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Abstract

The ability to model biodiversity patterns is of prime importance in this era of

severe environmental crisis. Species assemblage along environmental gradients is

subject to the interplay of biotic interactions in complement to abiotic filtering

and stochastic forces. Accounting for complex biotic interactions for a wide

array of species remains so far challenging. Here, we propose using food web

models that can infer the potential interaction links between species as a con-

straint in species distribution models. Using a plant–herbivore (butterfly) inter-

action dataset, we demonstrate that this combined approach is able to improve

species distribution and community forecasts. The trophic interaction network

between butterfly larvae and host plant was phylogenetically structured and

driven by host plant nitrogen content allowing forecasting the food web model

to unknown interactions links. This combined approach is very useful in ren-

dering models of more generalist species that have multiple potential interac-

tion links, where gap in the literature may occur. Our combined approach

points toward a promising direction for modeling the spatial variation in entire

species interaction networks.

Introduction

Sound predictions of the composition and function of

future ecosystems are needed to inform decision-making

in the face of global change but remain one of the greatest

challenges facing ecological scientists (Mokany and Ferrier

2011; Nogu�es-Bravo and Rahbek 2011). Predicting which

species will occur when and where, and their potential

interactions requires an understanding of the complex

network of trophic linkages that vary in space and time, as

well as the associated competitive and facilitative effects

(Kissling et al. 2012; Wisz et al. 2013). Species distribution

models are spatially explicit models that are used to fill the

gaps in our knowledge of spatial distributions of biodiver-

sity, and recent advances in these are used to generate

community-level forecasts. These models have only recently

begun to incorporate the effect of biotic interactions, but so

far, only account for these effects indirectly (e.g., based on

correlations in occurrence patterns, Kissling et al. 2012)

and cannot divulge information about the way species may

or may not interact (Guisan and Thuiller 2005). In contrast

to these modeling tools, food web models are used to

understand and predict interaction links between species

within an interaction network in a given location, as well as
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measure patterns in the structure of food webs (Naisbit

et al. 2012), but these models are generally not spatially

explicit (but see Massol et al. 2011). Combining food web

models with species distribution models to predict spatial

variation in community composition remains an unex-

plored area in biodiversity modeling but would be a major

advancement for predictive ecology.

A common approach to improve species distribution

and community models is to consider the distribution of

interacting species as a predictor in statistical models

(Wisz et al. 2013). This approach is particularly straight-

forward when examining pairs of species that are known

to interact, for example, specialist species when there are

at most only a few obligate interactions (e.g., Ara�ujo and

Luoto 2007). In such cases, considering positive and neg-

ative correlations between species occurrence patterns in

models of species distribution and communities generally

improves model accuracy (Pellissier et al. 2010; Boulang-

eat et al. 2012; Giannini et al. 2013; Le Roux et al. 2013).

Accounting for correlations in the distributions between

species within distribution models can generate useful

information on the potential distribution of species given

the presence/absence of the known interacting species and

has enabled improved forecast of species’ fate under

future climate change (Schweiger et al. 2012; Giannini

et al. 2013). However, this approach is more difficult to

apply to more generalist species because it may be

unknown how these species interact with others, espe-

cially in cases where they do not yet co-occur but may do

with global change (Wisz et al. 2013). The difficulty in

accounting for species interactions is further heightened

when the goal is to model all species in a region and

predict community composition or richness. In this case,

species distribution modeling lacks the capacity to predict

occurrences for all the species in a region, while account-

ing for multiple and often partially known interactions

(Wisz et al. 2013).

Recently, a new approach for modeling food webs was

proposed by Rohr et al. (2010). This approach is based

on a statistical model that relates the presence and

absence of known trophic interactions (links) between

species to measureable traits that relate to trophic rela-

tionships (such as energy content, size, digestibility, mor-

phological characteristics linked with feeding, etc.) and

latent traits (Naisbit et al. 2012). These latent traits are

surrogates for properties of interacting species derived

from the combined information in the measured traits

and are estimated a posteriori from the matrix of trophic

interactions. The food web model can be interpolated by

fitting and predicting linkages between species to the

original dataset (here referred as “interpolation”) or

extrapolated by projecting the model on to an indepen-

dent dataset to infer potential links between poorly

known species, or species in a different or hypothetical

community (Clauset et al. 2008). The capacity to extrapo-

late a food web model has so far never been exploited,

nor have food web models been coupled with species

distribution models to predict assemblage structure and

function in space and time (Thuiller et al. 2013).

Here, we propose combining the strength of food web

models and species distribution models to account for

multiple interactions between species. This approach aims

to improve community projections by filling in gaps in

our knowledge about food webs through accounting for

multiple and potentially unknown interaction links across

species. Biotic interactions in species distribution models

among species of higher or lower trophic positions are

quite under-represented (Van der Putten et al. 2010)

compared to within trophic level (e.g., Ovaskainen et al.

2010; Laughlin et al. 2012). Extrapolation of food web

models within a species distribution modeling framework

is therefore a promising approach to fill gaps in our

knowledge about the interactions between species and to

produce more ecologically realistic forecasts. We test our

approach on a comprehensive spatial dataset of plant and

herbivore communities distributed along broad environ-

mental gradients in the Swiss Alps (Pellissier et al. 2013).

Because phylogenies provide relevant information to

understand and predict species trophic associations and

assemblages (Mouquet et al. 2012; Whitfeld et al. 2012;

Best et al. 2013; Pellissier et al. 2013), we reconstructed

two species-level phylogenies for plant species and butter-

fly species. We also measured several commonly used

plant palatability related traits (specific leaf area, leaf dry

matter content, leaf carbon, and nitrogen content Wright

et al. 2004) that are used to fit the food web models. Leaf

palatability traits represent important components medi-

ating plant–herbivore interactions (Ibanez et al. 2013).

We then compared the accuracy of species distribution

and community models using only abiotic predictors and

considering as a predictor the links inferred from the

food web models. We use this approach to address the

questions (1) Can statistical food web models be used for

extrapolation to an independent community? (2) Does

accounting for inferred interaction links in species distri-

bution models improve the accuracy of species distribu-

tion and community composition projections?

Methods

General framework

The core of our methodology resides in combining statis-

tical models for inferring a plant–butterfly food web and

spatial distribution models for projecting the spatial

distributions of butterflies. Food webs are only partially
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known, as observations of herbivores feeding on plants

are likely to be incomplete. Furthermore, in the illustra-

tion dataset (see description below), 38% of the plant–
butterfly pairs of species are never detected in the same

place, and for these pairs, the assessment of the presence

or absence of a trophic link from field observation is

impossible. The inference of the linking probabilities was

achieved in two steps. First, we inferred the food web

consisting of a species subset with at least one trophic

link recorded. We used a statistical model based on latent

traits (Rohr et al. 2010) to infer the probabilities of tro-

phic links between plant and butterfly pairs. The model

used measurable plant traits as predictors and latent traits

to increase the prediction ability. Latent traits are surro-

gates for properties of interacting species (relating to e.g.,

foraging sucsceptibility, palatability, or nutrition content)

derived from the combined information in the measured

traits and are estimated a posteriori from the matrix of

trophic interactions. The probability of occurrence of

species in the landscape was calculated so that they were

constrained by their relationship to the abiotic environ-

ment, and also the “best-case scenario” trophic link prob-

abilities of the butterfly and plant species present at a

given place. This methodology is presented in Fig. 1.

Food web model

The aim of our statistical food web model is to infer the

probability of a trophic link between pairs of butterfly–
plant species. This inference is based on the know matrix

of trophic interaction aij, where aij = 1 if butterfly species

j (as a caterpillar) feeds plant species i. With such binary

data, the standard statistical approach is a logistic regres-

sion (also called generalized linear model with binomial

(1A)

(2A)

(3A)

(1B)

(2B)

Figure 1. Schema of the methodology and data needed to combine food web and species distribution models. We propose fitting a food web

model on observations of trophic interactions between plant and herbivores (1A) in conjunction with traits/phylogenies measured for plant and

insects (2A). The food web model provides a probability of link between each pair of plant and herbivore (3A). In parallel, spatial sampling of

plant and herbivores (1B, size of the dots proportional to butterfly species richness) allows collecting presence and absence of individual species.

The species distribution model finally consists of relating presence and absence of a given herbivore species to climatic predictors (2B), but

including a trophic term consisting in the maximal link probability with the plant species at a given site.
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distribution) and we model the probability PFW
ij of a tro-

phic links between species i and j. As a probability takes

value between zero and one, the standard approach is to

write the model for the logit of the probability. We model

this probability using a similar function as in Rohr et al.

(2010):

logit PFW
ij

� �
¼ aþ b1Nj þ b2AvgHj þ f 1i d

1v1j þ f 2i d
2v2j : (1)

This model has two parts: (1) a standard linear part,

where Nj and AvHj denote the nitrogen level and average

height of plant species i (b1 and b2 are the corresponding

slopes, and a is the intercept) and (2) a latent trait part (

f 1i d1v
1
j and f 2i d2v

2
j are the corresponding parameter esti-

mates) that quantifies, at the species level, what cannot be

captured by the linear part. Each species is characterized

by two latent traits, f 1i and f 2i for the butterfly species j,

and v1j and v2j for plants species i, and d1 and d2 are scal-

ing factors. Leaves with higher nitrogen content are more

palatable and nutritious to herbivores, and larger conspic-

uous plants may potentially be more susceptible to attract

herbivores (Pellissier et al. 2012b). Consequently, the two

latent traits of each butterfly species can be viewed as spe-

cies-specific foraging traits, while the plant latent traits can

be seen as species-specific susceptibility traits. These latent

traits aimed to quantified nonmeasured species’ character-

istics that are important in explaining the presence or

absence of trophic link, while taking into account the

measured species’ traits (here, the nitrogen level and the

average height of plant species). For the latent traits, as

the product of the plant vulnerability latent traits and but-

terfly foraging trait increases, so does the probability that

the butterfly feeds on the plant during its caterpillar stage.

The value of the latent traits is not know a priori, and they

are parameters to be inferred in the food web model from

data on observed trophic interactions.

The likelihood function of our latent trait model is

given by:

L ¼
Y
zij¼1

PFW
ij

� �aij � 1� PFW
ij

� �1�aij
; (2)

where, as the trophic interactions are only partially

observed, the product only takes into account pairs of

species co-occurring at least once, that is, zij = 1. We cal-

culated the number of co-occurrence using the formula

presented in Pellissier et al. (2010). We fit the parameters

of the model using a Monte Carlo Markov Chain proce-

dure (specifically the Metropolis–Hasting algorithm),

adapted from Rohr et al. (2010), equation (2) as the like-

lihood function. The advantage of using the likelihood

function (2) is all the parameters, and the latent traits for

all species can be inferred, even if the trophic network is

incompletely known. Based on the inferred values, and

using the equation (1), we can predict the probability of

interaction between all pairs of butterfly and host plant

species in the food web.

Phylogeny as predictor for latent traits

Our observations used to compute values of latent traits

come from phylogenetically related species and cannot be

considered as independent observations. To account for

phylogenetic pseudoreplications, following Felsenstein

(1985), we used the phylogenetic correlation to predict

the latent traits and also to estimate the trophic link

probabilities for all pairs of species.

Here, we first examined whether there was such corre-

lation in the latent traits, using a phylogenetic regression

(Freckleton et al. 2002). Such correlation is expected, as

plant–herbivore interactions display generally a strong

phylogenetic component (Pellissier et al. 2013). A phylo-

genetic regression is similar to a standard linear regres-

sion, only that it does not assume independence of data

points, but rather that they are correlated (Freckleton

et al. 2002), that is,

vi �N ~v;C kð Þð Þ;
where the variance–covariance matrix C(k) is given by:

C kð Þij ¼
r2 i ¼ j

r2ktij i 6¼ j

�
:

Here, r denotes the variance. This variance–covariance
matrix derives the correlation between two latent traits

given by:

corðvi; vjÞ ¼ ktij;

where k, called Pagel’s k,is the parameter that controls for

the strength in the correlation from the phylogeny and tij
is the fraction of time common between species i and j

on the phylogenetic tree. When the parameters of the

phylogenetic regression are fitted, they can be used to

predict the latent traits of a new species using conditional

expectation of a normal distribution:

vn ¼ ~v þ
X
ij

C kð Þni C kð Þ�1� �
ij
vj � ~v
� �

: (3)

where the sum is made over all species for which at

least one interaction was recorded. Using equation (3),

the latent traits values are predicted for all the species

with unknown information. Based on these predicted

latent traits, the linking probabilities between all pairs of

plant–butterfly species are estimated using equation (1).

The phylogenetic regression is fitted in R (R Develop-

ment Core Team 2013), using the library ape. We tested

the predictive power of the food web model both

internally (fit) and externally using cross-validation.
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We measured it with the area under the curve (AUC) of

a receiver operating characteristic plot (ROC). We tested

whether the ability of the food web model to predict butter-

fly larvae association along with host plants differed among

the main butterfly families using a Kruskal–Wallis test.

Species distribution modeling

We modeled the species distributions using the presence

and absence for each species with four different techniques:

generalized linear model (GLM), generalized additive

model (GAM), gradient boosted model (GBM), and a ran-

dom forest model (RF). These four statistical techniques

are among the most commonly used in species distribution

modeling. To produce predictions independent of the cali-

bration data, we ran a tenfold cross-validation. We ran-

domly split the dataset into ten partitions, successively

calibrating the models with 90% of the data and sequen-

tially predicting the species distributions and communities

based on the remaining 10% data. We used three steps to

model the distribution of each species. First, we modeled

the distribution of the species using only abiotic predictors.

For the GLM model, the probability of presence of a

given butterfly species at a site k is then given by

logit PPR
k

� � ¼ aþ b1ddegk þ b2mindk þ b3sradk:

where ddegk denotes the degree-days, mindk the moisture,

and sradk the solar radiations. Second, in concert with the

abiotic predictors, we added a biotic predictor comprising

the presence or absence at a given site of the obligatory

trophic partner from the biotic interactions as provided

by the literature. Third, alongside the abiotic predictors,

we added a biotic predictor comprising the highest proba-

bility of an interaction link with any of the plants occur-

ring at the site given by the food web model. For the

GLM model, the probability of presence of a given butter-

fly species at site k is then given by

logit PPR
k

� � ¼ aþ b1ddegk þ b2mindk þ b3sradk

þ b4 max
plant j

present in site k

PFW
ij

� �
:

where PFW
ij is the maximum or “best-case scenario” tro-

phic link probability predicted by our food web model.

We calculated the predictive power of the SDMs for each

species, technique and set of predictors using the AUC. In

addition, to obtain the community at each site, we stacked

all the species predicted using the threshold independent

resampling approach developed in Dubuis et al. (2011) and

Pellissier et al. (2013). We evaluated the projected commu-

nity composition to observed values using the Sørenson

index and compared the accuracy between abiotic and bio-

tic SDMs. The Sørenson index is computed as follow:

S�renson index ¼ 2a

2aþ bþ c

where a is the number of species that are both observed

and predicted as being present, b is the number of species

observed as present but predicted as absent, and c is the

number of species observed as absent but predicted as

present. Finally, we also compared species richness

between observed and predicted values following Pellissier

et al. (2012a,b) to assess whether richness predictions are

more accurate, once trophic interactions are included in

the models. Species distribution models were run in R

using the libraries referred in Thuiller et al. (2009). We

compared the species distribution and communities com-

position predictive accuracies between abiotic and biotic

models using paired Wilcoxon signed-rank tests.

Species data

To test our framework, we used a dataset collected in the

Western Swiss Alps spanning an elevation gradient from

1000 m to 3210 m a.s.l. (Fig. 1, Pellissier et al. 2013). Site

selection, which only included open vegetation grasslands,

was conducted following a balanced stratified random

sampling design based on elevation, slope, and aspect in

open grasslands (Hirzel and Guisan 2002). Sampling in

forests was avoided because they constitute suboptimal

habitats for the majority of Papilionoidea species in the

study area. Between May and September 2009 and 2010,

192 plots of 50 9 50 m were sampled across the whole

study area (700 km2, Fig. S1). All butterfly species belong-

ing to the Papilionoidea super-family (sensu Heikkil€a

et al. 2012) were monitored. We collected adult speci-

mens instead of caterpillars because they are more con-

spicuous, more reliable to survey and easier to identify.

For modeling purposes, we only considered species with

at least 10 occurrences and excluded very mobile species,

as these are not necessarily related to environments or

resources where they occur and may constitute noise in

our analyses (77 species in total). Because occurrences of

the butterfly species from our dataset had a low degree of

spatial autocorrelation (mean Moran’s I = 0.14, range

�0.04 to 0.55), we can be confident about the statistical

independence of the inventoried sites (see also Randin

et al. 2009). Plant species as potential hosts for butterfly

larvae were exhaustively inventoried in 4 m2 subplots at

the center of each butterfly plot. We ensured that the veg-

etation was representative of the entire 2500 m2 area from

which the butterflies were monitored. For each site, we

extracted climatic predictors known to influence plant

and insect establishment (Hodkinson 2005). All predictors

were interpolated from meteorological stations using a

digital elevation model (DEM) at 100 m resolution.
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Values for degree-days (above 0°C) and moisture index

(computed as the difference between precipitation and

evapotranspiration) were interpolated following Zimmer-

mann and Kienast (1999). Solar radiation values were

calculated using the tool implemented in ArcGIS 10. For

each plot location, we extracted the values of environ-

mental variables from the associated environmental layers.

To model the trophic interactions between each butter-

fly and host plant using the food web model, we collected

feeding preferences for the butterfly species recorded in

the plots from the literature (Pellissier et al. 2013). In

addition, leaf traits were gathered for all the 215 most

frequent and abundant vascular plant species occurring in

the study area (from a total of ~700 recorded species)

and span major portions of the angiosperm phylogeny

(Pellissier et al. 2013). Leaf nitrogen (N) was measured

from grounded dried leaves and was analyzed by combus-

tion with an elemental analyser. Canopy height was

measured from 10 individuals spanning the species eco-

logical conditions. In addition, the phylogenetic relation-

ships of all butterfly species found in the study area, and

the 215 plant species were inferred using DNA sequences

following methods described in Pellissier et al. (2013) (see

also Supplementary materials, Figures S1 and S2).

Results

Plant traits and phylogeny predict butterfly
and host plant interactions

We fitted the food web model on 89 plant species that

are known to be eaten by at least one butterfly species

(Fig. 2). Based on this calibration dataset, the food web

model was able to predict the trophic associations

between butterfly species and their respective host plants

both internally (AUC fit = 0.96) and externally (AUC

cross-validation = 0.84). We found a significant effect of

plant nitrogen content in the susceptibility of being a

trophic resource for butterfly larvae (slope = 0.145,

P = 0.002). In addition, we found that the two latent

traits were significantly correlated with the plant and but-

terfly phylogenies. Based on the phylogenetic regression

(A)

(B)

Figure 2. Trophic interactions matrix between butterfly species (A) and plant species (B). Each column and row represents a butterfly and a plant

species, respectively. A black dot at an intersection represents a trophic interaction between the two corresponding species, while a blue dot

indicates the absence of co-occurrence. Plants and butterfly phylogenies are presented on the left and bottom of the trophic interaction matrix.

Phylogenetically closely related species tend to interact with the same subset of species. Our statistical food web model uses the trophic

information on co-occurring species to infer the probability of a trophic link between all pair of species. The magnitudes of these probabilities are

represented by the background color, increasing from pale yellow to red.
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using Pagel’s-k correlation structure, we found for plants

latent traits f 1j : Pagel’s-k = 0.8217 P-value < 0.001, plants

latent traits f 2j : Pagel’s�k = 0.6497 P-value < 0.001, and

for butterfly latent traits v1j : Pagel’s�k = 0.7257 P-value <
0.001, butterfly latent traits v2j : Pagel’s�k = 0.9230

P-value < 0.001. The ability of the food web model to

predict butterfly larvae association along with host plants

differed among the main butterfly families (Kruskal–Wallis

test, KW = 17.06, P = 0.004). The highest predictive

performance was achieved for the families Nymphalidae

and Pieridae, followed by Hesperiidae, while the weakest

performance was achieved for Lycaenidae, Papapilionidae,

and the Riodinidae species (Haemearis lucina). (Fig. S3).

Species distribution

Accounting for modeled trophic links between each but-

terfly and host plant in models of species distributions

significantly improved the predictive power of the models

(measured using AUC) compared with a model with only

abiotic components (paired Wilcoxon test, GLM:

V = 790, P = 0.01, GAM: V = 858, P = 0.03, GBM:

V = 843, P = 0.03, RF: V = 758, P = 0.008, Fig. S4).

Model accuracy for some species was largely improved by

accounting for the potential trophic links with host plants

(e.g., Parnassius appolo +21%, Pontia callidice +15%,

Papilio machaon +10%). In contrast, the predictive power

of SDMs for some species declined by incorporating the

biotic component (e.g., Pyrgus andromedae �9%, Poly-

ommatus eros �7%, Plebejus argus �4%).

We found no general improvement in predictive power

when species interactions included in the models were

directly based on the literature (paired Wilcoxon test,

GLM: V = 1150, P = 0.55, GAM: V = 1167, P = 0.57,

GBM: V = 1289, P = 0.82, RF: V = 1129, P = 0.47) or

when the food web was only interpolated to the 89 plant

species used for calibration and those used in the SDMs

(paired Wilcoxon test, GLM: V = 1050, P = 0.48, GAM:

V = 1172, P = 0.59, GBM: V = 1340, P = 0.84, RF:

V = 1127, P = 0.47).

Only models for species from the Nymphalidae (paired

Wilcoxon test, GLM: V = 161, P = 0.04, GAM: V = 166,

P = 0.04, GBM: V = 149, P = 0.03, RF: V = 139, P = 0.01)

and Pieridae (paired Wilcoxon test, GAM: V = 2, P = 0.04,

GBM: V = 2, P = 0.04, RF: V = 2, P = 0.01) families were

improved using the food web model compared with the

model using the raw literature data. Hesperiidae (paired

Wilcoxon test, GLM: V = 44, P = 0.85, GAM: V = 46,

P = 0.87, GBM: V = 31, P = 0.45, RF: V = 25, P = 0.25)

and Lycaenidae (paired Wilcoxon test, GLM: V = 72,

P = 0.56, GAM: V = 69, P = 0.53, GBM: V = 70, P = 0.55,

RF: V = 69, P = 0.53) showed no significant difference in

predictive power.

Species richness and communities
composition

Community predictions were also improved with a relative

increase of 11% in the median composition similarity

(paired Wilcoxon test on Sørenson index: GLM: V = 6950,

P = 0.008, GAM: V = 6867, P = 0.006, GBM: V = 7230,

P = 0.02, RF: V = 7157, P = 0.01, Fig. 3). Across the com-

munities, we found a Sørenson index of 0.46 between

observed and predicted species when trophic interactions

were accounted for in the models, while 0.41 when interac-

tions were not accounted for. In addition, we found a 7%

decrease in the median of absolute values of modeled rich-

ness residuals (paired Wilcoxon test on richness residuals:

GLM: V = 10350, P = 0.007, GAM: V = 10420, P = 0.004,

GBM: V = 9967, P = 0.04; RF: V = 9779, P = 0.05).

Discussion

In nature, species’ interactions and interdependencies are

dynamic under the processes of global change, and

ecological constraints within food web are among those

biotic interactions demonstrated to affect species’ spatial

distributions (Van der Putten et al. 2010; Wisz et al.

2013). Although there have been recent advances in pre-

dicting the distributions of species that potentially con-

tribute to community function (Thuiller et al. 2013), it is

still a challenge to predict the identity of the species that

will interact with each other across trophic levels at a

given place or time (Mokany and Ferrier 2011; Mokany

et al. 2011). This study presents a novel approach that

addresses this challenge by combining the strengths of

food web and species distribution modeling (SDMs) to

produce more ecologically meaningful predictions of spe-

cies distribution and assemblage composition. As such, it

can be applied to any ecosystem where occurrence data

and environmental predictors are available for generating

species distribution predictions, and where a general food

web model can be constructed based on quantifiable

species’ traits and phylogenetic information complement-

ing a partial food web. Here, we illustrate the utility of

this combined approach, examining 125 butterfly species

and 215 potentially interacting plant species in the wes-

tern Swiss Alps. By combining a food web model based

on plant resource characteristics, or phylogenetic informa-

tion, and SDMs, we show that accounting for trophic

interactions between a butterfly and associated food plant

host improves the quality of community forecasts.

Extrapolation of food webs

Given the prevalence of functionally constrained food web

networks in several ecosystems across the globe (e.g., Trus-
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Figure 3. Histograms of Sørenson similarity

with observations and richness residuals of the

stacked species distribution models. Shown are

the results for the random forest modeling

technique with abiotic predictors (in orange

below) and considering in addition the trophic

links with host plant (in blue), for all species

together (A) and the four main families,

Nymphalidae (B), Pieridae (C), Lycaenidae (D),

and Hesperiidae (E).
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sell et al. 2002; Petchey et al. 2005), our approach shows

great promise for providing more ecologically informed

and realistic spatial distributions for species including those

that have incomplete distributional information or when it

is unknown how they interact with other species. A limited

number of studies have attempted to integrate trophic

interactions in biogeographical modeling, including Gravel

et al. (2011), who extended the island biogeography theory

of extinction-colonization processes to account for trophic

interactions. Similarly, Jabot and Bascompte (2012) inte-

grated a spatial meta-community structure to food web

network approaches by studying a bitrophic plant–pollina-
tor interaction. This is the first attempt to combine a food

web model with a niche-based species distribution model.

The ability to extrapolate food web models is useful in the

context of climate change, to predict potential interactions

of species that do not currently co-occur or interact, but

may do so in the future. For example, a recent study docu-

mented a temperature-dependent shift of a butterfly species

to a novel host plant impacting species range (Pateman

et al. 2012; but see Pelini et al. 2010). Our food web model

SDM approach could be used to predict shifts such as this

one.

A unique feature of our approach is the extrapolation

of the food web model to predict missing interactions in

networks and inform species distribution models. Our

food web modeling approach yields a continuous index

of interaction probability, based on the quantitative sup-

port for the presence or absence of interactions between

species derived from information on species’ traits and

phylogeny. Information directly derived from the litera-

ture is less reliable, as there is typically underrepresenta-

tion of information on the interactions among species.

Here, based on known interactions involving 125 butterfly

and 89 host plants, we extrapolate a food web model to

215 host plants (~35% of the regional species pool) for

which relevant functional traits and phylogenetic posi-

tions were available. The extrapolation was based on the

strong associations between nitrogen content and the

probability of a trophic interaction between species and

the correlation between the latent traits and the species

phylogeny. This supports the view that herbivore diet

shows strong phylogenetic constraints (Pellissier et al.

2013) and is driven by plant resource content (Pellissier

et al. 2012a,b). Previous studies also showed that food

webs may be phylogenetically structured (Ives and God-

fray 2006). We found no general improvement of species

distribution models when we considered only interpolated

values on the 89 host plants (~15% of the plant species

pool) or using the raw links in the literature. This may

have arisen because too many potential host plants were

missing resulting in biased inferences of butterfly presence

and absences at sites. We speculate that more accurate

assemblage predictions may have been realized if we had

information for the full regional species pool (~700 plant

species), but for which trait information is currently

unavailable.

Our approach is particularly suited for group of species

that are neither specialist nor extreme generalists, but still

interact with a large number of species, where current

knowledge on species interactions is probably incomplete.

From our dataset, the models built for the butterfly families

Nymphalidae and Pieridae showed the most consistent

improvement in model predictive performance (Fig. 3).

This may perhaps be due to the Nymphalidae family being

composed of more polyphagous species (larger number of

potential host plants) and the display of lower phylogenetic

variability in host plant association (e.g., Satyrinae subfam-

ily feeding on the grass family, Poaceae and Cyperaceae)

(Pellissier et al. 2013). Consequently, the food web model

performed relatively well across this family and could

explain several missing links in the interaction matrix

required to predict communities using SDMs. Models for

species of the Lycaenidae and Hesperiidae were not

improved when information from the food web model was

included in SDMs. Those families display higher degree of

shifts in host-plant associations with closely related lineages

specialized on distinct plant clades (Megens et al. 2005;

Vila et al. 2011). As a consequence, trophic interactions are

more difficult to model and including uncertain interaction

probabilities results in poorest predictions. The overall

trend of improvement at the species and community levels

is likely to arise because the more generalist Nymphalidae

family is dominant in our butterfly dataset, while specialist

species are less frequent (Fig. 3).

One caveat of the approach proposed in this study is

that it is bound to a statistical framework and cannot

demonstrate causality. Even if species ecological knowl-

edge supports the relevance of including trophic interac-

tions in model of species distribution, adding further

abiotic predictors may also have led to model improve-

ment. Hence, we are unable to demonstrate that the

inclusion of trophic interactions actually improves the

models in a causal and mechanistic way. Nevertheless,

despite the fact that our results are correlative, they sug-

gest new research areas related to the inclusion of trophic

interactions in studies of species distributions.

Future perspectives

In addition to improving model predictions, the next-

generation models combining SDMs and food web

models should allow novel and complex ecological ques-

tions to be addressed (Thuiller et al. 2013). For instance,

how might recurrent perturbations in the food web (e.g.,

the extinction of a predator) affect the distribution of
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species in a landscape? Nevertheless, the approach pre-

sented here is a timely contribution in using food web

models to infer the geographical distribution of species in

the landscape, as recently proposed by Massol et al.

(2011) and Jabot and Bascompte (2012). In addition, we

considered a food web that only accounts for bottom-up

interactions that potentially influence species’ distribu-

tions (i.e., the host plant resources that simultaneously

influence butterfly distribution). Our approach can be

extended to both bottom-up and top-down interactions

within food webs. However, this would require a statisti-

cal model that simultaneously fits both food web struc-

ture and the presences/absences of interactions along

environmental gradients, while considering the turnover

in these interactions in time and space.

A key improvement of our approach is that with wide-

spread species, trophic interactions usually shift across a

species range, and as yet cannot be accounted for in SDMs

that do not incorporate food web models. With the plant–
butterfly system, we have illustrated, as plant leaf palatabil-

ity (SLA, LDMC) shift along environmental gradients, this

may in turn influence the interactions with other species

along those gradients (Linder et al. 2012). In such a land-

scape, food web models can potentially account for shifts

in prevailing environmental conditions, an area to be con-

sidered in future modeling efforts. As with many interdisci-

plinary modeling efforts, the refinement of our models is

constrained by the availability of data to fit and evaluate

them. For instance, the dataset used to test these methods

are hindered by a spatial scale mismatch between plant and

butterfly taxa. While the butterfly communities were sam-

pled in plots of 50 9 50 m, only 2 9 2 m grasslands were

sampled for plant species presences. It is probable that if

we had collected host plant data at a scale more representa-

tive of the butterfly plots, better results may have been

achieved. In addition, because of the difficult detection of

larvae in the field, we used presence and absence of adult

butterfly specimens, while we modeled the food web of

larvae. It is likely that the difference between abiotic models

and those considering trophic interactions would have

been more pronounced if records of larvae were used.

Conclusion

Here, we facilitate the integration of ecological rules based

on trophic interactions to constrain prediction of species

assemblages in space and time. The models built using

our combined approach are ecologically more sounds as

they consider biotic interaction that are known a priori to

influence the life history of butterflies. This framework

extends the boundaries of SDMs by accounting for known

and unknown species ecological interactions and produces

more realistic models of species’ assemblages. It also

offers an innovative way to improve our understanding of

community assembly by accounting for the multiple

interactions among different species based on extensive

datasets. Moreover, it informs where species can be found

as a function of their relation to the abiotic environment,

as well as how these species will interact with novel com-

ponents of the biotic environment. Our approach draws

upon the strengths of spatial ecology and trophic ecology,

and should encourage the further integration of these dis-

ciplines to advance efforts to predict species assemblages.
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