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ABSTRACT 
 
The non conservative terms that appear in systems of conservation laws poses an extra 
difficulty when managing practical cases. The influence of this terms in the stability region 
for finite volume schemes is analyzed under the hypothesis of a well balanced scheme, based 
in the C-Property. It is demonstrated that in each particular situation the stability region is 
amplified or reduced, and how in some special cases depends on the initial conditions. The 
time step requirements for stability are defined at the cell edges, related with the traditional 
Courant-Friedrichs-Lewy (CFL) condition. It is applied to the shallow water equations, to the 
shallow water equations with solute transport and to sediment transport problems. 
 

INTRODUCTION 
 
In the basis of a one-dimensional mathematical model for debris flow, Brufau et al., 2000 
presented a Godunov-type finite volume scheme, based on Roe’s numerical approach (Roe, 
1986). Hudson and Sweby, (Hudson and Sweby, 2003) investigated the equations governing bed-load 

sediment transport for steady and an unsteady approaches using a flux-limited version of Roe's scheme and and 
extended it to the two-dimensional case (Hudson and Sweby, 2005) requiring an exact 
balance between the flux gradient and the source term, following the idea of exact 
conservation (C-property) introduced by Bermudez and Vazquez (Bermudez and Vazquez, 
1994). Crnjaric-Zic et al, 2004 extend another type of Godunov-type schemes, ENO and 
WENO, to the one dimensional sediment transport equations, using the mathematical model 
presented by Hudson, (Hudson, 2001) requiring the C-property. In their work the trust term 
was included in the Jacobian matrix of the flux assuming by means of a local linearization, 
remaining the system hyperbolic. Also the C-property was required in the case of quiescent 
flow. Rosatti and Fraccarollo, 2006 presented a mathematical model for high sediment 
transport that was solved by means of a Godunov-type scheme requiring C-property leading to 
accurate results. 
  
In Murillo et al., 2006 the stability region for systems of conservation laws was analyzed, 
making emphasis in the numerical conservation and in the preservation of the positivity 
property of the solution when necessary in the presence of source terms. The numerical 
approach was based in the approximate Roe’s solver, and applied to the shallow water 
equations, where the source term treatment satisfied C-property including both bed and 
friction terms, leading to an exact balance among fluxes and non conservative terms, not only 
in the case of quiescence flow over discontinuous bed topography, also in the case of steady 
fluid in motion.  
 

1. SCALAR EQUATION WITH SOURCE TERMS 
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This is a conservation law expressing that a function u varies and is transported according to 
both the distribution of a flux function f and to a source term s, in the form: 

),( xusfu xt                                                (1) 

At this point, the source term is assumed to follow xs  , and the advection, or transport, 

velocity   is: 

du

df
                                                           (2) 

To introduce the upwind finite volume scheme, (1) is integrated in a volume  : 

0)(),( 



 dfdyxu
t x                                       (3) 

where d  denotes the contour line. If Gauss’s theorem is applied to the second integral in 
(3): 

0d)( 

  

lfdu
t

                                           (4) 

In the one-dimensional case plane, the volumes are actually lines, and considering a regular 
mesh, x  and ld  become unity. Now, a cell-centred finite volume method can be 
formulated where all the dependent variables of the system are represented as piecewise 
constants (first order). Therefore quantities u, f and   are uniform per cell of length x . In 
particular, the first integral in (4) can be approximated by:  
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In the second integral of (16) the flux f is: 

2/12/111 


 iiii fffff                                      (6) 

with iiiii ffufuff   112/1 )()( . 

Using (2), the linearized advection velocity 2/1
~
i  can be defined (Roe, 1986) as: 
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Following the upwind philosophy, which discriminates the sense of propagation according to 
the sign of the advection velocity, the flux difference is split (Roe, 1986) as a sum of waves 
travelling in and out of a given cell: 

2/12/12/12/12/12/12/1
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
  iiiiiii uufff                              (8) 

with 2/)~~(~   



  2/12/12/1

~~~
iii  . 0 

In the case of the source term  : 

2/12/11 


 iiii
x

                                          (9) 

The edge source term 2/1iτ  is also split into in-going and out-going contributions 




  2/12/12/1 )()( iii τττ                                              (10) 

where 

2/12/12
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2/1 )))(~sgn(1()( 




  iii ττ                                        (11) 

The updating scheme for cell i includes only the in-going contribution of flux and source term 
to that cell. 
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Equation (14) is the later so called unified discretization. This can also be expressed in a 
compact form as: 
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Note that 
2/1i  is a dimensionless quantity that plays the role of a local CFL number 

generalized to cases involving source terms. The coefficient 
2/1i  expresses the discrete ratio 

of source term to flux differences. They will be key parameters in our discussion of stability 
conditions. 

 
Influence of 

 2/1i  on the stability condition 

In the homogeneous case 12/1 
i . Then, numerical stability for scheme (14) is ensured if  

     10 2/1  
i ,     01 2/1  

i                                           (15) 

At the same time, the following condition on the monotonicity of the solution holds 
max1min uuu n

i                                                      (16)     

where  n
i

n
i

n
i uuuu 11

max ,,max   and  n
i

n
i

n
i uuuu 11

min ,,min  . 

The aim of the following analysis is to find the criterion that preserves (16) in presence of 
source terms. For that reason, first it is necessary to enforce (16) by requiring  

0~ ,*
2/1 

i ,  0~ ,*
2/1 

i                                                    (17) 

this is possible when 
02/1 

i                                                             (18) 

Given a grid mesh and initial data values, (16) is a limit on the value of the time step to meet 
the stability criterion. For the sake of simplicity, assume that all the 1iu  and 1iu values are 

equal but 1 ii uu . The size of the allowable incoming contributions are bounded by 
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where  





  *,
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*,
21max ,max ii   and 1 iio uuu .  As the updating flux must be limited 

by the quantity that ensures that the final state is included between the initial values ou , the 

following is also true: 
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max                                                   (20) 

Under these conditions maximum allowable time step is formulated in terms of the edge-time 
steps as follows:               

maxtCFLt  ,      CFL  1 

  Nkitt ,12/1max min           

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
,     02/1 i                    (21) 

If 2/1i  is set equal to one in (21), the basic CFL stability condition for the homogeneous 

case is automatically recovered. Otherwise, (21) states a more general rule. At this point it is 
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worth remarking the relevance of the source term discretization when analysing the stability 
region defined by (23). If a unified formulation has been used so that in equilibrium  

0))(( 2/1  
if        0))(( 2/1  

if                                     (22) 

This means that 02/1 
i  and therefore 0,

2/1 
i . The numerical scheme becomes 

unconditionally stable at steady state, and C-Property is achieved. 
 

 

Figure 1. Stability region. First order scheme in presence of source terms 

 
Figure 1 represents the stability region of the scheme as a function of . The point 1  on 
the curve corresponds to the homogeneous case (no source term) and )( *

2/1 it   is the 

maximum time step compatible with stability in this case or CFL condition (Courant et al. 
1952). The rest of the curve corresponds to cases with source terms. In Figure 3 the sign 
relations among fluxes and source terms are displayed. The dashed zone ( 10   ) is the set 
of situations in which it could be possible to use larger time steps than the limit of the 
homogeneous stability: both fluxes and source terms have the same sign so the net 
contributions are reduced. In the case 1 , stability requires a reduction of the time step size 
over that dictated by the CFL condition, as fluxes and source terms have an opposite sign, so 
the net contribution increases. 
 
On the other hand it is possible to find situations where 02/1 i . In that case the source term 

contribution dominates over the flux difference, 
2/12/1 




 
ii

f  and a different line of 

reasoning must be followed. Depending on the requirements over the solution different 
strategies can be tackled. If preservation of the sign of the variable is the main objective,                 
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the contributions between cells are also limited by the initial values stored in the cells so that 
the stability condition is determined also by the initial condition: 
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If u is a gradually varied function, the coefficient   is 1 and the time step limit in (24) 
reduces to (21). Otherwise, 10    and an actual reduction in the time step is required. In 

the special case 0  the local time step 2/1 it  would be zero according to (24). This is 

absurd and must be interpreted as condition of no information crossing that cell edge. In 
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practice, a threshold value equal to the machine accuracy is defined for the minimum value of 
  before imposing the condition that no information crosses the edge. 
 

2. SYSTEMS OF CONSERVATION LAWS WITH SOURCE TERMS 
 
The numerical methods are extended in this chapter to solve hyperbolic non-linear systems of 
equations with source terms, of the form: 

 xxt ,)( USUFU                                              (25)        

 It will be first assumed that the source term S can be expressed as: 
  TUS x                                                       (26)        

so (26) becomes: 
                                      0))()((  UTUFU


t                                            (27) 

The mathematical properties of the hyperbolic system of equations include the existence of a 
Jacobian matrix, J, of the flux F defined as 

                                        
U

F
J




                                                           (28) 

From its eigenvectors, two matrices P and P -1 can be constructed with the property that they 
diagonalize the Jacobian J, 

1 PΛPJ                                                      (29) 
where Λ is a diagonal matrix with eigenvalues in the main diagonal.  
The equivalent to (3) for the system is 

0)( 



 dd
t

TFU


                                      (30) 

If Gauss’s theorem is applied to the second integral in (19): 

0d)( 
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  
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t

TFU                                       (31) 

Now, a cell-centred finite volume method can be formulated where all the dependent 
variables of the system are represented as piecewise constants (first order). Therefore the 
vector quantities U, F and T are uniform per cell of length x . In particular, the first integral 
in (20) can be approximated by:       
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In the second integral of (20) the flux F becomes: 

2/12/111 


 iiii FFFFF                                     (33) 

with iiiii FFUFUFF   112/1 )()( . 

 
Due to the non-linear character of the flux F, the definition of an approximated flux Jacobian, 

2/1
~

iJ  (Roe, 1986) allows for a local linearization and is exploited here. Roe suggested that 

the following conditions should be imposed on the approximate matrix 2/1
~

iJ : 

i)  ),(~~
12/12/1   iiii UUJJ  

ii) ).(~
12/11 iiiii UUJFF    

iii) 2/1
~

iJ  has real eigenvalues and a set of eigenvectors 

iv) )(~)(~~
2/112/12/1 iiiii UJUJJ    if  ii UU 1                                                                  (34) 
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Matrices 1~ P and P
~

 can be built so that they diagonalize the approximate Jacobian matrix 
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and Λ
~

is the diagonal eigenvalues matrix. From the approximate Jacobian (Roe, 1986)  
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m
ii eeJ               m =1,…, N                            (36) 

where N  is the number of eigenvalues, m~ . Following a flux difference procedure, the 
difference in vector U across the grid edge is projected onto the matrix eigenvectors basis  
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Now the contributions in (33) are written as: 
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Since all the variables defined at the cell are uniform, the term T  in the second integral in 
(31), is approximated by  

2/12/111d 


 iiiil TTTTnT                                  (39) 

The normal source difference 2/1iT can also be expressed in function of the eigenvalues and 

eigenvectors of 2/1
~

iJ , using the approximate matrix 2/1
~

iP  in order to reach a unified 

formulation: 
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where the different m  coefficients are computed as 
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

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with   T
i

m
i 2/1

1
2/1 ,....,   β . 

In order to discriminate the sense of advection linked to the sign of the different eigenvalues, 

two matrices Λ
~

 are defined: 

  2
~~~
ΛΛΛ                                                         (42) 

The flux difference across each edge i+1/2 is split into contributions directed to cell i+1 
(positive waves) and contributions directed to cell i (negative waves): 
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For the updating algorithm, as defined for a given cell i, only the contributions directed to cell 
i generated at the edges i+1/2 and i-1/2 are of interest. The contour integral of the numerical 
normal flux is equivalent to the sum of the in-going waves: 
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2
1   . 

In order to enforce an exact equilibrium in steady state cases the normal source difference 

2/1iδT  is be split in two kinds of waves: 




  2/12/12/1 )()( iii δδδ nTnTT                                     (45) 

with the same philosophy as before and where  
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with mmm  ))~sgn(1(2
1  .  

The first order upwind scheme gets the form: 
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This is a compact form with the focus on the waves generated at the cell edges, made of both 
the normal flux difference and the normal source term, and governed by the sign of the 
eigenvalues of the normal flux Jacobian.  
 
As was done in the scalar case, the numerical scheme in (47) can be rewritten as: 
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where the ratio )~/( λ  expresses the influence of the source terms over that of the flux 
differences. 
In absence of source terms, the numerical scheme (47) is stable provided that 
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and the following condition over the conserved variables applies: 
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Monotonicity in the conserved variables in presence of source terms requires that for all m 
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intersection of the stability regions defined for each celerity ,*
2/1

~ m
iλ   

maxtCFLt  ,      CFL  1  

  Nkitt ,02/1max min            






,

2/1
2/1 max m

i
m

i

x
t


,     0,

2/1 

m
i   Nm ,...,1         (54)  

In the particular case of 1,
2/1 


m
i  for all m, (54) expresses the stability condition without 

source terms (CFL condition). 
Equilibrium in steady state cases is ensured if the discretization of the source term has been 
constructed enforcing 

0)~( 2/1  m
i       Nm ,...,1                               (55) 

which is equivalent to 02/1 m
i , leading to an unconditionally stable scheme in this 

particular case.  
Equation (47) can also be expressed 
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x

t
i

m
i

N

m
i

m
i

N

m

n
i

n
i 










 












  2/
,
2/

1
2/

,
2/

1

1 ~~ DDUU 


,     m
i

m
i

m
i 2/12/12/1   UD      (56) 

The stability region for (56) with source terms is enlarged if 10 2/1  
m
i  for all m, as in this 

particular case m
k

m
k UD   . Equilibrium is achieved when all 0m

kD , condition that can 

be automatically derived from (55). 
On the other hand, as seen in the scalar case, when 02/1 

m
i  the source terms dominate over 

the flux differences. If (51) is still desired, the definition of   has to be based on the specific 
necessities of the physical problem. A direct extension of (24) is not possible, as it is not 
feasible to define a m

i 2/1 coefficient if 02/1 
m
i  for all m, since there is not a correspondence 

between the m-waves and the s-variables. In the special case trying to preserve the sign over 
the solution in the s component, expressed as  

01
, n
isU  with 0, 1,, 

n
is

n
is UU        or        01

, n
isU  with  0, 1,, 

n
is

n
is UU       (57) 

the time step in the stability region must be computed following 
 

 m
i

m

i

x
t

*,
2/

2/1 max 






  ,    

 
2/1,

2/1,1,, ,,min




is

isisis

U

UUU




                      (58) 

where 10   . If the conserved variable is gradually varied, the coefficient   is 1 and the 
time step in (58) reduces to (54). 
 
In the particular case 0  (58) predicts a null time step. Actually, this means that no flux 
can cross the associated edge i +1/2. When 0  it is necessary to modify the eigenvalues as 
follows 



 










otherwiseλ

λif
λ

m
i

m
im

i ,*
2/1

,*
2/1,*

2/1 ~
0~0~        



 










otherwiseλ

λif
λ

m
i

m
im

i ,*
2/1

,*
2/1,*

2/1 ~
0~0~                 (59) 

When 1  condition (58) force to strong restrictions in the magnitude of the time step and 
unacceptable computational costs. The reduction of the magnitude of the time step can be 
avoided by means of a conservative strategy based on the redistribution of updating fluxes, 
involving a the local time step iUst , , that replaces the  coefficient in (58). The local time step 

iUst ,  is defined to keep the sign of the variable isU , . Expressing for each variable (50) as 

         )( 2/1,2/1,,
1

,
Us
ii

Us
ii

n
is

n
is tUU 
  ,    



 



3

1

2/1,12/1, ))~((
1

m

m
ii

Us
ii e

x
        (60) 

In the case of require the positivity of the variable isU ,  iUst ,  is computed as:  

      
Us

kii
Us

kii

n
is

iUs

U
t

,2/1,,2/1,

,
,

 
 ,  02/1,  

Us
ii                                 (61) 

It is worth noting that the quantity defined in (61) is always positive due to the condition on 
the contributions in the denominator. In the case of require the positivity of more variables 
more iUst , ’s local steps are defined. Then a redistribution factor itr , is computed as: 

1
max

, 




t

t
r v

it ,       iUsv ttt ,max ,min                                (62) 
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where maxt  is computed as in (79).When in the cell i the ratio 1, itr , we propose to 

redefine the updating fluxes to cells at those edges where 02/1,  
Us
ii  for one Us according to: 

12/1, Us
Us
ii   ,    22/1,12/1,1 Us

Us
ii

Us
ii                                 (63) 

where, to preserve conservation, the quantities 1h , 2h , 1z , 2z  are 

it
Us
iiUs r ,2/1,1     )1( ,2/1,2 it

Us
iiUs r                                 (64) 

By means of this technique the variables are updating computing the time step as in the 
homogeneous case. In some cases negative values can be obtained, as the truly time step is 
various orders of magnitude smaller. In that case it is enough to set max2

1
max tt   and 

repeat the process until no negative values appear. This reduction has an irrelevant 
computational cost, generating always a solution. 

 
3. APPLICATION TO THE 1D SHALLOW WATER EQUATIONS  

 
3.1. 2D mathematical model of the shallow water equations 
In this work the schemes are used to solve the following system of equations: 

 T
xqh,U    

T

gh

h

q
q 












2
,

22

F      
T

wx

z
gh 

















,0S               (65) 

where h is the water depth, g is the acceleration of the gravity, uhq   the unit discharge with 
u the averaged velocity. The bed shear-stress   can be written using the expressions similar 
to the Chézy equation for open-channel hydraulics (Chow, 1973). 
3.2. Application of the explicit upwind numerical scheme 
As stated in §2, the mathematical properties of the hyperbolic system of equations include the 
existence of a Jacobian matrix. In the case of (139) it is convenient to work with the flux 
Jacobian matrix J . Upwind schemes were first developed for the Euler equations (Toro, 
1997). In those equations the numerical flux is first order homogeneous and (110) holds. This 
is not the case for the Saint-Venant equations (Vázquez-Cendón, 1999), and an approximate 
flux Jacobian matrix J~  has to be defined. The approximate matrix is 












uuhg ~2~~
10~

2W

F
J




                                             (66) 

 The eigenvalues and eigenvectors of 60 are: 

kii cu ,
1

2/1 )~(~     kii cu ,
2

2/1 )~(~   

   
ki

ki cu
,

1
, ~~

1~










e ,   
ki

ki cu
,

2
, ~~

1~










e                                 (67) 

where 

1

11
2/1

~



 




ii

iiii
i

hh

huhu
u ,  

2
~ 1

2/1





 ii

i

hh
gc                            (68) 

 
The difference in vector U across the grid edge is and the expression of coefficients m

i 2/1, are: 

2/1
2/1

2/12,1
2/1 )~(~2

1

2 



  i

i

i
i huq

c

h



                                  (69) 

The non conservative term S is included defining 2/1iT , with 
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2/1

2/1
~~

0



 














iw

i xzhg

Τ                                              (70) 

 
Here it is remarkable that if the matrix S were constant the equality   TUS x  would be 

true. Obviously, this is not our case, but the linearization of the non conservative term can be 

considered locally for numerical approximation. Now, following (87) the coefficients m are 
defined as: 

2/1

2,1

~

~
~

2

1









 


iwc

x
zc


                                               (71) 

3.3 Conservation properties and equilibrium at steady state 
The unified discretization of the source terms is successfully constructed when it ensures an 
exact balance in first order approximation (Bermudez and Vazquez-Cendon 1998). For that 
reason, the discretization of the fluxes and source terms proposed in §3.1 is here analysed. 
Steady state in the first order scheme is expressed as: 

2/12/12/1
~~

  iii TUJ                                                 (72) 

According to the form of the matrices involved, the first equation in (147) gives 
0)()( 2/12/1   ii qhu                                             (73) 

which means that the normal discharge is constant at the edge. The second line in (147) yields 

2/1

2/12/12/12/1
22

2/1

~
)~()~2()~~(



 






 


iw
iiiii

x
zhguquch


         (74) 

Considering (148) and expressing the friccion term in functions of the slope energy
2/1ifS , 

2/1

2/1

)~(
~













if

iw

Shg



                                            (75) 

the expression for the water depth profile for uniform flows appears: 

2/12/1
2

2/12/1 )1(   iiii xSzFrh                                  (76) 

where 2/1iFr  is the Roe average Froude number in the normal edge direction, 

2/12/12/1
~/~

  iii cuFr . Equation (152) can be derived directly enforcing  

02/1 
m
iD                                                          (77) 

or 0)~( 2/1  
 m

i   for m=1 and m=2.  Therefore the discretization ensures equilibrium in 

steady state cases correctly for first order approximation, and the C-Property is satisfied not 
only in the case of quiescence flow over discontinuous bed topography, also in the case of 
steady fluid in motion. 
 
3.4 Interpretation of the   coefficient 
In the homogenous case, without source terms, 12/1 

i , the original stability region is 

automatically recovered. The case 02/1 
i , correspond to the equilibrium case (C-Property 

is satisfied) and the numerical scheme becomes unconditionally stable. On the other hand, 
when 02/1 

i  the positivity requirements over the variables are satisfied if the stability 

region is defined using:  
 

2/1

2/11 ,,min




i

iii

h

hhh




 ,      02/1 
i                            (78) 
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Condition (78) is of special relevance when managing wetting and drying fronts. In the 
special case, 01 ih or 0ih ,  is nil and it is necessary to modify the eigenvalues as in (59) 

otherwise positivity condition over the mixture depth is not ensured. As no flux can cross the 
associated edge i+1/2 the following condition must be applied to the future solution at the 
cells sharing edge i+1/2: 

01
1

1  


 n
i

n
i uu                                                (85) 

To avoid strong restrictions in the magnitude of the time step when 1  the redistribution 
factor  is computed as: 

1
max

, 




t

t
r v

it ,       ihv ttt ,max ,min                        (88) 

where iht ,  is computed following (61). 

Also, to preserve conservation it is necessary to impose (93) in the edges where 02/1  
h
i  

and 1, itr .The redefinition of the fluxes according to (63) is done in the cell edges 

where 02/1,  
h
ii . 

Near wetting/drying fronts, characterized by small values of water depth, the bed friction term 
may dominate over any other term, leading to numerical instabilities. When 10    
numerical instabilities are avoided by requiring that friction alone is not able to change the 
sign of the discharge, so the following conditions are enforced over the unit discharge 
function hu  

0)( 1 n
ihu      0)(,)( 1 

n
i

n
i huhu   or      0)( 1 n

ihu      0)(,)( 1 
n
i

n
i huhu     (89) 

These conditions must be included to determine the maximum allowable time step, otherwise 
the numerical scheme leads to numerical instabilities. Let us assume without lost of generality 
the one-dimensional case, where the updated value can be expressed as: 

x

t
xShghuhu n

kf
n
i

n
i 


 )~()()( 1                                           (90) 

that can be rewritten as      












 t

hu

Shg
huhu

n
i

n
kfn

i
n
i )(

)~(
1)()( 1                                            (91) 

The second term on right hand of (91) must be positive to ensure (89). Hence, in general, the 
time step kt , taking into account also condition (86), is limited by 

 
2/1

2/12/1,

2/1
2/1 ~max

,
~

min

















 



i

m
i

m
if

i
i

x

gS

u
t


                            (92) 

to prevent instabilities. 
 

4. APPLICATION TO THE 1D SHALLOW WATER EQUATIONS WITH SOLUTE 
TRANSPORT 

 
3.1. 2D mathematical model of the shallow water equations with solute transport 
In this work the schemes are used to solve the following system of equations: 

 T
x hqh ,,U ,   

T

q
gh

h

q
q 










 ,

2
,

22

F      
T

wx

z
gh 













 0,,0



S               (93) 

where   is the depth averaged solute concentration.  
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3.2. Application of the explicit upwind numerical scheme 
As stated in §2, the mathematical properties of the hyperbolic system of equations include the 
existence of a Jacobian matrix. The eigenvalues and eigenvectors are: 

2/1
1

2/1 )~~(~
  ii cu    2/1

2
2/1 )~~(~

  ii cu    2/1
3

2/1
~~

  ii u                            (94)                        

   
ki

ki cu
,

1
, ~~

1~










e ,   
ki

ki cu
,

2
, ~~

1~










e   
ki

ki

,

3
, 1

0~








e                                 (95) 

where  

1

11
2/1

~~
~




 




ii

iiii
i

hh

hh 
                                                 (96) 

The difference in vector U across the grid edge is and the expression of coefficients m
i 2/1, are: 

2/1
2/1

2/12,1
2/1 )~(~2

1

2 



  i

i

i
i huq

c

h



    2/12/12/1

3
2/1 )(~)(   iiii hh       (97) 

Now, following (87) the coefficients m are defined as: 

2/1

2,1

~

~
~

2

1









 


iwc

x
zc


  ,    03                                  (98) 

3.4 Interpretation of the   coefficient 
When moving to the coupled set of water flow and solute transport equations,   is defined 
with the same purpose in this case as:  
                                                                    hh ,min    

 
2/1

2/11 ,,min




i

iii
h h

hhh




 ,       
 

2/1

2/11

)(

)(,)(,)(min




i

iii
h h

hhh




       02/1 
i      (99) 

In presence of solute fronts, that is clean/mixed water boundaries with continuous water level 
surface this leads to unrealistic results in the solute advance. If this fact is not considered, 
negative values of solute mass and concentration can be obtained and the necessity to tune 
and alter the scheme results becomes necessary. This can be avoided using again a 
conservative redistribution of the updating contributions (Murillo et al. 2006a) that ensures 
adequate bounding properties over the solute concentration. 
Now the redistribution factor is computed as: 

1
max

, 




t

t
r v

it ,       ihihv tttt ,,max ,,min                                 (100) 

and we propose to redefine the updating fluxes to cells at those edges where 
02/1,  

h
ii according to (63) over the water depth and over the solute mass. 

 
5. APPLICATION TO THE 1D BED LOAD SEDIMENT TRANSPORT 

 
The mathematical model used in this work is based in the differential form of the equations 
described by Hudson involving the friction term. In this model the solid phase has a velocity 
equal to the liquid one and presents a uniform distribution over the flow depth. No exchanges 
through the bottom interface are considered. The system of equations are represented by 


















z

uh

h

U ,

















lq

ghhu

hu


)( 2

2
12F ,

























0

0

wx

z
gh




S                          (101) 
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Where h is the water depth, u is the depth averaged velocity, z is the bottom elevation, 
)1/(1    where   is the porosity, g is gravity, w  is the density of the water,   is the bed 

shear-stress, and ql is the total volumetric sediment rate. The sediment transport flux is 
defined using the Grass formulation (Grass,2000)  

)1(2/122 )(  m
l vuuAq                                             (102) 

where A is dimensional constant usually determined by experimental data and 41  m  (3,4). 
In this work m is set constant and equal to 3. It is remarkable that to avoid the singularity in 
the Jacobian matrix of the flux, the flux F and the slope term S1 are modified as follows 
(Hudson, 2000) 


















lq

ghzghhu

hu
2

2
12F ,  

























0

0

wx

h
gz




S                            (103) 

leading to the following Jacobian matrix 
























0

2)(

010
2

dud

ghuuzhg
W

F
J                                     (104) 

with 12
1 3  huAd  . Hudson defined an approximate Jacobian matrix where the averaged 

eigenvalues where computed solving the following third order polynomial, 
  0~~~~)~~~~(~~~2~)~( 223  duhgdhzhguuP               (105) 

where 

)(~
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leading to three real and distinct eigenvalues. Therefore the problem is strictly hyperbolic. 
Two eigenvalues have the same sign of the particle velocity u~ , one is opposite. We name it 

in ascending order: with 0~ u , 0~1  , 0~2  , 0~3  and 23 ~~   , while 0~2   only 

if 0~ u , the condition of fluid at rest. The right eigenvector associated to each m  is 
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where the coefficient m
i 2/1 is equal to 
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with kba  . The different m  coefficients are computed as 
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In the case that 2/1
~

iu  becomes nil, 01  ii uu , 2~  becomes nil and 0e 2~ , so the 

linearization in (30) fails. Also in the case that 1ih  or ih  are nil the averaged quatities in (24) 

become useless. In such cases we consider that no sediment transport is performed and the 
system of equations becomes the shallow water equations.  
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The positivity requirements over the water depth is satisfied defining as in (78). To avoid 
strong restrictions in the magnitude of the time step when 1 , the redistribution factor is 
computed as in (88). The redefinition of the fluxes according to (63) is done in the cell edges 
where 02/1,  

h
ii  over the water depth and bottom elevation. Also the same restrictions 

imposed by the friction term must be observed. 
 

6.APLICATIONS 
 
6.1.Long wave resonance in a parabolic basin. 
 
The analytical solution of a long wave, driven by gravity and resonating in a frictionless, dry 
circular parabolic basin was presented by Thacker (Thacker, 1981) for the shallow water 
equations, where the free surface displacement is given by 

  1)1(1)1(),( 222212/12   BAarBAtr o                 (110) 

and the bottom elevation is given as 
 22

0 1),(  artrz                                               (111) 

where 14444 ))((  oo raraA , tAB cos1 , oga  81 , o  is the center point water 

depth, r is the distance from the center point, a is the radial distance from the center point to 
the zero elevation on the shoreline and ro is the distance from the center point to the point 
where the water depth is initially nil. Those values are represented in Fig. 2. The domain 
shape of the two previous examples is used again and the numerical values are o = 20.0 m, 

ro= 1200 m, a = 1500 m. The domain is divided in using cells with x =25m. 

 
Figure 2. Initial free surface and water depth profile for the parabolic basin test. 

 
The water surface movement will be simulated together with an initial solute concentration: 

 1)2(exp),(  ooo rrtr                                               (112) 

There is no analytical solution for the solute concentration evolution in time but, if no 
diffusion is assumed, the solution for each T oscillation period will be: 

 1)2(exp),(  oo rrTKtr   ,      K = 1, …, ∞                      (113) 

The numerical experiment is performed using 1o . This test case illustrates the concepts 

described in this work, as it includes wetting/drying fronts and the generation of dry regions 
from wet areas. In particular, the advance of the wetting/drying front is produced in the first 
half period, during the wave expansion, while during the wave contraction both 
wetting/drying fronts and drying process are present.  
   
Figure 3 shows the water depths given by the exact solution and by the proposed method at 
times, 1/4T, 2/4T, 3/4T, T, 3/2T ,2T, 5/2T , 3T, 7T/2 and 4T.. The simulated results prove in 
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every case in good agreement with the analytical solution, including water depth and 
inundated area, even in the fourth oscillation. Figure 4 shows the comparison between the 
exact and numerical solution for the solute concentration distribution at times T, 2T, 3T and 
4T. Better accuracy in the final solution can be achieved reducing the size of the cells 
generating a better representation of the bottom elevation. 
 

 

 

 
 

 
 

Figure 3. Water elevation surface (in meters): exact and simulated for times 1/4T, 2/4T, 3/4T, 
T, 3T and 4T. 



 16

 

 
 

Fig. 4. Solute distribution results and exact solution at times  T, 2T, 3T and 4T. 
 
 
 
 
6.2.Equilibrium. 
 
In the following test case the bed evolution to equilibrium of a channel departing from a 
situation of still water is analysed. A domain 100 meters long is divided in cells with x =1m, 
imposing u = 0, z = 0 m and h = 2. From the beginning of the simulation a constant discharge 
is imposed upstream, hu = 10 m2/s, while downstream a constant water level surface h+ z = 2 
m is imposed, assuming 5.0  and A = 0.05. The shear stress is defined using the Manning 
equation: 

3/12  huugnw                                                  (114) 

with n = 0.04.Figure 5 shows the final bed and water level surface equilibrium slopes. In case 
of use a pointwise discretization for the friction term any remarkable differences appear in the 
bed and water surface elevations, but for the pointwise simulation discharge varies along the 
domain, as Figure 6 shows.  
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Figure 5. Final bed and water surface levels in equilibrium. 

 
Figure 6. Equilibrium discharge using an upwind and a pointwise formulation foe the friction 

term. 
 
6.3.Dam break over movable bed. 
 
The model proposed by Hudson is applied to erosional dam-break problems. A body of water 
at rest of constant depth ho, is realised over a flat erodible bed channel extending on both 
sides. To different experiments are used to check the performance of the numerical scheme. 
The first was performed in the Université Catholique de Louvain (Louvain-la-Neuve)  and the 
second in the National Taiwan University (Taipei) with coarse granular material of different 
densities (Capart and Fraccarollo, 2002). In the Louvain experiment an intermediate density 
for the material was chosen ( 540.1/  wss  ) while in the Taipei experiment a much 

lighter material was choose ( 048.1s ), in both cases lighter than natural sediment 
( 65.2s ). The initial water depth in both cases is ho = 0.01 m. It is possible to define the 
sediment load as (Rosatti and Fraccarollo, 2006, Summer et al., 1996) we define 

3ucq bl                                                     (115) 

where cb is volumetric concentration of sediments in the bed (  1bc ). In both cases 

5.0bc , and the shear stress is obtained using an expression similar to the Chézy equation: 

uuCs fw                                                    (116) 

Following Fraccarollo and Capart2002  is defined as 
1)tan)1((   scgCs bfs                                      (117) 
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using in both cases 014.0fC , 5.0tan  . In the Louvain case  is 0.016 and in the Taipei 

case 0.125. With this formulation it is possible to estimate the depth of the rich sediment layer 
in movement,  

2uh ss                                                        (118) 

Figure 7 compares the experimental data and the computational solution for the Louvain test 
case, at times t = 5to, 7.5to, 10to, being to the geomorphologic time scales, approximately 
0.101 s. The main differences are attributed to the fact that in the mathematical model mass 
and momentum exchanges through the bottom interface are considered. 
In the Taipei test case the exchanges through the bottom interface can not be neglected, and 
the model predicts unrealistic solutions as Figure 8 shows for time t = 3to. 
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Figure 7. Experimental data and the computational solution for the Louvain test case, at times 
t = 5to, 7.5to, 10to. 

 
 
 
Figure 8. Experimental data and the computational solution for the Louvain test case, at time t 

= 3to. 
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