
COPAS: A New Algorithm for the Partial Input Encoding
Problem

MANUEL MARTÍNEZ, MARÍA J. AVEDILLO*, JOSÉ M. QUINTANA and JOSÉ L. HUERTAS

Instituto de Microelectrónica de Sevilla, Edif. CICA, Avda. Reina Mercedes s/n, Sevilla 41012, Spain

(Received 31 March 2000; Revised 23 May 2000)

Frequently, the logic designer deals with functions with symbolic input variables. The binary encoding
of such symbols should be chosen to optimize the final implementation. Conventionally, this input
encoding (IE) problem has been solved in a two-step process. First step generates constraints on the
relationship between codes for different symbols, called group constraints. In a following step, symbols
are encoded such that constraints are satisfied. This paper addresses the partial input encoding problem
(PIE), a variation of the IE problem which generates codes of minimum length. The role of group
constraints within the framework of the PIE problem has been questioned. This paper describes an
algorithm that unlike conventional approaches, which try to maximize the number of satisfied
constraints, targets the economical implementation of each input constraint. The proposed approach is
based on a powerful heuristic that produces high quality results in shorter time compared to previous
algorithm.

Keywords: Face constraints; Group constraint; Dichotomy; Partial satisfaction; Input encoding; Logic
synthesis

INTRODUCTION

Frequently, when synthesizing integrated circuits, speci-

fication of design includes symbolic variables. A binary

encoding of such symbols should be chosen to optimize

the final implementation. This task is known as the

encoding problem. The difficulty of the encoding problem

resides in the modeling of the subsequent optimization

step. In this paper, we address the input encoding (IE)

problem. This is, given a function with symbolic inputs,

determine a binary encoding of the symbols such that,

after logic minimization, the implementation is of

minimum size. IE arises in many different synthesis

tasks. Examples are the encoding of mnemonic input

fields of the microcode, the encoding of symbolic inputs

that appear in high level descriptions or the state

assignment of finite state machines.

Figure 1a shows a two-output function with a symbolic

input from [1]. In this example, the encoding problem is to

replace the symbols by binary representations so that the

final implementation has a minimum number of product

terms. An exhaustive search technique trying all possible

input codes would be excessively costly, because it would

require an exponential number of logic minimizations. A

fundamental development in the IE problem was the work

in Ref. [2] where a tabular representation of the function

with symbolic inputs is symbolically minimized using two

level multiple-valued minimization [3]. This minimization

step generates constraints (group, input or face con-

straints) on the relationship between codes for different

symbols. In a second step, symbols are encoded in such a

way that constraints are satisfied. Satisfaction of the

constraints guarantees that the optimization at the

symbolic level will be preserved in the boolean domain.

This two step approach has been taken in many works

[4–8]. Let us summarize this strategy with the example

original from Ref. [1]. The minimized symbolic

representation is shown in Fig. 1b. Constraints for the

encoding process are given by the symbolic implicants

with more than one symbol. A boolean representation with

the same number of implicants can be obtained if the

codes assigned to the symbols in each group form a cube

in the boolean space in such a way that it does not contain

the codes of any symbol which is not in the group.

ISSN 1065-514X print/ISSN 1563-5171 online q 2002 Taylor & Francis Ltd

DOI: 10.1080/10655140290010088

*Corresponding author. Tel.: þ34-95-50-56667. Fax: þ34-95-50-56686. E-mail: avedillo@imse.cnm.es

VLSI Design, 2002 Vol. 14 (2), pp. 171–181

Encoding 1 in Fig. 1c does not satisfy constraint (inp2,

inp3) and the symbolic implicant corresponding to it is

implemented with two product terms in the boolean

domain (in bold in the Figure). Encoding 2 in Fig. 1d

satisfies all constraints and allows implementing each

symbolic implicant with a single cube. This strategy was

extended to multi-level implementations with the devel-

opment of multi-level multiple-valued optimization

algorithms [9].

In some applications, satisfying the complete set of

constraints involves such an increase of the length of the

codes that gains in terms of area are not usually

achieved. Because of this, many practical IE algorithms

address the partial input encoding problem (PIE), a

variation of the IE problem which generates codes of

minimum length. Recently, logic synthesis tasks such as

the functional decomposition for look-up tables based

field programmable gate arrays have been modeled as

PIE problems [11], which contributes to the importance

of the problem.

Conventional approaches for the PIE problem try to

maximize the number of satisfied face constraints, this is,

the number of symbolic implicants which can be

implemented with a single product term, without

considering cost effective implementation of the remain-

ing. More recent works aim at minimizing the cost of

implementing the complete set of constraints. In

particular, Ref. [10] has been successfully applied to

different synthesis tasks such as logic decomposition or

logic partitioning, but its intensive use of logic

minimization makes it useless for large problems. In this

paper, we propose a new algorithm for the PIE problem

which also targets the economical implementation of each

input constraint, but greatly improves the time perform-

ance described in Ref. [10] without degrading the quality

of the results.

The rest of the paper is organized as follows. Section 2

introduces basic definitions to mathematically formulate

the problem. Section 3 presents several encoding

examples as a motivation for the work and summarizes

previous approaches. Section 4 describes the new

approach. In section 5 experimental results are shown

and discussed. Finally, in section 6 we give some

conclusions.

DEFINITIONS AND NOTATIONS

In this section, we review several definitions of

constrained IE, originally introduced in different refer-

ences [2, 4, 13].

Definition 1 Binary encoding: given a set of symbols

S ¼ {S1; S2; . . .; Sn} and an integer k, a binary encoding of

S is a-one-to one mapping S ! {0; 1}k:
Encoding can be represented as a code matrix C [

{0; 1}n£k where the ith row represents the code assigned to

symbol Si, and the jth column represents bit j of the

encoding.

Definition 2 Encoding dichotomy: an encoding dichot-

omy is a two block partition, (B1:B2), of symbols such that

one code bit of the symbols in B1 is assigned 0(1) while the

same code bit is assigned 1(0) for the symbols in B2. We

can think of each column of the code matrix as an

encoding dichotomy.

Definition 3 Group constraint: a group constraint gc

on the set of input symbols S ¼ {S1; S2; . . .; Sn} is a subset

S0 of symbols from S which must be assigned such that the

minimum boolean cube containing their codes does not

intersect the codes of the symbols absent from S0.

Definition 4 Seed dichotomy: a seed dichotomy d is a

disjoint two block partition, (B1:B2), associated with a

group constraint gc1, such that the block B1 contains all

symbols that belongs to gc1 and B2 contains exactly one of

the symbols that does not belong to gc1.

Satisfaction of a group constraint is equivalent to the

satisfaction of the whole set of its associated seed

dichotomies [13]. A seed dichotomy, d, is satisfied if

subset B1 of d is distinguished from subset B2 of d by at

least one encoding bit. In the following, we will refer to a

seed dichotomy simply as dichotomy.

Within this framework, an instance of the IE problem

with n input symbols denoted {S1; S2; . . .; Sn} can be

represented by an input constraint matrix L with as many

rows as there are group constraints, and n columns. Lij ¼

1; if the symbol Sj belongs to the i-th constraint and 0

otherwise. Given a set S of n symbols and a constraint

matrix L, the IE problem consists in determining a code

FIGURE 1 Encoding process: (a) function with a symbolic input, (b) minimized symbolic function, (c) encoding 1 and minimized boolean
implementation, (d) encoding 2 and minimized boolean implementation.

M. MARTÍNEZ et al.172

matrix C [{0; 1}n£k with minimum value of k, which

satisfies L.

MOTIVATION AND PREVIOUS WORK

Conventionally, the Partial IE problem is considered as a

restriction of the complete one. Group constraints are

generated in the same manner. Then, as there is not

guarantee of the existence of an encoding of minimum

length, which satisfies the constraint matrix, the encoding

step is reformulated. There are two different problem

statements:

(1) Given a set S of n input symbols, the integer s ¼

dlog2 ne; and a constraint matrix L, determine C [
{0; 1}n£s which maximizes the number of group

constraints satisfied.

(2) Given a set S of n input symbols, the integer s ¼

dlog2 ne and a constraint matrix L, determine C [
{0; 1}n£s which maximizes the number of dichotomy

constraints satisfied.

Algorithms i_greedy and i_hybrid in NOVA [7], and

CUBIC [6] are examples of the first formulation while

ENCORE [8] corresponds to the second one. It has been

claimed that the role of both group and dichotomy

constraints within the framework of the partial IE problem

should be questioned. As a motivation for our work, let us

introduce two examples which illustrate the above

statement.

Example 1 This example shows that two encodings

which satisfy the same subset of group constraints can

result in boolean implementations with different costs.

Consider the function with a symbolic input shown in

Fig. 2a. The minimized symbolic function and derived

input constraints are shown in Fig. 2b. Figure 2c and d give

FIGURE 2 Example 1: (a) function with symbolic input, (b) minimized symbolic function and input constraints, (c) encoding 1 and minimized boolean
implementation, (d) encoding 2 and minimized boolean implementation.

LOGIC SYNTHESIS 173

two codes for input symbols. Both encodings satisfy group

constraints L1, L2 and L3, and violate L4 (in fact this

constraint cannot be satisfied with minimum code length).

However, the symbolic implicant corresponding to that

row is implemented with four product terms with

encoding 1 (Fig. 2c) and with only two when encoding 2

is used (Fig. 2d).

Example 2 This example shows that verifying a larger

number of the seed dichotomies associated with a group

constraint does not mean that it produces smaller

implementations. Consider the function with the symbolic

input in Fig. 3a. Figure 3b shows the minimized symbolic

function and Fig. 3c, the seed dichotomies for L2. Figure

3d shows an encoding satisfying the dichotomies marked

with an asterisk in Fig. 3c and Fig. 3e an encoding that

does not satisfy any dichotomy constraint. Using encoding

1 the encoded function is implemented with four product

terms (Fig. 3d). Encoding 2 requires three product terms

(Fig. 3e).

These examples point out that the number of satisfied

constraints and/or dichotomies is not an adequate measure

of the quality of an encoding. So, solving PIE problems

with algorithms developed for the complete one could lead

to suboptimal results. More appropriate measurements of

the satisfaction of the input constraints for partial IE

problems, which also consider the cost of implementing

symbolic implicants associated to unsatisfied constraints,

have been proposed [5,10]. In an algorithm called ENC

[10], the cost of implementing unsatisfied constraints is

evaluated using ESPRESSO [12]. In this work, a Boolean

function is associated with each input constraint. Its on-set

contains the codes of the symbols in the constraint and its

off-set contains the codes of the symbols not in the

constraint. The unused codes are in the dc-set. For a

two-level design style, the number of product terms in a

sum-of-product representation of this function after

minimization gives the cost of an input constraint for a

given encoding. Clearly, there is a single product term in

the representation of the functions associated with

satisfied constraints. For a multi-level style, the cost is

given by the number of literals in a factored form (sum-of-

product representation in practice) of the same minimized

function.

ENC has been successfully applied to different

synthesis tasks such as logic decomposition or logic

partitioning. However, intensive use of logic minimiz-

ation makes it impractical even for medium size

FIGURE 3 Example 2: (a) function with symbolic input, (b) minimized symbolic function, (c) seed dichotomies for L2, (d) encoding 1 and minimized
boolean implementation, (e) encoding 2 and minimized boolean implementation.

M. MARTÍNEZ et al.174

problems. Next, we briefly describe ENC in order to

show the high number of logic minimization operations

it requires. ENC is based on a splitting and merging

strategy. The splitting phase is used to divide a given

encoding problem into two smaller ones, each to be

encoded using one less bit. Assuming that each

subproblem is solved optimally, the solution for the

original encoding problem is generated by the merging

step. The splitting procedure is carried out recursively

on each resulting partition until only two symbols

remain and a single encoding dichotomy is generated.

The merging procedure obtains an encoding of length c

of the symbols of a partition S from the encodings of

length c 2 1 of the subpartitions S0 and S1 ðS0 < S1 ¼

SÞ: The merging uses as cost function the number of

product terms or the literals required to implement in

two levels the input constraints restricted to the

symbols in S, and implies intensive application of

logic minimization tools. For this, a set of candidate

encoding dichotomies, D, is generated. Let D0(D1) be

the set of c 2 1 encoding dichotomies in the solution

for subpartition S0(S1), then D ¼ ðS0 : S1Þ< D0 £ D1 <
D1 £ D0: For example, consider partitions S0 ¼

{s0; s1; s2; s4} and S1 ¼ {s3} and assume D0 ¼ {ðs0s4 :

s1s2Þ; ðs0s2 : s1s4Þ} and D1 ¼ {ðs3 :Þ}: The candidate

dichotomies are D ¼ {ðs0s1s2s4 : s3Þ; ðs0s3s4 : s1s2Þ;
ðs0s4 : s1s2s3Þ; ðs0s2s3 : s1s4Þðs0s2 : s1s3s4Þ}: For each

selection of c candidate encoding dichotomies from

D which distinguishes every symbol, ESPRESSO [12]

is used to evaluate the number of product terms or

literals required to implement the constraints. Con-

tinuing with the example, there are
5

3

 !
¼ 10 subsets

of D with cardinality 3, 8 of them correspond to

valid encodings because they distinguish every symbol.

Each of these is evaluated with ESPRESSO and the

best one is selected. In order to give an idea of the

number of logic minimization steps required per merging

step, Table I shows the number of subsets of D with

cardinality c for different parameters. Solving a problem

with 32 symbols involves 15 merging operations, eight

with c ¼ 2; four with c ¼ 3; two with c ¼ 4 and one

with c ¼ 5:
To overcome the limitations of ENC, we have

developed an algorithm which also applies ESPRESSO

in order to precisely measure the quality of an encoding in

relation to the set of input constraints, but greatly reduces

the number of logic minimization operations without

degrading the quality of the results. The new algorithm

can be useful in solving larger instances of the above

mentioned synthesis tasks.

THE NEW ALGORITHM

This section describes the new algorithm proposed for

the PIE problem. It follows the splitting and merging

strategy but the procedures implementing each step are

completely different from ENC. It significantly speeds

up the process. Main distinguishing features of our

method are:

(1) The use of logic minimization at each merging step is

greatly reduced by restricting the search space on the

basis of an experimentally proved effective theoreti-

cal model for selecting a reduced set of good

candidate encodings.

(2) The splitting of symbols is strongly coupled to the

merging-selection model.

(3) The recursive splitting procedure is stopped when the

number of bits to be used in the encoding

subproblems is less or equal than a given bound,

bound. At this stage, the encoding subproblems are

solved to maximize the number of restricted input

constraints satisfied. Bound is chosen so that solving

the subproblems is faster than carrying out the

remaining splitting and merging of solutions.

Figure 4 shows a Pidgin-C description of the algorithm.

It starts obtaining the constraint matrix. The core of the

algorithm is the recursive function assign. Assign has three

arguments: a set of symbolic values, S, a constraint matrix

on those symbols, L, and the code length the symbols are

going to be encoded with, nv. When function assigns is

first called, it takes the complete set of symbolic inputs,

Sc, the complete constraint matrix Lc and fixes the code

length to the minimum ðcode_length ¼ dlog2ðCardðScÞÞeÞ:
In subsequent calls, assign deals with a subset of the

symbols and a constraint matrix restricted to them. Assign

works as follows, while the size of the given encoding

problem (nv) is over bound, it generates two smaller

problems to be encoded with one less bit (generate_parti-

tion()). Once these two subproblems are solved, a solution

is obtained for the original one (merge_selects()). If the

problem is small enough, no partitioning takes place but it

is solved (resolve()). Now we explain in more detail the

three main functions. We start with the merging step

because, as mentioned above, the splitting is strongly

coupled with it and so it is better to postpone the

description of the partitioning phase.

Merging and Selection Phase

In this step, merge_select(), given encodings with ðnv 2

1Þ bits for the symbols in S0, C0 [{0; 1}CardðS0Þ£ðnv21Þ; and

in S1, C1 [{0; 1}CardðS1Þ£ðnv21Þ; searches for an encoding

TABLE I Estimation of logic minimizations per merging step

c card(D0) card(D1) card(D) # selections

3 2 1 5 10
3 2 2 9 84
4 3 3 19 3876

c: length of encoding after merging; card(D0)/card (D1): number of encoding
dichotomies in solutions to subproblems S0=S1; card(D): cardinality of the set of
candidate encoding dichotomies; # selections: number of subset of set D with
cardinality c.

LOGIC SYNTHESIS 175

C with nv bits for the symbols in S, ðS ¼ S0 < S1;C [
{0; 1}CardðSÞ£nvÞ; which heuristically minimizes the num-

ber of product terms required to implement L.

The Merging Model

The matrix C is built as shown in Fig. 5. C*
1 is obtained

from C1 by permuting and or complementing columns as

will be explained later. Clearly, the code matrix C

obtained in this way is a valid encoding (because it

distinguishes every symbol in S) if C0 and C1 are valid

encodings. Another interesting and attractive feature of C,

proved in the Appendix, is that the number of cubes,

#cubes, required to implement the constraints in L using C

is less or equal to #cubes0 þ #cubes1 where #cubes0

(#cubes1) is the number of cubes required to implement

the constraints in L0(L1) using C0(C1). It is possible that

some cubes from the two coverings merge leading to

#cubes under the stated upper bound. The transformations

applied to C1 aim at reducing #cubes. This way of building

matrix C is key to produce efficient implementations of

unsatisfied constraints. The following example illustrates

this.

Example 3 Let S ¼ {s0; s1; s2; s3; s4; s5; s6; s7; s8; s9; s10}

be a set of states to be encoded and let us suppose

that the chosen partition creates the subsets: S0 ¼

{s0; s1; s2; s3; s7; s8} and S1 ¼ {s4; s5; s6; s9; s10}; and L ¼

ðs1; s6; s8; s10Þ is a constraint of S. Figure 6a shows

matrices C0 and C1. Constraint L has been broken in L0 ¼

ðs1; s8Þ implemented in C0 by the 1-cube 11- and L1 ¼

ðs6; s10Þ implemented in C1 by the 1-cube 0-0. Clearly,

with C*
1 ¼ C1 two cubes are required to implement L in

C: 11-0 and 0-01. However, if the matrix C*
1 shown in Fig.

6b is used, only the cube 11- is needed (Fig. 6c). C*
1 has

been obtained from C1 complementing all its columns,

and interchanging second and third columns.

Obtaining C*
1 : The Link Matrix

Exhaustive search of the matrix C*
1 which minimizes

#cubes implies building each possible C*
1 and using

ESPRESSO [12] to evaluate the product terms or literal

counts required to implement the constraints with each C.

If C1 has s columns, the number of different matrixes C*
1

is 2ss!. For example, merging solutions to subproblems

encoded with three bits ðs ¼ 3Þ to generate a four bit

encoding, which corresponds to the last row of Table I,

requires only 48 minimization operations. However,

although with this novel merging model the number of

minimizations is greatly reduced compared to ENC,

exhaustive search of C*
1 is still lengthy for large machines.

A method for predicting useful transformations of C1 has

been developed which experimentally has proven to

produce good results. In order to determine C*
1 ; a matrix,

LINK, which has as many rows as there are columns in

C0; ðnv 2 1Þ; and twice the number of columns in C1,

2ðnv 2 1Þ; is built up, as will be explained later, such that:

LINK[i][j], 1 # j # nv 2 1 measures the convenience

of using column j of C1 as column i of C*
1 :

LINK[i][j], nv # j # 2ðnv 2 1Þ measures the conven-

ience of using the complement of column ðj 2 ðnv 2

1ÞÞ of C1 as column i of C*
1 :

Once LINK is available, C*
1 is obtained selecting the

highest nv 2 1 elements from LINK restricted to: (a) two

elements from the same row cannot be selected, and (b)

selecting an element from column j precludes selecting

any other element from column j and from column j ^

ðnv 2 1Þ: These restrictions guarantee that the obtained

matrix is valid.

The algorithm combines the use of the link matrix

method and the application of logic minimization to

improve the results. That is, using the link matrix a set of

C*
1 matrices (candidate matrices) is determined instead of

a single one. Then, ESPRESSO is used to select the best

one among them. Experimental results in the next section

show that very good results can be obtained with few

candidate matrices and a consequently, a few logic

minimization steps.

FIGURE 5 Generation of C from C0 and C1.

FIGURE 4 Pseudocode description of the new algorithm.

M. MARTÍNEZ et al.176

Procedure implemented to build up LINK is as follows.

Lets call PLi,0(PLi,1) the set of cubes implementing

subconstraint Li0 (Li1) in C0(C1). For each constraint Li in

L, the possible merging of a cube from PLi,0 with a cube

from PLi,1 is examined. Every LINK[i][j] is incremented

by m when it can contribute in building a future cube of

dimension m.

Example 4 Let us follow with example 3 in order to

illustrate the building of matrix LINK. This is: L ¼ {L1 ¼

ðs1; s6; s8; s10Þ}; L10 ¼ {ðs1; s8Þ}; PL1;0 ¼ {11–}; L11 ¼

{ðsf1s6; s10Þ} and PL1;1 ¼ {0–0}: Figure 7 shows LINK

matrix generated. For example, LINK[1][4] has been

raised from 0 to 2 because using the complement of

column 1 of C1 as column 1 of C*
1 contributes to create the

2-cube 11- in C. In order to determine C*
1 ; the highest

three elements of LINK verifying restrictions (a) and (b)

above are selected. The set of elements (1, 4), (2, 6) and

(3, 5), where the first number corresponds to the row and

second to the column, is one of the possible selections.

This set corresponds to use the complement of column 1 of

C1 as column 1of C*
1 ; the complement of column 3 of C1

as column 2 of C*
1 and the complement of column 2 of C1

as column 3 of C*
1 : Note that the matrix C*

1 generated is

the matrix C*
1 in Fig. 6b.

Partitioning Phase

In this step generate_partition() takes a partial encoding

problem, S, L and nv, and obtains a partition of S, (S0:S1)

which satisfies (i) S1 < S0 ¼ S; (ii) S1 > S0 ¼ B; (iii)

CardðS1Þ # 2nv21; CardðS0Þ # 2nv21: These conditions

guarantee that this partition can be used as an encoding

dichotomy without avoiding that a minimum-length code

can be derived. In the following, such a partition will be

called a valid partition. The selection of the partition

dichotomy greatly influences the quality of the solutions.

A heuristic procedure has been developed which takes into

account the merging-selection strategy carried out by the

algorithm. The splitting process consists in applying the

following rules:

Rule 1: If there is a constraint in L such that the

cardinality of the set of symbols in it, Sa, is less or equal

2nv21 and the cardinality of the set of symbols not in it,

Sb, is less or equal 2nv21, the partition (Sa:Sb) is

chosen.

Rule 2: If there is a constraint in L such that the

cardinality of the set of symbols in it, Sa, is higher than

2nv21, then the partition (S0a:S0b) is chosen where S0a is

a subset of Sa with exactly 2nv21 symbols in it and S0b is

the set of symbols not in S0a.

Rule 3: The partition is generated in such a way that the

number of constraints whose states are divided between

the two blocks (broken constraints) and whose

subconstraints can be implemented by cubes of

different dimension, is heuristically minimized. Only

broken constraints are dealt with when obtaining C*
1 :

Rule 1 and Rule 2 take advantage of the fact that the

partition dichotomy is used as an encoding dichotomy.

Rule 1 guarantees the implementation of the constraint

that generates the partition with a single cube. Rule 2 does

not guarantee the implementation of the constraint with a

minimum number of cubes but it is likely to produce cheap

implementations due to the partial satisfaction achieved

by the partition. Rule 3 aims at simplifying the merging

selection phase and its rationale resides in the way the link

matrix is built. Rule 2 is applied when Rule 1 fails to

derive a valid partition, and Rule 3 when both Rule 1 and 2

fail.

Solving Problems in the Last Levels

In this step, function resolve() obtains a code matrix C that

satisfies a maximum number of constraints given an

FIGURE 7 Matrix LINK for Example 1.

FIGURE 6 Example 3: (a) code matrices for subproblems, (b)
modification of C1, (c) code matrix for original problem.

LOGIC SYNTHESIS 177

enough small encoding problem ðnv , boundÞ: Several

reasons support this procedure:

(1) The differences in cube count among distinct code

matrices that do not satisfy a given constraint are

less significant for small problems than for large

ones.

(2) Solving the subproblems is faster than carrying out

the remaining splittings and subsequent mergings.

(3) Experimentally, we have found that in a high number

of these problems the complete set of restricted

constraints can be satisfied.

EXPERIMENTAL RESULTS

This Section shows the results obtained with COPAS, a C

implementation of the algorithm described in this paper.

Value bound ¼ 3 produces the best trade-off between

quality and speed. Results reported herein correspond to

this choice. Experiments with a wide set of IE problems

have been carried out. These problems have been

generated from the IWLS’93 FSM benchmarks using a

1-hot encoding for the next state field. This is, for each

FSM, we obtain a function with a symbolic input (present

state field) but with all its outputs binary. These symbolic

inputs are encoded using minimum code-length.

Concerning the IE problems, the figure of merit used to

evaluate and compare the results obtained is the number of

product terms required to implement in two level form the

complete set of constraints, cubes. Table II summarizes

the results obtained with COPAS and with a standard

conventional (partial problem treated in an unified manner

TABLE II Results with NOVA and COPAS

NOVA COPAS
Constraints Cubes Satisfied constraints Time Cubes Satisfied constraints Time

bbara 4 8 2 1.5 6 2 6.3
bbsse 5 12 3 2.2 8 3 6.3
cse 12 24 8 3.1 19 6 7.7
dk512 10 12 9 12.2 12 8 6.2
ex3 6 8 5 1.3 8 4 5.6
ex5 7 11 4 1.3 9 5 6
ex7 6 10 3 1.4 9 3 6
kirkman 25 58 9 47.4 57 9 23.9
lion9 10 10 10 1.5 10 10 6
mark1 4 6 3 17.6 5 3 9.4
opus 2 2 2 1.1 2 2 2.4
train11 11 13 10 1.7 14 8 5.8
s208 5 8 4 2.9 6 4 9.1
s420 5 8 4 2.9 6 4 9
dk16 34 43 25 136.0 51 19 23.6
donfile 24 48 8 267 47 7 29.1
ex1 11 19 8 27.8 15 7 15.8
ex2 8 10 7 2.5 12 4 12.8
keyb 33 41 26 4.8 40 25 19.3
s1 14 14 14 4.5 14 14 5.7
s1a 14 14 14 3.8 14 14 5.6
sand 7 8 6 3.8 8 6 15.3
tma 11 19 6 30.7 17 5 14.8
pma 18 30 14 90.6 33 9 24.6
styr 18 29 14 45.3 27 8 33.1
tbk 98 284 44 539 202 44 101
s820 15 17 13 12 17 13 17.5
s832 15 17 13 12.9 17 13 16.1
planet 12 12 12 39.7 13 11 26.7
s1494 29 81 16 307 61 13 68.6
s1488 29 70 17 315 58 14 68.7
scf 14 21 11 474 23 6 60.8
total 937 840

Cube: number of product terms in a two-level implementation of input constraints; Time: time, in seconds, in a Sparcstation 10.

TABLE III Results with ENC and COPAS

ENC COPAS
Cube Cube Calls

bbsse 8 8 14
cse 18 19 14
dk512 11 12 14
kirkman 58 57 14
dk16 48 51 33
donfile 39 47 33
ex1 19 15 33
s1 14 14 3
s1a 14 14 3
sand 8 8 33
styr 26 27 33
tbk 237 202 46
planet 12 13 46
scf Out of memory 23 79
Total 512 487

Cube: number of product terms in a two-level implementation of input constraints;
calls: number of calls to the logic minimizer.

M. MARTÍNEZ et al.178

with the complete one) tool like NOVA [7] (i_hybrid

algorithm). Column labeled constraints shows the number

of group constraints for each example. Also, the number of

satisfied constraints and the cubes counts are depicted for

each method. In 17 of the 32 examples the number of

satisfied constraints with the two algorithms is different.

Only in one of these 17 cases, COPAS produces an

encoding satisfying a higher number of constraints that the

one derived with NOVA. This result is concordant with

the fact that NOVA aims at maximizing the number of

satisfied constraint while COPAS does not. However,

when the relevant figure of merit, cubes, is compared

better results are obtained in 17 cases with COPAS.

NOVA outperforms COPAS in only six examples. Adding

cubes for the complete benchmark, 840 is obtained for

COPAS and 937 for NOVA.

Table III compares the results obtained with ENC

(results taken from [10] are available only for examples

included in Table III) and COPAS. Only in 4 of the 13

examples, covers obtained with each algorithm differ in

more than one product term. Smaller cardinalities are

produced by ENC for two of the four, namely dk16 and

donfile, while COPAS obtains better results for the other

two examples, ex1 and tbk. In total, the sum of cubes for

the 13 cases is slightly smaller with COPAS. Note that

ENC fails to solve example scf.

Concerning time performance, COPAS takes around

1 min to solve every encoding problem reported in Table II

except tbk which consumes 100 seconds of CPU time. The

superiority of COPAS is significant for IE problems with

many constraints as can be seen in Table II (tbk, s1494,

s1488). We could not carry out a comparison of times with

ENC because data is not available in Ref. [10]. However,

there are two reasons why COPAS should be significantly

TABLE IV Results of COPAS with different merging-selection
mechanisms

COPAS exhaustive COPAS1 COPAS
Cubes Calls Cubes Calls Cubes Calls

bbara 6 48 7 0 6 14
bbsse 8 48 9 0 8 14
cse 19 48 21 0 19 14
dk512 12 48 13 0 12 14
ex3 8 48 8 0 8 14
ex5 9 48 10 0 9 14
ex7 9 48 9 0 9 14
kirkman 57 48 57 0 57 14
lion9 10 48 10 0 10 14
mark1 5 48 5 0 5 14
opus 2 48 2 0 2 1
train 14 48 16 0 14 14
s208 6 480 6 0 6 20
s420 6 480 6 0 6 20
dk16 51 480 59 0 51 33
donfile 45 480 54 0 47 33
ex1 15 480 15 0 15 33
ex2 12 480 14 0 12 33
keyb 41 480 41 0 40 46
s1 14 480 14 0 14 3
s1a 14 480 14 0 14 3
sand 8 480 8 0 8 33
tma 16 480 19 0 17 33
pma 31 480 36 0 33 33
styr 27 480 32 0 27 33
tbk 202 480 202 0 202 46
s820 17 480 17 0 17 33
s832 17 480 17 0 17 33
planet 12 4800 15 0 13 46
s1494 59 4800 67 0 61 84
s1488 55 4800 67 0 58 84
TOTAL 807 870 817

Cube: number of product terms in a two-level implementation of input constraints;
calls: number of calls to the logic minimizee.

TABLE V Results of state assignment problems with different algorithms

FSM
Tp

i_hybrid
Time ratio
i_hybrid

Tp
io_hybrid

Time ratio
io_hybrid

Tp
ENCORE

Tp
Hyper-Place

Time ratio
Hyper-Place

Tp
COPAS

Time ratio
COPAS

s208 25 1 24 7.00 17 3.15
s420 25 1 24 7.23 18 3.17
dk16$ 59 1 62 5.56 58 63 0.17
donfile $ 35 1 47 3.40 18 38 0.11
ex1 $ 48 1 52 15.59 45 46 0.57
ex2 $ 29 1 44 56.92 32 32 5.12
keyb $ 48 1 102 10.38 51 47 4.00
s1 $ 80 1 75 103.91 86 81 1.30
s1a $ 76 1 73 112.30 73 71 1.50
sand $ 101 1 99 39.06 100 88 4.00
tma 33 1 35 5.21 32 0.48
pma 45 1 51 3.12 47 0.27
styr 94 1 106 27.83 99 0.73
tbk $, $$ 154 1 94 8.83 129 100 0.02 54 0.19
s820 $$ 76 1 66 54.45 75 6.92 67 1.50
s832 $$ 72 1 64 63.61 73 6.70 69 1.25
planet$ 91 1 99 75.66 90 91 0.67
s1494 $$ 139 1 120 13.76 131 3.31 128 0.22
s1488 $$ 133 1 119 12.81 132 3.30 121 0.24
scf $ 148 1 143 56.41 140 141 0.13
total 1511 1499 1320
total $ 822 752
total $$ 511 452

LOGIC SYNTHESIS 179

faster than ENC. First, it should be clear from the

explanation in the “Motivation and previous work”

section and the data in column labeled calls in Table III,

that ENC implies a much higher number of calls to

ESPRESSO than our approach. Second, on average,

COPAS dedicates around 50% of the CPU time to run

ESPRESSO. In summary, COPAS and ENC perform

comparably in terms of the number of cubes required to

implement the face constraints but time performance of

COPAS is superior.

Experimental results shown in Table IV allow the

evaluation of the different novel features from COPAS.

The version of the algorithm called COPASexhaustive builds

up the complete set of candidate C*
1 matrices and relies on

ESPRESSO to select one. Experimental results on column

labeled COPAS1 correspond to a version which generates

using the LINK matrix a single matrix C*
1 at each merging

step, so that calls to ESPRESSO to select among several

candidates are avoided. In total, the sum of the cubes for

COPAS1 is only an 8% higher than for COPASexhaustive.

Time consumption of COPASexhaustive is between one and

two orders of magnitude higher than with COPAS1. This

result validates the LINK-matrix selection method.

Finally, results obtained with COPAS are repeated in

this table so that the readers can easily appreciate the good

quality-speed trade-off that it is achieved by the

intermediate approach that has been implemented in the

proposed tool. We remember that this intermediate

approach consists in generating a reduced set of candidate

matrices and using ESPRESSO to select among them.

Finally, in order to show an application of the algorithm,

results for the state assignment problem are also given.

Table V compares NOVA i_hybrid, NOVA io_hybrid,

ENC, Hyper_Place [14] and COPAS for the state

assignment problem. The number of product terms

required to implement the combinational component of

an IWLS’93 FSM, tp, is shown in this table. Also,

execution times, normalized to those of NOVA, i_hybrid

are given. COPAS compares favorably to all of them.

When comparing time performance, note that COPAS’

times are less than 2 min for all the machines in the table.

CONCLUSIONS

An encoding technique specifically targeting the partial

input encoding problem has been developed. It is based on

a recursive splitting and merging strategy. Main features

of the new approach include: (1) the development of a

novel merging model which guarantees an implemen-

tation of the constraints at least as efficient as in the lower

levels, and the use of the partition phase with the aim of

satisfying constraints; (2) a procedure for determining a

set of candidate encodings for which ESPRESSO is called,

avoiding intensive use of logic minimization, and (3) a

strongly coupling between the splitting and merging phases.

Our work shows that the splitting-merging strategy is

actually a practical and competitive alternative for the partial

input encoding problem, as the limitations of ENC, which

has been reported to produce very good results for different

synthesis tasks, have been overcome in the new algorithm,

without degrading the quality of the solutions.

References

[1] Ashar, P., Devadas, S. and Newton, A.R. (1992) Sequential Logic
Synthesis (Kluwer Academic Publishers, Dordrecht).

[2] de Micheli, G., Brayton, R.K. and Sangiovanni-Vincentelli, A.L.
(1985) “Optimal state assignment of finite state machines”, IEEE
Transactions on CAD CAD-4, 269–285.

[3] Rudell, R. and Sangiovanni-Vincentelli, A.L. (1987) “Multiple-
valued minimization for PLA optimization”, IEEE Transactions on
CAD CAD-6, 727–751.

[4] de Micheli, G. (1986) “Symbolic design of combinational and
sequential logic circuits implemented by two-level macros”, IEEE
Transactions on CAD 5, 597–616.

[5] Devadas, S., Wang, A.R., Newton, A.R. and Sangiovanni-
Vncentelli, A. (1989) “Boolean descomposition in multilevel
logic optimization”, IEEE Journal of Solid State Circuits 24(2), 1.

[6] B. Lin and A.R. Newton (1989). “A generalized approach to the
constrained cubical embedding problem”. In Proc. International
Conference on Computer Design, VLSI computers and Processors,
October 1989, pp. 400–404.

[7] Villay, T. and Sangiovanni-Vincentelli, A.L. (1990) “NOVA
assignment of finite state machines for optimal two-level logic
implementation”, IEEE Transactions on CAD CAD-9(9), 905–923.

[8] Shi, C.J. and Brzozowski, J.A. (1993) “An efficient algorithm for
constrained encoding and its applications”, IEEE Transactions on
CAD 12(12), 1813–1826.

[9] Malik, S., Lavagno, L., Brayton, R.K. and Sangiovanni-Vincentelli,
A. (1992) “Symbolic minimization of multilevel logic and the input
encoding problem”, IEEE Transactions on CAD 11(7), 825–843.

[10] Saldanha, A., Villa, T., Brayton, R.K. and Sangiovanni-Vincentelli,
A.L. (1994) “Satisfaction of input and output encoding constraints”,
IEEE Transactions on CAD 13(5), 589–602.

[11] R. Murgai, R.K. Brayton, A.L. and Sangiovanni-Vincentelli (1994).
“Optimun functional de-composition using encoding”. In Proc. 31st
ACM/IEEE Design Automation Conference, pp 408–414.

[12] Brayton, R.K., Hachtel, G.D., McMulleny, C. and Sangiovanni-
Vincentelli, A.L. (1984) Logic minimization algorithms for VLSI
synthesis (Kluwer Academic Publishers, Boston, MA).

[13] Yang, S. and Cieselski, M.J. (1991) “Optimum and suboptimum
algorithms for input encoding and its relationship to logic
minimization”, IEEE Transactions on CAD 10(1), 4–12.

[14] Liu, S., Pedram, M. and Despain, A.M. (1997) “State assignment
based on two-dimensional placement and hypercube mapping”,
Integration, The VLSI Journal(24), 101–118.

APPENDIX

Theorem 1 If using C0(C1) a cube c , {0; 1}nv21

contains the codes of a subset of symbols A , S0ðS1Þ and

does not intersect the code of any other symbol in S0(S1),

then for C, there is a cube c0 , {0; 1}nv which contains the

codes of every symbol in A, and does not intersect the code

of any other symbol in S ðS0 < S1Þ:

Proof For C, the codes of the symbols in A , S0ðS1Þ are

included in a cube c0 obtained as the conjunction of c and a

literal associated with the new encoding bit when dealing

with partition 0, and as the conjunction of a literal

associated with the new bit and the cube c00 obtained from

c complementing and or renaming variables when dealing

with partition 1. Clearly, c0 does not include the code of

any symbol in S1(S0) as there is a 0(1) in last bit position of

M. MARTÍNEZ et al.180

any code in c0 and a 1(0) in last bit position of the codes of

the symbols in S1(S0). In addition c0 does not intersect the

code of any other symbol in S0(S1) that does not belong to

A as the transformations applied to C1 guarantee that c00

contains the codes in A but not any other. A

Corollary The number of cubes, #cubes, required to

implement the constraints in L using C is less or equal to

#cubes0 þ #cubes1 where #cubes0 (#cubes1) is the number

of cubes required to implement the constraints in L0(L1)

using C0(C1).

Authors’ Biographies

Manuel Martinez-Perez received the B.S. degree in

Electronics from the University of Seville, Spain in 1991.

Since 1994 he is in the Institute of Microelectronics at

Seville (IMSE) where he is currently working toward a

PhD Degree. His main research interest is logic synthesis.

Maria J. Avedillo joined the Department of Electronics

and Electromagnetism at the University of Seville in 1988

as Assistant Professor, and obtained a PhD degree in 1992.

Since 1995 she is Associate Professor in that Department.

In 1989 she became researcher at the Department of

Analog Design of the National Microelectronics Center

(CNM), now Institute of Microelectronics at Seville

(IMSE). She has participated in several research projects

financed by the Spanish CICYT and in ESPRIT Projects.

She won the KELVIN price of “The Council of the

Institution of Electrical Engineers” for two articles

published in 1994. Her current research interests

include design of threshold logic circuits, development

of CAD tools for FSM synthesis and design for testability.

José M. Quintana joined the Department of Electronics

and Electromagnetism at the University of Seville in 1983

as Assistant Professor, and obtained a PhD degree in 1987.

Since 1990 he is Associate Professor in that Department.

In 1989 he became researcher at the Department of

Analog Design of the National Microelectronics Center

(CNM), now Institute of Microelectronics at Seville

(IMSE). He has participated in several research projects

financed by the Spanish CICYT and in the ESPRIT

Projects ADCIS and AD-2000. He won the KELVIN price

of “The Council of the Institution of Electrical Engineers”

for two articles published in 1994. His current research

interests include design of threshold logic circuits,

computer arithmetic and development of CAD tools for

FSM synthesis.

José L. Huertas received a PhD degree in 1973 from

the University of Seville. Since 1971 he has been with

the department of electronics and electromagnetism at

the University of Seville, where he is a Professor. Since

1989 he has been Director of the Department of

Analog Design of the National Microelectronics Center

(CNM), now Institute of Microelectronics at Seville

(IMSE). He has participated and led many research

projects financed by CICYT, COMMET and SPRITE

programs of the European Community. He is scientific

advisor of a number of international journals and has

won several scientific prizes. He is a Senior member of

the Institute of Electrical and Electronic Engineers. His

current research interests include design and test of

analog/digital integrated circuits, computer-aided IC

analysis and design, fuzzy logic, nonlinear micro-

electronics and neural networks.

LOGIC SYNTHESIS 181

Submit your manuscripts at
http://www.hindawi.com

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013
Part I

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Distributed
Sensor Networks

International Journal of

ISRN
Signal Processing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Mechanical
Engineering

Advances in

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2013

ISRN
Sensor Networks

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

The Scientific
World Journal

ISRN
Robotics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

International Journal of

Antennas and
Propagation

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN
Electronics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

 Journal of 

Sensors

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Active and Passive
Electronic Components

Chemical Engineering
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Electrical and Computer
Engineering

Journal of

ISRN
Civil Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in
Acoustics &
Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

