary

- appreciably. H₂/CO ratios between 1.3-1.5 were obtained over the entire experimental
 space analysed.
- 292
- 293 3.3 Effect of the moisture content of the MSW
- Since the wet fraction has a large moisture content (M), H₂O might be expected to play
- an important role in the pyrolysis process via the gasification reactions of the char (Eq.
- 3.9-3.10) and the reforming reactions (Eq. 3.11-3.12), leading to an enrichment in H₂,
- 297 CO or CO₂ depending on the experimental conditions.

298
$$C + H_2 O \leftrightarrow H_2 + CO$$
, $\Delta H^0 = 131 \, kJ \, mol^{-1}$ (3.9)

299
$$C + 2H_2 0 \leftrightarrow 2H_2 + CO_2, \Delta H^0 = 90 \, kJ \, mol^{-1}$$
 (3.10)

$$CH_4 + H_20 ↔ 3H_2 + CO, ΔH^0 = 205 kJ mol^{-1}$$
 (3.11)

301
$$C_n H_m + n H_2 0 \leftrightarrow (n + m/2) H_2 + n C 0$$
 (3.12)

302 The MIP experiments on W were conducted at both low and high power (150 W and 450 W). In addition, the quantity of microwave absorbent was evaluated along with M_{\star} 303 using A ratios of 0.2:1 and 1:1, as shown in Table 2. The results of the analysis of the 304 305 gas fraction for these cases are reported in Table 5. As might be expected from Eq. 3.10, the H₂ and CO₂ concentrations obtained from the wet fraction at 150 W are greater than 306 those obtained from the dry fraction. In fact, water condenses at the top of the reactor, 307 which is at a much lower temperature than the sample. In other words, there is a water 308 309 reflux effect which favours a vapour-rich atmosphere and the gasification of the char. 310 However, when the power is increased to 450 W, there are no appreciable differences in the gas composition of W and D. Therefore, Eq. 3.9 might be taking place to a much 311 greater extent than Eq. 3.10, since the endothermic character of Eq. 3.9 is favoured by 312

- the higher temperatures. Moreover, M also affects the CH₄ concentration in the gas
- fraction by reducing its content. This may be due to the steam reforming reaction of
- methane (Eq. 3.11). At 450 W the higher temperature would favour the thermal
- cracking and the steam reforming reaction of CH₄ much more than at 150 W. Finally, it
- could be remarkable that the percentage of syngas within the gas fractions seems to be
- similar regardless the moisture content. However, this behaviour might not be
- 319 generalised yet.

Table 5. Comparison of the gas fraction from the MIP of the dry fraction (D) and the wet fraction (W) with different *A* ratios (0.2:1 and 1:1) at 150 W and 450 W.

	Р	V = 150 W		
		0.2:1	A =	1:1
	D	W	D	W
H_2 (vol.%)	49.37	53.40	48.94	57.03
CO (vol.%)	36.89	33.72	31.46	23.45
CO ₂ (vol.%)	6.52	7.62	9.59	15.33
CH_4 (vol.%)	5.43	3.99	7.70	3.05
S (vol.%)	86.26	87.12	80.40	80.48
Gas production $(L_{STP}/g_{MSW})^*$	0.64	0.92	0.58	1.06
$SP\left(L_{STP}/g_{MSW}\right)^*$	0.55	0.73	0.47	0.85
	Р	=450 W		
	A =	0.2:1	A =	1:1
	D	W	D	W
H_2 (vol.%)	53.54	53.10	54.30	53.61
CO (vol.%)	38.60	37.42	38.66	41.13
CO ₂ (vol.%)	2.17	5.17	3.50	3.77
CH_4 (vol.%)	4.22	2.50	2.50	1.01
S (vol.%)	92.14	90.52	92.96	94.74
Gas production $(L_{STP}/g_{MSW})^*$	0.79	0.94	0.73	1.10
$SP\left(L_{STP}/g_{MSW}\right)^*$	0.73	0.85	0.68	1.05

323 * Calculated on a dry basis

324

Also important is the effect of moisture on syngas production. At 450 W, the W fraction

produces 35% more syngas than the D fraction when a ratio 1:1 is employed, but their

values converge at a ratio of 0.2:1, there being a difference in this case of around 15%.

328 There is also a marked difference between these values at 150 W, since the W fraction

produces much more syngas than fraction D (45% higher) when a 1:1 ratio is employed.
Once more, these values converge at a ratio of 0.2:1, the wet fraction producing 25%
more syngas than the dry fraction. This suggests that moisture content favours the
production of a greater amount of gas, an impression that is confirmed by the results in
Table 5. This is an interesting point since it implies that the drying and pyrolysis
processes of MSW could be integrated in the MIP process to increase the production of

Both the quantity of absorbent and the moisture content influence the gas composition.

However, in the case of the wet fraction the amount of absorbent added has a much

338 greater influence. Hence gasification of the char from the wet fraction is bound to occur.

At 150 W, a greater increase in H_2 and CO_2 is observed at a ratio of 1:1 than at 0.2:1.

However, at 450 W the CO_2 concentration decreases as CO is produced due to the

increase in the quantity of absorbent. Thus, it may be assumed that the *Boudouard*

equilibrium (Eq. 3.7) is controlling the process in these conditions. In contrast, the

343 syngas production results reported in the above paragraph suggest that the addition of

more microwave absorbent to the wet fraction improves the production of syngas,

which is not the case with the dry fraction. Once more, this evidences the importance of

the char gasification reactions.

347 4. Conclusions

This study has demonstrated the possibility of recycling the char obtained from municipal solid wastes for use as microwave absorbent in the microwave pyrolysis process. Although microwave power is the most important factor for controlling the pyrolysis, since higher power allows better conversion to syngas and syngas production, the presence of the char in the material subjected to microwave pyrolysis is of

353	overwhelming importance. This allows a rich syngas $(CO + H_2)$ fraction (c.a. 80-94
354	vol.% of the gas fraction) to be obtained with a low microwave power. A minimum A
355	ratio of 0.2:1 was found to be necessary to induce the microwave pyrolysis process. In
356	addition, low ratios seem to be more suitable for obtaining a higher concentration and
357	production of syngas. Moisture also plays an important role, as it favours H_2 and CO_2
358	production, especially at low power, in addition to improving the syngas production
359	process.

360

361 List o	f abbre	viations
------------	---------	----------

- 362 *A*: absorbent-to-waste ratio (kg:kg)
- 363 ANOVA: Analysis of variance
- 364 *D*: Dry fraction from organic municipal solid waste
- 365 MIP: Microwave induced pyrolysis
- 366 MSW: Municipal solid waste
- 367 *P*: Microwave power (watts)
- 368 RSM: Response surface methodology
- 369 S: Syngas concentration (vol.%)
- 370 SP: Syngas production $(L_{STP} g_{MSW}^{-1})$
- 371 W: Wet fraction from organic municipal solid waste

373 Acknowledgments

- The research leading to these results has received funding from the European Union
- Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 311815
- 376 (SYNPOL project).

References

- [1] <u>http://epp.eurostat.ec.europa.eu/cache/ITY_OFFPUB/KS-SF-11-031/EN/KS-SF-11-031-EN.PDF</u>, (Last access 28.10.2013).
- [2] <u>http://epp.eurostat.ec.europa.eu/cache/ITY_PUBLIC/8-04032013-BP/EN/8-04032013-BP-EN.PDF</u>, (Last access 28.10.2013).
- [3] <u>http://www.synpol.org/</u>, (Last access 28.10.2013).
- [4] M. He, B. Xiao, S. Liu, Z. Hu, X. Guo, S. Luo and F. Yang, Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts, J. Anal. Appl. Pyrol. 87 (2010) 181-187.
- [5] F. Ateş, N. Miskolczi and N. Borsodi, Comparison of real waste (MSW and MPW) pyrolysis in batch reactor over different catalysts. Part I: Product yields, gas and pyrolysis oil properties, Bioresour. Technol. 133 (2013) 443-454.
- [6] I. Velghe, R. Carleer, J. Yperman and S. Schreurs, Study of the pyrolysis of municipal solid waste for the production of valuable products, J. Anal. Appl. Pyrol. 92 (2011) 366-375.
- [7] W.K. Buah, A.M. Cunliffe and P.T. Williams, Characterization of Products from the Pyrolysis of Municipal Solid Waste, Process Saf. Environ. 85 (2007) 450-457.
- [8] D. Beneroso, J.M. Bermúdez, A. Arenillas and J.A. Menéndez, Microwave pyrolysis of microalgae for high syngas production, Bioresour. Technol. 144 (2013) 240-246.
- [9] A. Domínguez, J.A. Menéndez, Y. Fernández, J.J. Pis, J.M.V. Nabais, P.J.M. Carrott and M.M.L.R. Carrott, Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas, J. Anal. Appl. Pyrol. 79 (2007) 128-135.
- [10] Y.F. Huang, W.H. Kuan, S.L. Lo and C.F. Lin, Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis, Bioresour. Technol. 101 (2010) 1968-1973.
- [11] J.A. Menéndez, E.J. Juárez-Pérez, E. Ruisánchez, J.M. Bermúdez and A. Arenillas, Ball lightning plasma and plasma arc formation during the microwave heating of carbons, Carbon. 49 (2011) 346-349.
- J.A. Menéndez, A. Arenillas, B. Fidalgo, Y. Fernández, L. Zubizarreta, E.G. Calvo and J.M. Bermúdez, Microwave heating processes involving carbon materials, Fuel Process. Technol. 91 (2010) 1-8.
- [13] A. Domínguez, J.A. Menéndez, M. Inguanzo and J.J. Pis, Investigations into the characteristics of oils produced from microwave pyrolysis of sewage sludge, Fuel Process. Technol. 86 (2005) 1007-1020.
- [14] Y. Fernández, A. Arenillas, M.A. Díez, J.J. Pis and J.A. Menéndez, Pyrolysis of glycerol over activated carbons for syngas production, J. Anal. Appl. Pyrol. 84 (2009) 145-150.
- [15] V. Gedam and I. Regupathi, Pyrolysis of Municipal Solid Waste for Syngas Production by Microwave Irradiation, Nat. Resour. Res. 21 (2012) 75-82.
- [16] Z. Hu, X. Ma and C. Chen, A study on experimental characteristic of microwaveassisted pyrolysis of microalgae, Bioresour. Technol. 107 (2012) 487-493.
- [17] A.A. Salema and F.N. Ani, Microwave-assisted pyrolysis of oil palm shell biomass using an overhead stirrer, J. Anal. Appl. Pyrol. 96 (2012) 162-172.
- [18] E.T. Thostenson and T.W. Chou, Microwave processing: fundamentals and applications, Composites Part A: Applied Science and Manufacturing. 30 (1999) 1055-1071.
- [19] M.A. Jamaluddin, K. Ismail, M.A. Mohd Ishak, Z. Ab Ghani, M.F. Abdullah, M.T.-u. Safian, S.S. Idris, S. Tahiruddin, M.F. Mohammed Yunus and N.I.N. Mohd Hakimi, Microwave-assisted pyrolysis of palm kernel shell: Optimization using response surface methodology (RSM), Renewable Energy. 55 (2013) 357-365.
- [20] R. Zhou, H. Lei and J. Julson, The effects of pyrolytic conditions on microwave pyrolysis of prairie cordgrass and kinetics, J. Anal. Appl. Pyrol. 101 (2013) 172-176.

[21] X. Yin, D.Y.C. Leung, J. Chang, J. Wang, Y. Fu and C. Wu, Characteristics of the Synthesis of Methanol Using Biomass-Derived Syngas, Energy Fuels. 19 (2004) 305-310.