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ABSTRACT 

Calcium looping, CaL, is rapidly developing as a postcombustion CO2 capture technology because 

its similarity to existing power plants using circulating fluidized bed combustors, CFBC. In this 

work we present experimental results from a pilot built to demonstrate the concept at the MWth 

scale. The pilot plant treats 1/150 of the flue gases of an existing CFBC power plant (“la Pereda”) 

and it has been operated in steady state for hundreds of hours of accumulated experimental time. 

The pilot includes two 15 m height interconnected circulating fluidized bed reactors: a CO2 

absorber (or carbonator of CaO) and a continuous CaCO3 calciner operated as an oxy-fuel CFBC. 

Operating conditions in the reactors are resembling those expected in large CaL CO2 capture 

systems in terms of reactor temperatures, gas velocities, solid compositions and circulation rates 

and reaction atmospheres. The evolution of CO2 capture efficiencies, solid properties (CO2 carrying 

capacity and CaO conversion to CaCO3 and CaSO4) have been studied as a function of key 

operating conditions. It is demonstrated that CO2 capture efficiencies over 90% are feasible with a 

supply of active CaO slightly over the molar flow of CO2 entering the carbonator. Closure of carbon 

and sulphur balances has been satisfactory during steady state periods. A basic reactor model 

developed from smaller test facilities seems to provide a reasonable interpretation of the observed 

trends. This should facilitate the further scale up of this new technology.  
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INTRODUCTION 

Postcombustion Calcium Looping technology has the theoretical potential to achieve a 

substantial reduction in energy penalties (Shimizu et al. 1999, Abanades et al. 2005, Romeo et al. 

2008, Romano et al. 2009, Hawthorne et al. 2009, Yongping et al. 2010, Lasheras et al. 2011, 

Martínez et al. 2011a, Lisbona et al. 2010, Zhao et al. 2013) and cost (Abanades et al.  2007, Li et 

al. 2008, Romeo et al. 2009, Zhao et al. 2013) respect to more developed postcombustion and 

oxyfuel combustion systems. This is because CaL is the only CO2 postcombustion technology able 

to generate additional power from the additional heat input required to drive the sorbent 

regeneration reaction (calcination of CaCO3). Both carbonation and calcination reactions are carried 

out at very high temperatures (around 650ºC for carbonation and over 900ºC for calcination in a 

rich atmosphere of CO2). The basic concept of postcombustion calcium looping, CaL, is represented 

in Figure 1 and was first proposed by Shimizu et al. (1999). Other Calcium looping processes 

concepts using combustion systems (Abanades et al.  2005, Ramkumar et al. 2010, Martínez et al. 

2011b,  Abanades et al.  2011, Edwards and Materic 2012, Junk et al. 2012) or precombustion 

systems (see review by Harrison, 2008) are being developed worldwide, but they are much less 

developed than the processes represented in Figure 1. This is by far the concept that has 

experienced the fastest developing pace, because the strong similarities and synergies with existing 

combustion technology in circulating fluidized beds, including recent oxyfired CFB developments 

(Myöhänen et al.  2009).  

As indicated in Figure 1, the CO2 is captured from the flue gas of an existing power plant using 

CaO particles as a sorbent (at 650ºC) and calcining the resulting CaCO3 in a different unit to 

regenerate CaO while producing a rich stream of CO2. In the most standard configuration, both the 

carbonator and calciner are large scale circulating fluidized bed reactors, CFBs, operating at 

velocities between 3-5 m/s to allow compact reactor designs. There is a need in this particular CaL 

concept of an Air Separation Unit to oxy-burn a substantial flow of coal in the calciner and supply 

the energy needed for CaCO3 decomposition. It should be evident from Figure 1 that the calciner 
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resembles a full oxyfired new power plant system, where highly suitable heat sources for a new 

steam cycle are available. In particular, the energy used for the endothermic calcination reaction is 

fully recovered in the carbonator at a temperature around 650ºC.  Furthermore, large make up flows 

of limestone to compensate for modest absorption capacity of highly cycled particles of CaO are 

economically feasible (Abanades et al.  2004), since fresh particles of CaO can be generated in the 

calciner by feeding a certain make up flow of crushed limestone (usually a very low cost material).  

This flow of limestone also purges inert materials (coal ashes and CaSO4), and the integration of the 

rich purge of CaO with a cement plant or other large scale used of CaO (e.g.:  desulfurization 

sorbent in the existing power plant) allows for an even larger flow of sorbent make up (see review 

by Dean et al.  2011). 

As recently noted by Sanchez-Biezma et al. (2012), great progress has been achieved in different 

projects around the world developing CaL. The most aggressive scale up of the technology has been 

pursued under the EU funded “CaOling” project (www.caoling.eu), that relied first in a 

demonstration of the concept in lab scale pilots with continuous solid circulation (Alonso et al. 

2010, Charitos et al.  2010, Rodriguez et al. 2011a, Rodríguez et al.  2011b, Charitos et al. 2011).  

Also part of CaOling project was the design, commissioning and operation of a 1.7 MWth pilot in la 

Pereda (Spain) to test the postcombustion Ca-looping concept under a real industrial environment. 

This pilot entered operation in January 2012, establishing successfully the solid circulation system 

components and obtaining the first results operating in dynamic and continuous mode (Sanchez-

Biezma et al.  2012). Other developing efforts in Germany have also achieved positive results in 

large pilots: the 1 MWth pilot in Darmstadt (Galloy et al. 2011, Plötz et al. 2012)   and in 0.2MW in 

Stuttgart University (Hawthorne et al. 2011, Dieter et al. 2012).  There is also a wider R&D 

community publishing valuable results at laboratory scale and small pilot level (see review by 

Blamey et al. 2011) and the IEAGHG created in 2009 a Network on High Temperature Solid 

Looping (www.ieaghg.org) where these actors meet regularly to discuss progress of the different 

variants of the CaL technology. Therefore, postcombustion CaL is now an established “promising 
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technology” that faces similar credibility challenges than other emerging capture options. The main 

challenge is of course to progress in the experimental demonstration of the concept at increasing 

scale and realistic conditions, validating the benefits expected and overcoming the obstacles that 

may appear in the path towards large scale demonstration.  

This paper is intended to contribute to the process of scaling up of this postcombustion CaL 

technology. We describe briefly the CaL test facility of La Pereda and the experimental method to 

reach steady state operation. We then present the experimental results from the pilot and how the 

closure of carbon and sulphur balances is achieved during continuous operation in air mode 

calcination as well as in oxy-combustion calcination mode.  We then apply a modelling approach 

successfully used for the interpretation of experimental results from smaller pilots (Alonso et al. 

2010, Rodríguez et al. 2011a, Alonso et al. 2011, Charitos et al. 2011) that should be valuable for 

scaling up purposes.  

 

EXPERIMENTAL 

The pilot is only briefly summarized here as it has been described in detail elsewhere (Sanchez-

Biezma et al. 2011). The calcium looping reactor system is made up of two interconnected CFB 

reactors of 15 m height with an internal diameter of 0.65 in the carbonator and 0.75 in the calciner. 

The reactors are connected to high efficiency cyclones: the cyclone of the carbonator separates the 

flue gas lean in CO2 from the partially carbonated solids; the calciner cyclone separates the 

concentrated CO2 stream leaving the oxyfired combustor from the solids rich in CaO. Solids fall by 

gravity from the cyclones to double loop seals, that are bubbling fluidized beds allowing for the 

control of the solid circulation between reactors.  Part of the solids coming to each loop seal return 

to the reactor from which the solids are coming (internal solid circulation) and the rest circulates to 

the other reactor (from carbonator to calciner or from calciner to carbonator). The relevance of this 

internal solid circulation streams to maintain certain solids inventories in the reactors has been 

discussed elsewhere (Charitos et al. 2010, Diego et al. 2012).  
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Figure 1. General scheme of a power plant incorporating a Ca-looping system and schematics of 

the “la Pereda” pilot plant facility, with the main mass flows and operating variables involved in the 

test campaigns. 

 

The calciner is able to operate under air combustion or under oxy-fuel combustion conditions, 

using O2 and CO2 coming from tanks of liquefied gases. The carbonator is equipped with removable 

cooling bayonet tubes which allow variable heat extraction from the reactor under different 

conditions of temperature, solid circulation flows and different intensity of the exothermic 

carbonation reaction of CaO. Flue gas from the power plant is blown to the carbonator with a fan. 

There is a continuous limestone and coal feeding system connected to the calciner which allows 

working in a steady state combustion and sorbent feeding modes. There is also a continuous solid 

removal system in the calciner made up with a water cooled screw feeder. Instrumentation 

including temperature, pressure and continuous gas analysis from different points is available. 

Many other ports are available for solid sampling and local solid circulation rates measurement with 
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isokinetic probes. Subsequent analysis of such solids samples (in terms of particle size distribution, 

chemical composition and reactivity towards CO2 capture and SO2 capture) are carried out in the 

lab, using thermogravimetric equipment described elsewhere (Gonzalez et al. 2008). 

The calciner has been run aiming at full conversion of CaCO3 to CaO in all test discussed in this 

work. This has been possible by allowing a sufficiently high calcination temperatures (20-30ºC over 

the limit given by the equilibrium of CO2 on CaO at the exit of the calciner) and a certain O2 excess 

at the exit of the combustion-calciner reactor (over 5% vol) to ensure high coal combustion 

efficiencies in the calciner. Optimization of combustion conditions of the calciner in order to reduce 

this level of O2 is considered outside the scope of the present work. We focus in this work on 

investigation of the carbonator reactor operated with a steady state flow of CaO as indicated in 

Figure 1. 

Concerning the performance of the carbonator reactor, previous experience from small test 

facilities in continuous mode (Alonso et al. 2010, Rodríguez et al. 2011a, Charitos et al. 2011) have 

been used to define the experimental methodology to measure and characterize the main variables 

that affect the performance of the carbonator as a chemical reactor: 

- The inventory of solids in the carbonator (nCa in Figure 1) is determined continuously through 

the measurement of the pressure difference between the plane above the distributor and the 

exit of the reactor. Occasional test where the fluidization has been switched off and the solids  

have been extracted from the carbonator have confirmed the direct relationship between bed 

ΔP and the solid inventory (the contribution of the acceleration of the circulating solids to the 

ΔP in the carbonator is negligible)   

- The average carbonator reactor temperature (Tcarb in Figure 1). The carbonator reactor 

displays a certain axial temperature profile due to the effect of the bayonet tubes, the 

exothermic character of the carbonation reactor (more intense in the  dense bottom part of the 

carbonator) and the arrival of high temperature solids from the calciner (at between 830ºC-

920ºC). Internal solid circulation (within the reactor through solid convective flows and 
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through the recirculating solids from the cyclone-double loop seal system) can drastically 

reduce this difference of temperature to 20-30ºC, so that an average temperature in the reactor 

can be calculated. 

- The molar flow of CO2 entering the carbonator with the flue gas (FCO2in in Figure 1). The inlet 

concentration of CO2 changes little during the experiments (between 12%-12.5%v) as these 

correspond to the flue gas composition of the power plant. These concentrations are measured 

continuously, as well as the mass flow of flue gas entering the carbonator reactor. 

- The average composition of the solids arriving to the carbonator and their activity towards 

CO2 and SO2 capture (Xcarb and Xsulf in Figure 1). This cannot be monitored continuously but 

frequent solid sampling from suitable entry and exit ports is feasible using isokinetic probes. 

Chemical analysis of the solids samples taken during each experiment is carried out in order 

to determine the CaO, CaCO3 and CaSO4 content.  The solids samples are also tested in a TG 

equipment described elsewhere [Rodríguez et al. 2011a] to determine the CO2 carrying 

capacity and the carbonation reaction rates.  

- The molar circulation rate between carbonator and calciner reactors (FCa in Figure 1). As will 

be discussed later, when the system is operating in stationary state, this variable can be 

estimated by two methods in parallel: the closure of the carbon balance and the closure of the 

heat balance in the carbonator. The total solid circulation rate through the risers can also be 

measured using a suction probe in isokinetic conditions at the exit of the riser. The carbonator 

riser is 15 m height and solids are largely disengaged from the gas at this height. Therefore, 

upwards solid circulation at that point are close to total solid circulation.  

. The test campaigns carried out in the pilot plant add up to more than 1800 hours of operation of 

the interconnected reactors in combustion mode in the calciner. A total of 380 hours have been 

achieved in CO2 capture mode (with capture efficiencies between 40-95%), out of which 170 hours 

have been achieved in CO2 capture mode with stable oxyfuel combustion of coal in the calciner. 
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Table 1 summarizes the main range of operating conditions used during CO2 capture tests in the 

pilot.  

 

Table 1 Range of operating conditions and the main variables involved during CO2 capture tests 

in “la Pereda” 1.7MWth  pilot plant. 

  

Carbonator temperature (ºC)  Tcarb 600-715 
Carbonator superficial gas velocity inlet (m/s)  u gas carb in 2.0-5.0 
Inlet CO2 volume fraction to the carbonator  ν CO2 carb in 0.12-0.14 
Inlet SO2 concentration to the carbonator (ppmv)  CSO2  100-250 
Inventory of solids in the carbonator (kg/m2)  Ws 100-1000 
Maximum CO2 carrying capacity of the solids  Xave 0.10-0.70 
Calciner temperature (ºC)  Tcalc 820-950 ºC 
Inlet O2 volume fraction to the calciner  νO2 calc in 0.21-0.35 
Inlet CO2 volume fraction to the calciner  νCO2 calc in 0-0.75 
CO2 capture efficiency  Ecarb 0.4-0.95 
SO2 capture efficiency  Esulf 0.95-1.00 

 

RESULTS AND DISCUSSION 

As mentioned above the focus of this paper is on steady state results, but it may be of interest to 

discuss first the main transitions in the system from the start up to the steady state periods. A typical 

experimental run starts with the calcination of a batch of  limestone in the facility,  that is used 

initially as a heat carrier to transfer heat from the reactors (where the start up propane burners 

operate) to the rest of the installation. Once the initial batch of solids are calcined, the calciner is 

switched to oxy-fuel combustion mode. After that, fresh limestone is fed to the calciner only to 

adjust the activity of the sorbent and compensate for attrition losses, while solids are removed to 

keep constant the total inventory in the system and to avoid the accumulation of inert solids (CaSO4 

and ashes). Figure 2 presents a typical experiment from the onset of the calcination of the initial 

total solid inventory in the system to the steady state period in oxyfuel combustion-calcination 

mode.  The main events are hightlighted in the Figure and summarized in the auxiliary table 

included in the Figure. During this particular test, the inlet gas velocity was kept between 3.6-3.9 

m/s in the carbonator and between 3.8-4.2 m/s in the calciner. 
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The initial period corresponds to the calcination of the solids present in the system, and this 

process can be followed using several parallel approaches. The first one is by determining the 

composition of the solids extracted periodically from the system. Figure 2a shows the carbonate and 

sulfate molar composition of the solids taken from the carbonator reactor at different times. During 

this period of the experiment, the carbonate content of the solids in the carbonator dropped from 54 

to 5%w between 8:00 and 11:00.  It can be also observed that the sulfate accumulates in the system 

as there is no extraction of the solids from the reactors during this period.     

Another approach to follow the calcination period is by comparing the CO2 released by 

calcination in the calciner and the CO2 captured in the carbonator. Figure 2b shows the comparison 

of both terms along the experiment. During the initial 3 hours, there is a net production of CO2 in 

the calciner due to the calcination of the carbonate present in the initial inventory of solids (see in 

Figure 2b). However, it can be seen in Figure 2b that once the batch of solids is completely 

calcined, the CO2 produced by calcination becomes equal to the CO2 capture in the carbonator. 

During this initial period, the net amount of CO2 released in the carbonator calculated from the 

difference between the CO2 calcined and captured is about 7.2 kmol. This value matches the 

amount of CO2 that should be produced by the calcination of the initial batch of solids present in the 

system (that has an initial carbonate content of 54 %w). The agreement between both values also 

indicates that the total inventory of solids in the system can be estimated sufficiently accurately 

using pressure measurements in the facility. The CO2 produced in the calciner increased above the 

CO2 captured in the carbonator from 13:30 due to continuous addition of fresh limestone into the 

system from that point. 
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Event Time Description 
1 8:05 Start of calcination of the batch of solids and feeding of flue gas 
2 11:00 End of calcination of the batch of solids 
3 12:00 Switch to oxy-combustion mode 
4 13:30 Continuous limestone feeding 
5 16:50 Modification of carbonator inlet gas velocity 
6 18:00 First solid extraction from the calciner 

 

Figure 2. Example of a typical experimental run in la Pereda pilot plant.  

 

Attending now to the CO2 capture efficiency, Ecarb, this is quite low (below 0.4) at the beginning 

of the calcination period (see Figure 2c)  due to the low amount of CaO present in the system. But, 

as the calcination progresses and the CaO content in the solids increases,  Ecarb rises to a value close 

to that limited by the equilibrium. The equilibrium CO2 capture efficiency (Ecarb eq) shown in Figure 

2c has been calculated using the average temperature in the carbonator.  

The temperature of the calciner and the efficiency of the calcination also changes with time in 

the first few hours of this experiment (Figure 2a). As the initial batch of solids is being calcined, the 
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temperature of the calciner increases progressively until it reaches a value above 900 ºC. This trend 

in the calciner temperature tends to cause an increase in the temperature of the solids arriving to the 

carbonator, thus increasing the temperature of this reactor and reducing the equilibrium CO2 capture 

efficiency. In these conditions it is necessary to adjust the heat transfer area provided by the bayonet 

tubes to stabilize the carbonator temperature at the target temperature in the experiment. At 12:00, 

the calciner was switched to oxy-combustion mode by supplying a mixture of O2/CO2. 

At 13:30, the Xave of the sorbent had decreased to a residual value of 0.067 after more than five 

hours without adding fresh limestone into the system. Thus, a continuous flow of limestone was set 

up at this point to increase the activity of the sorbent circulating  in the system. This flow of fresh 

limestone increased progressively the Xave up to a value 0.18 at 23:00. The addition of the limestone 

also increases progressively the inventory of solids in the system, which reaches a maximum value 

of 900 kg/m2 at 18:00 in the carbonator reactor. From this point, solids were removed using the ash 

extraction system in order to maintain the inventory of solids below this value in this particular 

experiment. During this period, the increase of Xave and the inventory of solids led to an increase of 

the CO2 capture efficiencies, which almost reaches the maximum CO2 capture efficiency limited by 

the equilibrium from 20:00. The addition of fresh limestone and the extraction of solids also 

reduced the CaSO4 content to around 5 mol%. 

As stated above, after several hours of stable operation, the activity of the material circulating 

between reactors decays towards a residual activity. This concept of residual activity was first 

detected in thermogravimetric studies (Grasa et al. 2006, Lysikov et al. 2007, Chen et al. 2009) but 

has also been observed in continuous test of sufficient duration in stationary state (Charitos et al. 

2011). It is important to confirm this general deactivation trend of the sorbent in the “la Pereda” 

pilot. An example of the steady state experiments conducted with this purpose was carried out 

during 12 hours without feeding limestone, allowing the sorbent activity to fall towards the residual 

value. Attrition losses were negligible during this test because the bed inventory was made up with 

what was  left after calcination (in air combustion mode) of the large batch of fresh limestone. It is 
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already known (Jia et al. 2007, Gonzalez et al. 2010, Coppola et al. 2012) that attrition mainly takes 

place in the first calcination of the material. We confirmed that the attrition rate drastically reduces 

afterwards, as the particles “surviving” the first calcination are those with best mechanical 

properties and the internal sintering taking place during carbonation-calcination cycles further 

strengthen the particles. Attrition during calcination is highly dependent on limestone type and 

attrition conditions in CaL systems should be identical to those present in large scale CFBC 

systems. Figure 3a shows the evolution with time of the CO2 carrying capacity (Xave) of the solid 

samples extracted from the system during this test against the effective number of cycles. In this 

continuous and well mixed reactor system, the effective number of carbonation-calcination cycles 

of the solids has been calculated using the following equation:  

 

avetotal,Ca

t

0
carbin2CO

th Xn

dt)t(EF
N

∫
=         (1) 

 

This number, Nth, is only an approximation that accounts for the number of times that the moles 

of CO2 captured could carbonate the total inventory of Ca  (nCa,total) up to its average CO2 carrying 

capacity (Xave) (see Charitos et al. 2011 for a more detailed methodology).  In Equation 1,  Ecarb(t) 

represents the instantaneous CO2 capture efficiency, while nCa,total stands for the total inventory in 

the system. Xave is measured at different time points analyzing the samples taken from the system 

and its value is considered constant between these points. The product, FCO2inEcarb(t), is calculated 

continuously through gas analysis, while the total calcium moles, nCa,total, are known through 

measurements of bed inventories and the chemical analysis of the solid samples. 

As can be seen in Figure 3a, the drop in the CO2 carrying capacity observed during this experiment 

is consistent with the deactivation curve (Grasa et al. 2006) when it is tested in a TGA in absence of 

SO2 (shown as a solid black line in Figure 3a). Sulfation conversion of the solids increases with Nth, 

as the total inventory of material in the reactor system (including loop seals and standpipes) 
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progressively reacts with SO2. More than 95% of the SO2 coming into the carbonator in the flue gas 

from the existing CFBC power plant (200-300 ppmv during this period) and more than 95% of the 

sulfur in the coal feed to the calciner,  is captured by the solids circulating in the CaL system.  
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Figure 3. (a) Evolution of sorbent utilization with the average number of carbonation-calcination 

cycles of particles in the system and (b) CO2 capture and SO2 capture efficiencies when operating 

with solids with residual CO2 carrying capacity of Figure 3a. 

 

This is consistent with results recently reported by Arias et al. (2012) from experiments carried 

out in a 30 kWth pilot. Furthermore, by knowing the amount of Ca in the system and the SO2 that is 

capture in the carbonator and calciner, the evolution of the sulphate conversion, Xsulf, can be 

calculated (shown as solid grey line in Figure 3a). Excellent closure of the SO2 mass balance was 

achieved, as can be seen from the good agreement between experimental and calculated values. 

Figure 3a also shows the total sorbent utilization which is the sum of the CO2 carrying capacity and 

CaSO4 molar conversion. As can be seen in this Figure, the total sorbent utilization (Xef = Xsulf+Xave 

= 0.19) is higher than the expected and after 35 cycles the sorbent with a molar fraction of 0.086 in 

CaSO4 is still able to achieve a molar carbonate conversion of 0.1.  This qualitative trend (effective 

sorbent utilizations higher than expected) has been confirmed in other similar test and has economic 
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implications for the CaL systems as it will make more feasible to operate the system with low make 

up flows of fresh limestone.  

It is interesting to note that the “deactivated” material (Nth>35) circulating between calciner and 

carbonator in Figure 3a is still able to capture CO2 in the carbonator with an efficiency over 80%, as 

long as there is sufficient bed inventory in the reactor. This is shown in Figure 3b, that corresponds 

to an experimental period of 50 minutes at the end of the experimental run of 12 hours without 

addition of limestone when the CO2 carrying capacity (Xave) of the solids present in the system was 

around 0.10. Figure 3b also represents SO2 capture efficiency in the carbonator at the same time 

period. In this figure we can see that SO2 capture efficiency in the carbonator was kept well above 

0.95. The high SO2 removal obtained during the CO2 capture tests in the pilot plant confirms the 

trends observed at laboratory scale and in the 30 kWth facility which indicated that CFB carbonator 

are excellent desulfurization units (Arias et al. 2012).  

As indicated in Table 1, many other stationary state periods where tested using a range of 

operating conditions and operating in steady state. Figure 4 shows an example of one hour of 

operation in two such steady states, comparing the effect of the average activity of the solids, Xave, 

on the normalized CO2 capture efficiency (Ecarb/Ecarb eq) which is an indication of the carbonator 

reactor efficiency. In both experiments, the inventory of solids in the carbonator was kept at the 

same value and the inlet gas velocity to the carbonator was around 4.0-4.3 m/s. During the first 

steady state (shown in grey), the activity of the solids (Xave) was around 0.11. Under these 

experimental conditions, the normalized CO2 capture efficiency achieve was around 0.65, and 

increased to 0.90 during the second steady (shown in black) state when the activity of the sorbent is 

0.21. This is consistent with previous works (Alonso et al. 2010, Charitos et al. 2010, Rodríguez et 

al. 2011a) that have shown that two of the most relevant operating parameter in a carbonator reactor 

are the inventory of solids in the bed and the average activity of the solids in such reactor. Therefore 

the trends observed during all stationary state periods such as the example in Figure 4 have been 

analyzed following the methodology reported in these references. 
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Figure4. Comparison of two steady states of one hour (ugas carb in=4.0-4.3 m/s, average carbonator 

temperature=660-690ºC, Xave=0.11 (grey), Xave=0.21 (black)). 

 

 The CO2 capture efficiency in the carbonator is defined as the amount of CO2 captured respect 

to the CO2 fed to the carbonator and can be calculated as follows: 

 

                      
in2CO

out2COin2CO
carb F

FFE −
=  (2) 

 

where FCO2 is molar flow of CO2 (mol/m2s).  In a steady state, the overall CO2 mass balance of the 

system can be written and calculated using three approaches.  
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Each term of this equation can be calculated independently using experimental measurements 

available in the pilot plant, and the values can be compared to analyze the closure of carbon 

balances at steady state in the system. The CO2 removed from the gas phase is the most reliable 

term in the mass balance of Eq. 3 as this can be calculated directly from the continuous 

measurements of flue gas fed into the carbonator and the gas composition entering and leaving the 

reactor. Additional sources of CO2 in the carbonator from the combustion of unconverted fuel in the 

calciner are evaluated from small differences detected in the flow of oxygen after and before the 

carbonator.   

It is also helpful to interpret the carbonator performance to compare the CO2 carbonation 

efficiency (Ecarb) with the maximum CO2 removal efficiency achievable from the gas phase (Ecarb 

eq). This is estimated from the minimum CO2 molar fraction (νCO2 eq) allowed by the equilibrium 

(Baker, 1962) which is a function of the average temperature in the carbonator.  

Under steady state conditions, when there is no accumulation of CaCO3 in the carbonator bed, 

the fraction of CO2 captured from the gas phase has to be the same as the CaCO3 formed in the 

circulating stream of CaO. Thus, the following mass balance should be fulfilled: 

 

                              )XX(FFE calccarbCain2COcarb −×=    (4) 

  

where FCa is the molar flow (mol/ m2s) of CaO entering into the carbonator, Xcarb is the carbonate 

content of the solids leaving the carbonator and Xcalc is the carbonate content of the solids coming 

from the calciner and entering the carbonator. If the solid circulation rate between reactors (Gs) is 

known, the molar flow (FCa) can also be obtained from the analysis of the samples taken from the 

reactors. 
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Considering the calciner and carbonator as perfect mixed reactors, it can be assumed that the 

composition of the solid in these beds is the same as the one measured at the exit of the reactors. 

Then, the molar flow of CaO (FCa) can be estimated from the Equation (4) above and from the 

experimental determination of carbonate and ash content of the solids extracted from carbonator 

and calciner during the experiment. As was indicated above, another approach to calculate the mass 

flow of solids between reactors is to solve an energy balance to the carbonator. Since the pilot is 

refractory lined, heat losses are modest and can be calibrated. Therefore, it is possible to determine 

during steady state conditions the total solid circulation rate of solids arriving to the carbonator (Gs) 

from the calciner loop seal of Figure 1. All the terms in the heat balance can be estimated 

continuously from instrumentation available in the pilot plant and the measurements from the heat 

balance calibrated to correct systematic deviations. As an example, Figure 2c showed both the 

calculated solid circulation rate (Gs) through calciner during the experimental run from the heat 

balance and the same Gs calculated from Equations (4) and (5).   

Figure 5 compares the two terms in the carbon balance of Equation 4 for all stationary states 

achieved in the operation of the plant in CO2 capture mode. As can be seen from Figure 5, the 

CaCO3 formed by carbonation and circulating in the stream of solids between reactors reasonably 

agrees with the CO2 removed from the gas phase.  The main source of uncertainty in this mass 

balance closure concerns the representativity of the values of Xcalc and Xcarb used in Eq 4.  

The other relevant CO2 mass balance closure expressed in Equation (3) is particularly useful for 

reactor design: this concerns the comparison of the flow of CO2 captured from the gas phase and the 

flow of CO2 reacting with the CaO particles present in the carbonator bed inventory at any 

particular time. This second term can be estimated as the product of two parameters, the amount of 

solids present in the bed and the average reaction rate of the solids.  
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To close this mass balance, we have applied the carbonator model proposed by Alonso et al. 

(2009) and methodology used by Charitos et al. (2011) to interpret the experimental trend observed 

in the lab scale Ca-looping facilities. Parallel efforts to build more elaborate reactor models for the 

carbonator and calciner reactors are on going within the CaOling project (Ylätalo et al. 2012). 
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Figure 5. Comparison between the CO2 removed from the gas phase in the carbonator and the 

increment in CaCO3 flow between reactors. 

The reactor model used in the present work considers the CFB carbonator as a perfect mixed 

reactor for the solid phase and a plug flow reactor for the gas phase. For the average reaction rate of 

the solids, we assume that the particles react at a constant rate until they reach their maximum 

carbonate conversion (Xave) and after that point the reaction rate is zero. This simplification of the 
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reaction rate is consistent with the experimental data available (see for example (Grasa et al. 2008)) 

and it is has been shown to be accurate enough for the interpretation of the experimental data in the 

small facilities (Charitos et al. 2011). According to this assumption, the reaction rate of the particles 

depends on the CO2 carrying capacity of the sorbent (Xave) and the average CO2 concentration in 

the carbonator and can be expressed as follows: 

 

( )eq2CO2COaves
reactor

Xk
dt
dX

ν−νϕ=⎟
⎠
⎞

⎜
⎝
⎛

   (7) 

 

where ks is a constant reaction rate that depends on the limestone used and ϕ is a gas-solid 

contacting factor defined by Rodriguez et al. (2011). Once defined the reaction rate term, the active 

inventory of calcium can be defined taking into account the assumption of a perfect mixing reactor. 

According to this, the fraction of active solids in the carbonator (fa) is that corresponding to the 

fraction of particles with a residence time lower than the time needed to increase the carbonate 

content from Xcalc to Xave (t*).  
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The characteristic carbonation reaction time (t*) can be calculated by determining Xcalc and Xave 

from the solid taken and using the reaction rate define in Eq 7 (see references Alonso et al. 2009 

and 2010, Rodríguez et al 2011, Charitos et al. 2011). By combining Eqs. 7-8 into Equation 6, a 

simple expression can be obtained that links all the operating parameters in the Ca-looping with the 

CO2 capture efficiency: 

 

( )eq2CO2COaveasCain2COcarb XfknFE ν−νϕ=  (9) 
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The apparent constant rate (ks ϕ) in Eq. 9 can be calculated as a fitting parameter by comparing 

the CO2 capture from the gas phase and the CO2 reacting with the CaO in the carbonator bed using 

Eq. 6. The constant rate (ks) can be measured in TGA for the limestone used for the tests (an 

average value of 0.45 s-1 consistent with other similar limestones as reported in Grasa et al. 2008). 

 

Figure 6. Comparison between the CO2 removed from the gas phase and the CO2 reacting with CaO 

in the carbonator bed. 

 

Figure 6 shows the final comparison between the CO2 removed from the gas phase and the CO2 

reacting with CaO in the carbonator bed. As can be seen, there is only a rough closure of this mass 

balance, which can still be considered reasonable when taking into account the inherent 

uncertainties in the determination of the parameters of the involved in Equation 9. These are 

discussed in more detail in a previous work reporting data from a much smaller pilot (Rodriguez et 

al 2011).  The qualitative similarities in the closure of the CO2 mass balances represented in Figures 

5 and 6 with those reported from a smaller pilot provides confidence about the scalability of these 

results in what refers to CO2 capture in the carbonator reactor.    

 

CONCLUSIONS 

The results obtained in a 1.7MWth pilot confirm that postcombustion calcium looping is a 

promising technology for CO2 capture that can strongly benefit for scaling up purposed from 

existing knowledge on mature Circulating Fluidized Bed Combustion Technologies. CO2 capture 

efficiencies over 90% have been achieved in a wide range of experimental conditions in the CFB 

carbonator, including continuous operation using solids with modest CO2 carrying capacities. 

Closure of carbon and sulphur balances has been satisfactory during steady state periods lasting for 
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up to 380 hours of accumulated experimental time with CO2 capture, including 170 hours with the 

calciner operating under oxy-fuel combustion mode.  

A valuable data base of results have been acquired for model validation and scale up purposes,  

including test conducted in full oxy-combustion mode in the calciner. A basic reactor model has 

been used to interpret the results obtained.  The apparent reaction rates and CO2 carrying capacities 

of the materials in the system are in agreement with those found from smaller facilities.  The 

positive experience in the 1.7 MWth La Pereda pilot plant should facilitate the scale up of this new 

technology and provide the necessary confidence for the demonstration of Ca-looping technology 

making use of the available expertise in CFB combustion and parallel developments in related oxy-

fuel combustion.  
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NOMENCLATURE 

Acarb m2 carbonator cross-section 
Ecarb  CO2 capture efficiency 
Ecarb eq  Maximum CO2 capture efficiency allowed by the equilibrium 
Esulf  SO2 capture efficiency 
fa  fraction of active particles in the carbonator bed 
FCa mol/m2s Ca molar flow circulating between reactors 
FCO2calc mol/s molar flow of CO2 produced by calcination leaving the calciner 
FCO2FO mol/s molar flow of CO2 produced by calcination of fresh limestone 
FCO2in mol/m2s molar flow of CO2 entering the carbonator 
FCO2out mol/m2s molar flow of CO2 leaving the carbonator 
FO mol/s make-up flow of limestone 
Gs kg/m2s solid flow circulation rate from carbonator to calciner 
ks s-1 constant reaction rate 
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nca mol/m2 total inventory of Ca in the carbonator bed 
nca, total mol total inventory of Ca in the experimental facility 
nca,active mol/m2 active inventory of Ca in the carbonator bed 
Nth  average number of carbonation calcination cycles of CaO particles in 

the system 
PMs kg/mol average molar weight of the solids 
t* s time required to increase the carbonate content from Xcalc to Xave 
Tcalc ºC average calciner temperature 
Tcarb ºC average carbonator temperature 
ugas m/s gas velocity 
Ws kg/m2 total inventory of solids in the carbonator 
Xash  mass ash content of the solids 
Xave  average CO2 carrying capacity  
Xcalc  molar carbonate content of the solid in the calciner 
Xcarb  molar carbonate content of the solid in the carbonator 
Xef  total sorbent utilization 
Xsulf  molar sulphate sulphate conversion of the solids 
ΔP mbar pressure drop in the riser 
ϕ  gas-solid contacting effectivity factor 
ν  volume fraction  
 

REFERENCES 

-Abanades, J.C., Alonso, M., Rodríguez, N., 2011. Biomass combustion with in situ CO2 capture 

with CaO. I. process description and economics. Industrial Engineering Chemistry Research 50, 

6975-6981. 

-Abanades, J.C., Anthony, E.J., Wang, J., Oakey, J.E., 2005. Fluidized bed combustion systems 

integrating CO2 capture with CaO. Environmental Science & Technology 39, 2861–2866. 

-Abanades, J.C., Grasa, G., Alonso, M., Rodríguez, N., Anthony, E.J., Romeo, L.M., 2007. Cost 

structure of a postcombustion CO2 capture using CaO. Environmental Science and Technlogy 41, 

5523-5527. 

-Abanades, J.C., Rubin, E.S., Anthony, E.J., 2004. Sorbent cost and performance in CO2 capture 

systems. Ind. Eng. Chem. Res. 43, 3462-3466. 

-Alonso, M., Rodríguez, N., Abanades, J.C., 2009. Modelling of a fluidized bed carbonator to 

capture CO2 for a combustion flue gas. Chemical Engineering Science 64, 883-891. 



 23

- Alonso, M.; Rodríguez, N.; González, B.; Grasa, G.; Murillo, R.; Abanades, J. C. Carbon dioxide 

capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and 

process development. Int. J. Greenhouse Gas Control 2010, 4, 167. 

-Alonso, M., Rodríguez, N., González, B., Arias, B., Abanades. J.C., 2011. Biomass combustion 

with in situ CO2 capture by CaO. II Experimental results. Industrial & Engineering Chemistry 

Research, 50, 6982-6989. 

-Arias, B., Cordero, J.M., Alonso, M., Diego, M.E., Abanades, J.C., 2012. Investigation of SO2 

capture in a circulating fluidized bed carbonator of a Ca looping cycle. Industrial and Engineering 

Chemistry Research 52, 2700-2706. 

-Barker, E.H., 1962. The calcium oxide-calcium dioxide system in the pressure range 1-300 

atmospheres. J. Chem. Soc. 70, 464-470. 

-Blamey, J., Anthony, E.J., Wang, J., Fennell, P.S., 2010. The calcium looping cycle for large-scale 

CO2 capture. Progress in Energy and Combustion Science  36: 260-279. 

-Charitos, A., Hawthorne, C., Bidwe, A.R., Korovesis, L., Schuster, A., Scheffknecht, G., 2010. 

Hydrodynamic analysis of a 10 kWth calcium looping dual fluidized bed for post-combustion CO2 

capture. Powder Technol. 200, 117–127. 

-Charitos, A., Hawthorne, C., Bidwe, A.R., Sivalingam, S., Schuster, A., Spliethoff, H., 

Scheffknecht, G., 2010 a. Parametric investigation of the calcium looping process for CO2 capture 

in a 10 kWth dual fluidized bed. International Journal of Greenhouse Gas Control 4, 776-784. 

-Charitos, A., Rodríguez, N., Hawthorne, C., Alonso, M., Zieba, M., Arias, B., Kopanakis, G., 

Scheffknecht, G., Abanades, J.C., 2011. Experimental Validation of the Calcium Looping CO2 

Capture Process with Two Circulating Fluidized Bed Carbonator Reactors, Ind. Eng. Chem. Res. 

50, 9685-9695. 

-Chen, Z., Song, H.S., Portillo, M., Lim, C.J., Grace, J.R., Anthony, E.J., 2009. Long-term 

calcination/carbonation cycling and thermal pre-treatment for CO2 capture by limestone and 

dolomite, Energy & Fuels 23, 1437-1444. 



 24

-Coppola, A., Montagnaro, F., Salatino, P., Scala, F., 2012. Fluidized bed calcium looping: The 

effect of SO2 on sorbent attrition and CO2 capture capacity. Chemical Engineering Journal 445, 

207-208. 

-Dean, C.C., Blame,y J., Florin, N.H., Al-Jeboori, M.J., Fennell, P.S., 2011. The calcium looping 

cycle for CO2 capture from power generation, cement manufacture and hydrogen production. 

Chemical Engineering Research and Design  89, 836-855. 

-Diego, M.E., Arias, B., Abanades, J.C., 2012. Modeling the solids circulation rates and solids 

inventories of an interconnected circulating fluidized bed reactor system for CO2 capture by 

calcium looping, Chemical Engineering Journal 198–199, 228-235. 

-Dieter, H., Hawthorne, C., Bidwe, A.R., Zieba, M., Scheffknecht, G., 2012. The 200 kWth dual 

fluidized bed calcium looping pilot plant for efficient CO2 capture: plant operating  experiences and 

results. Proceeding of the  21st International conference on fluidized bed combustion, Naples 

(Italy), 397–404. 

-Edwards, S.E.B, Materic, V., 2012. Calcium looping in solar power generation plants. Solar 

Energy 86, 2494-2503. 

-Galloy, A., Ströhle, J., Epple, B., 2011. Design and operation of a 1 MWth carbonate and chemical 

looping CCS test rig. VGB Power Tech 91, 64–98. 

-González, B., Alonso, M., Abanades, J.C., 2010. Sorbent attrition in a carbonation/calcination pilot 

plant for capturing CO2 from flue gases. Fuel 89, 2918-2924. 

-González, B., Grasa, G.S., Alonso, M., Abanades, J.C., 2008.  Modeling of the Deactivation of 

CaO in a Carbonate Loop at High Temperatures of Calcination. Ind. Eng. Chem. Res. 47, 9256-

9262. 

- Grasa GS, Abanades JC. CO2 capture capacity of CaO in long series of carbonation/calcination 

cycles. Ind Eng Chem Res 2006; 45: 8846-51.  

- Grasa, G., Abanades, J.C., Alonso, M., González, B., 2008. Reactivity of highly cycled particles 

of CaO in a carbonator/calcination loop. Chemical Engineering Journal 137, 561-567. 



 25

-Harrison, D.P., 2008. Sorption-enhanced hydrogen  production: A review.  Ind. Eng. Chem. Res. 

47, 6486-6501. 

-Hawthorne, C., Dieter, H., Bidwe, A., Schuster, A., Scheffknecht, G., Unterberger, S., Käb, M., 

20111. CO2 capture with CaO in a 200 kWth dual fluidized bed pilot plant. Energy Procedia 4, 

441–448. 

-Hawthorne, C., Trossmann, M., Galindo, C. P., Schuster, A., Scheffknecht, G., 2009.  Simulation 

of the carbonate looping power cycle. Energy Procedia 1, 1387–1394. 

-Jia, L., Hughes, R., Lu, D.Y., Anthony, E.J. 2007. Attrition of calcining limestone in circulating 

fluidized-bed systems. Ind. Eng. Chem. Res. 46, 5199-5209. 

- Junk, M., M. Reitz, J. Ströhle, B. Epple. Thermodynamic evaluation and cold flow model testing 

of an indirectly heated carbonate looping process. 2nd International Conference on Chemical 

Looping, 26-28 September 2012, Darmstadt, Germany 

-Lasheras, A., Ströhle, J., Galloy, A., Epple, B., 2011. Carbonate looping process simulation using a 

1D fluidized bed model for the carbonator. Int J Greenhouse Gas Control 5: 686–93. 

-Li, Z.-S., Cai, N.-S., Croiset, E., 2008. Process analysis of CO2 capture from flue gas using 

carbonation/calcination cycles, AlChE J., 54. 1912-1925. 

-Lisbona, P., Martinez, A., Lara, Y., Romeo, L.M., 2010.  Integration of carbonate CO2 capture 

cycle and coal-fired power plants. A comparative study for different sorbents. Energy Fuels 24, 

728–36. 

-Lysikov, A.I., Salanov, A.N., Okunev, A.G., 2007. Change of CO2 carrying capacity of CaO in 

isothermal recarbonation-decomposition cycles. Ind. Eng. Chem. Res. 46, 4633-4638. 

-Martínez, I., Murillo, R., Grasa, G., Abanades, J.C., 2011a. Integration of a Ca looping system for 

CO2 capture in existing power plants. AlChE J. 57, 2599–2607. 

-Martínez, I., Murillo, R., Grasa, G., Rodríguez N., Abanades, J.C., 2011b. Conceptual design of a 

three fluidised beds combustion system capturing CO2 with CaO. International Journal of 

Greenhouse Gas Control 5, 498–504 



 26

-Myöhänen, K., Hyppänen ,T., Pikkarainen, T., Eriksson, T., Hotta, A., 2009.  Near Zero CO2 

emissions in coal firing with oxyfuel CFB boiler. Chem. Eng. Technol. 3, 355-363. 

-Plötz, S., Bayrak, A., Galloy, A., Kremer, J., Orth, M., Wieczorek, M., Ströhle, J., Epple, B., 2012. 

First carbonate looping experiments with a 1 MWth test facility consisting of two interconnected 

CFBs. Proceedings of the 21st International conference on fluidized bed combustion, Naples (Italy), 

421–428. 

-Ramkumar, S., Fan, L.-S. 2010. Calcium looping process (CLP) for enhanced noncatalitic 

hydrogen production with integrated carbon dioxide capture. Energy & Fuels 24, 4408-4418. 

-Rodríguez, N., Alonso, M., Abanades, J.C., 2011 a. Experimental investigation of a circulating 

fluidized-bed reactor to capture CO2 with CaO. AlChE J. 57, 1356-1366. 

-Rodríguez, N., Alonso, M., Abanades, J.C., Charitos, A., Hawthorne, C., Scheffknecht, G., Lu, 

D.Y., Anthony, E.J., 2011 b. Comparison of experimental results from three dual fluidized bed test 

facilities capturing CO2 with CaO. Energy procedia 4, 393-401. 

-Romano, M., 2009. Coal-fired power plant with calcium oxide carbonation for postcombustion 

CO2 capture. Energy Procedia 1, 1099–1106. 

-Romeo, L.M., Abanades, J.C., Escosa, J.M., Paño, J., Giménez, A., Sánchez-Biezma ,A., 

Ballesteros, J.C., 2008. Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing 

power plants. Energy Conversion Management 49, 2809–2814. 

-Romeo, L.M., Lara, Y., Lisbona, P., Escosa, J.M., 2009. Optimizing make-up flow in a CO2 

capture system using CaO. Chem. Eng. J. 147, 252-258. 

-Sánchez-Biezma, A., Ballesteros, J.C., Diaz, L., de Zárraga, E., Álvarez, F.J., López, J., Arias, B., 

Grasa, G., Abanades, J.C., 2011. Postcombustion CO2 capture with CaO. Status of the technology 

and next steps towards large scale demonstration. Energy Procedia 4, 852-859. 

-Sanchez-Biezma, A., Paninagua, J., Díaz, L., Lorenzo, M., Alvarez, J., Martínez, D., Arias, B., 

Diego, M.E., Abanades. J.C. 2012. Testing postcombustion CO2 capture with CaO in a 1.7 MWt 

pilot facility. Energy procedia, In press. 



 27

-Shimizu, T., Hirama, T., Hosoda, H., Kitano, K., Inagaki, M., Tejima, K., 199. A twin fluid-bed 

reactor for removal of CO2 from combustion processes. Chem Eng Res Des 77, 62–68. 

-Ylätalo, J., Ritvanen, J., Arias, B., Tynjälä, T., Hyppänen, T., 2012. 1-Dimensional modelling and 

simulation of the calcium looping process. International Journal of Greenhouse Gas Control 9, 130-

135. 

-Yongping, Y., Rongrong, Z., Liqiang, D., Kavosh, M., Patchigolla, K., Oakey, J., 2010. Integration 

and evaluation of a power plant with a CaO-based CO2 capture system. Int J Greenhouse Gas 

Control 4, 603–612. 

-Zhao, M., Andrew, I. M., Harris, T., 2013. Review of techno-economic models for the retrofitting 

of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2. Energy 

Environ. Sci. 6, 25-40. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


