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The effect of combined electromechanic force fields in nematic side chain liquid crystal elastomers

will be analyzed. A biaxially stretched plate in the x- and y-directions under an electric field

applied in the perpendicular direction to the plate will be considered. A neo-Hookean model is

chosen, which implies Gaussian behaviour. Results are obtained for both a soft and semisoft case

showing the effect of the electric field on the rotation of the director and the free energy density

function. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4790154]

When a slab of a nematic side chain liquid crystal elas-

tomer (NSCLCE) is uniaxially stretched perpendicularly to

the initial direction of the director, this one tends to rotate.

Then, the soft elasticity phenomenon appears.1 It gives rise

in the stress-strain curve to a plateau with zero slope, which

indicates zero shear modulus; in this zone, no energy cost

exists. In contrast, in the case of random copolymers or

materials showing either anisotropy or compositional fluctu-

ations, the soft behaviour is lost. In this case, only a part of

the free energy of deformation of the conventional elasto-

mers is needed to perform the complete rotation of the direc-

tor and then the so-called semi-softness behaviour appears.

In the zone corresponding to the rotation of the director, the

stress-strain curve exhibits no zero slope but a positive one.

In contrast, the biaxially stretched slab case has not

received a parallel attention. This is probably due to the in-

herent technical difficulties to apply two pair of equal

stretches to the elastomer. However, the analysis of biaxial

stretching slabs of nematic liquid crystals still leads to inter-

esting results. Moreover, the effect of an electric field

applied perpendicular to the two stretched direction can also

reveal interesting facts.

In the present study, a neo-Hookean model is chosen,

which implies: (a) Gaussian behaviour and (b) the system

has been oriented before the crosslinking step is done.2 To

give account of the non linear elastic behaviour of the

NSCLCE, a neoclassical model has been proposed and

expressed in terms of the so-called Trace formula by Bladon,

Terentjev, and Warner1 to represent the free energy of defor-

mation. The model can be conveniently modified for the

case of semi-soft behaviour.

Of course, the aforementioned option is not the only

possible one. For example, Brand et al.3 proposed a nonlin-

ear macroscopic model, which is in fact an extension of an

early idea by de Gennes4 and which captures the essential

facts experimentally observed.5

Having these premises in mind, slabs of NSCLCE equi-

biaxially stretched in the x- and y-directions are analyzed in

the four following situations: no electric field applied for the

(a) soft elastic case and (b) semisoft case, and an applied

electric field perpendicular to the two stretching directions

for (c) soft elastic case and (d) semisoft case. It is assumed

that the material has been previously prepared in such a

way that the director was aligned in a direction perpendicular

to the slab and parallel to the electric field if applied, that

is, along to the z-axis (Figure 1). In this way, the electric

field should enter in energetic competition with the mechani-

cal force field represented by the two pairs of biaxial

deformations.

For our purposes, it is noteworthy that the clamps,

through which the stretch is imposed to the sample, impede

shear strain in their proximity. Then, concomitantly with the

soft or semisoft modes of deformation, a microstructure in

the form of stripe domains is developed as the usual way of

deformation of these materials.5,6 This reveals a compromise

between the soft or semisoft deformation and the constrain-

ing boundary conditions. From a structural point of view, the

appearance of stripe domains corresponds to a like-smectic

phase mechanically induced from the nematic one. The theo-

retical aspects of this problem have been addressed by DeSi-

mone et al.7–9 via a process of quasiconvexification of the

free energy of deformation by using variational techniques

associated to phase transitions in crystalline solids. In any

case, it should be taken into account that the appearance of

shears and striping structures should be a general phenom-

enon, which is not necessarily an indication of semisoft

elasticity.

Let us assume the following expression for the mechani-

cal free energy of a neo-Hookean anisotropic liquid crystal

nematic elastomer:10

Fm ¼
l
2

�
trBe þ a trðCI�1

0 Þ
�
; (1)

where l is an elastic coefficient, tr represent the trace,

B ¼ FFT and C ¼ FTF are, respectively, the left and right

Cauchy-Green tensors, where F is the deformation gradient,

Be ¼ l�1=2FFTl�1=2, l0 ¼ lðn0Þ, where n0 is the initial

mesogens alignment, l ¼ a2=3n� nþ a�1=3ðI� n� nÞ,
where n is the direction of the mesogens after alignment, a is

the ratio of effective step lengths, and a gives account of the
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anisotropy of the samples thus introducing semisoftness. The

tensor n� n describes the liquid crystal order and is directly

related to the de Gennes order tensor Q. Equation (1) has

been previously proposed by DeSimone et al.11 The first

term on the right hand side of Eq. (1) is a modified version

of the trace formula of Warner and Terentjev1 after an affine

change of reference configuration to take into account the

orientation in the material (see the details in Ref. 11). The

second term on the right hand side of Eq. (1) is the contribu-

tion due to the semisoft behaviour.

Accordingly, in the case of a slab subjected to biaxially

stretches along the x and y axes by equal elongation ratios,

the deformation gradient F should take, in principle, the fol-

lowing form:

ka�1=6 0 0

0 ka�1=6 0

0 0 k�2a1=3

0
@

1
A; (2)

where, as required by the incompressibility condition,

detF ¼ 1.

Substitution of Eq. (2) in Eq. (1) should provide the

expression for the mechanical free energy. However, for uni-

axial stretching experiments in sheets of nematic elastomers

held between two rigid clamps, the resulting expression for

the free energy is not convex for a 6¼ 1. This means that uni-

form configurations may have higher energy than complex

patterns with the same average deformation.7,8 As a conse-

quence, energetically optimal fine phase structures are pre-

dicted that realize the quasiconvexification of the rough

energy landscape. This fact accounts for the stripe domains

observed5 in the fine structure of the material. From a formal

point of view, this imposes the appearance of a shear term

Fð13Þ in the deformation gradient, where a bracketed subin-

dex indicates a component of the F tensor.

In biaxial experiments, this scheme should be modified

and an additional term Fð23Þ should appear. Moreover, recent

experiments6 in thin films of a soft nematic gel confined

between two horizontal plates impose the appearance of

shear terms Fð12Þ or Fð13Þ. The new deformation gradient can

be resolved in, at least, four deformation gradients satisfying

certain kinematic compatibility conditions.9 The preceding

scheme has been recently applied to the biaxially stretched

sheets of neo-Hookean liquid crystal elastomers.10 A possi-

ble resulting deformation gradient decomposition leads to

F ¼ 1

4
½F11 þ F12 þ F21 þ F22� ¼

1

4

ka�1=6 0 ca1=3

c0a1=3 ka�1=6 da1=3

0 0 k�2a1=3

0
@

1
Aþ ka�1=6 0 �ca1=3

c0a1=3 ka�1=6 �da1=3

0 0 k�2a1=3

0
@

1
Aþ

þ
ka�1=6 0 �ca1=3

�c0a1=3 ka�1=6 da1=3

0 0 k�2a1=3

0
@

1
Aþ ka�1=6 0 ca1=3

�c0a1=3 ka�1=6 �da1=3

0 0 k�2a1=3

0
@

1
A

2
6666664

3
7777775
: (3)

Note that if a no zero term appears in the position 12 of some of the matrices of the previous decomposition, the incompressi-

bility condition is not preserved. Then, according to the Eqs. (1) and (3), the mechanical free energy results

Fm ¼
l
2

ðk2 þ c2aÞ
�

1þ ða�1 � 1Þsin2h cos2u
�
þ

þ
�
k2 þ ðc02 þ d2Þa

��
1þ ða�1 � 1Þsin2h sin2u

�
þ

þk�4a
�

1þ ða�1 � 1Þcos2h
�
þ 2ðdcaþ c0ka1=2Þða�1 � 1Þsin2h sinu cosuþ

þ2k�2aða�1 � 1Þsinh coshðc cosuþ d sinuÞ þ að2k2 þ k�4 þ c2 þ d2 þ c02aÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: (4)

In the calculation of the free energy, the following normalized orientations of the nematic director are used for, respectively,

each one of the four matrices in Eq. (3)

n11 ¼ ðcos u sin h; sin u sinh; cos hÞ; n12 ¼ ð�cos u sin h;�sin u sin h; cos hÞ;
n21 ¼ ð�cos u sin h; sin u sin h; cos hÞ; n22 ¼ ðcos u sin h;�sin u sin h; cos hÞ:

(5)

In Eq. (5), h and u are, respectively, the rotation and merid-

ian angles.

For an electric field directed along the z-axis, the electri-

cal free energy can be written as

FIG. 1. Equibiaxially stretched plate samples in the x- and y-directions

under an electric field in the z-direction.

052901-2 Diaz-Calleja et al. Appl. Phys. Lett. 102, 052901 (2013)

 This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

161.111.64.30 On: Mon, 28 Oct 2013 12:24:22



Fel ¼ �
1

2
e0

�
e?E2 þ eaðE � nÞ2

�
; (6)

where as usual e0 is the permittivity of the evacuated space,

e? the permittivity of the isotropic sample, and ea ¼ ek � e?
the dielectric anisotropy.

For the present sample configuration and on account

that the term � 1
2
e0E2 is independent of the orientation of n

and consequently can be omitted, one has

Fel ¼ �
1

2
e0eaE2 cos2 h: (7)

The total free energy is obtained by adding Eqs. (4) and (7).

After applying the equilibrium conditions, Fh ¼ Fu

¼ Fc0 ¼ Fd0 ¼ Fc ¼ Fd ¼ 0, where the sub-index indicate

derivation with respect to the corresponding variable, the fol-

lowing set of equations are obtained:

ðk2þ c2aÞsin2hcos2uþ
�
k2þðd2þ c02Þa

�

� sin2h sin2u� k�4asin2hþ 2ðdcaþ kc0a1=2Þ
� sin2h sinucosuþ 2k�2acos2hðccosuþ d sinuÞ

þ 1

lða�1� 1Þe0eaE2 sin2h¼ 0; (8a)

�ðk2 þ c2aÞsin2 h sin 2uþ
�
k2 þ ðd2 þ c02Þa

�

� sin2 h sin 2uþ 2ðdcaþ kc0a1=2Þsin2 h cos 2u

þ k�2a sin 2hð�c sin uþ d cos uÞ ¼ 0; (8b)

2c0a
�

1þ ða�1 � 1Þsin2 h sin2 u
�

þ 2ka1=2ða�1 � 1Þsin2 h sin u cos uþ 2ac0a ¼ 0; (8c)

2ca
�

1þ ða�1 � 1Þsin2 h cos2u
�

þ 2daða�1 � 1Þsin2 h sin u cos u

þ2k�2aða�1 � 1Þsin h cos h cos uþ 2ac ¼ 0; (8d)

2da
�

1þ ða�1 � 1Þsin2 h sin2u
�

þ 2caða�1 � 1Þsin2 h sin u cos u

þ 2k�2aða�1 � 1Þsin h cos h sin uþ 2ad ¼ 0: (8e)

For the present purposes instead of solving the preceding

set of equations, it is more convenient to examine the

behaviour of these equations in the limit values of the rota-

tion angle h.

Consequently, one has

from Eq: (8a); h¼ 0$ d¼ c¼ 0;

from Eq: (8b); h¼ 0$ d¼ c;u¼ p=4; c0 ¼ 0;

from Eq: (8c); h¼ 0$ c0 ¼ 0; c ¼ 0 or d¼ 0;

from Eq: (8d); h¼ 0$ c ¼ 0; d ¼ 0 or c0 ¼ 0;

from Eq: (8e); h¼ 0$ d¼ 0; c ¼ 0 or c0 ¼ 0:

(9)

Moreover from Eq. (8b), h ¼ 0 is a solution of such

equation.

From Eq: (8a); h¼p=2$ d¼c¼0; (10)

from Eq: (8b); h¼p=2; d¼c¼0! c0 ¼ � 2ka�1=2

tan 2u
; (11)

from Eq: (8c); h¼p=2;

d¼c¼0! c0 ¼ � ka�1=2ða�1 � 1Þsin 2u

2
�

1þ ða�1 � 1Þsin2 u
�
þ 2a

: (12)

Equalizing the right hand side of the Eqs. (11) and (12), one

obtains

tan4 u ¼ að1þ aÞ
ð1þ aaÞ : (13)

For example, if one takes a ¼ 2 and a ¼ 0:2, then

u ¼ 48:848�, whereas in the soft case, a ¼ 0 and

u ¼ 49:94�, in agreement with the result obtained in Ref. 10.

Solving the system of Eqs. (8), one obtains

k6 1þ a

ð1þ aÞ þ ða�1 � 1Þsin2h

� �1=2

þ e0eaE2k4

lða�1 � 1Þ

� ð1þ aa�1Þð1þ aÞ
½ð1þ aa�1Þ þ ða�1 � 1Þsin2h�2

¼ 0: (14)

In the soft case with electric field, E 6¼ 0 and a ¼ 0,

k6 1

1þ ða�1 � 1Þsin2 h

� �1=2

þ e0eaE2k4

lða�1 � 1Þ

� 1

½1þ ða�1 � 1Þsin2 h�2
¼ 0: (15)

In absence of electric field, E ¼ 0, one has

k6�
ð1þ aa�1Þð1þ aÞ1=2

�
ð1þ aÞ þ ða�1� 1Þsin2h

�1=2

½ð1þ aa�1Þ þ ða�1� 1Þsin2h�2
¼ 0:

(16)

In the soft case without electric field,

k6 � 1

½1þ ða�1 � 1Þsin2h�3=2
¼ 0: (17)

For the former value of a together with ea¼ 50;l¼ 106Pa;
E¼ 2 �107V=m; and on account that e0¼ 8:854 �10�12F=m,

one obtains, for each one of the four cases under considera-

tion, the limiting values for h as shown in the Table I.

TABLE I. Limit values of k during director rotation (from h¼ 0 to h¼p/2)

for both the soft and semisoft case with and without applied electric field

(E¼ 0 V/m and E¼ 2 � 107 V/m).

E¼ 0 V/m E¼ 2 � 107 V/m

h¼ 0 h¼p/2 h¼ 0 h¼p/2

Soft (a¼ 0) k¼ 1 k¼ 1.189 k¼ 1.064 k¼ 1.226

Semisoft (a¼ 0.2) k¼ 1.014 k¼ 1.187 k¼ 1.078 k¼ 1.227
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The results corresponding to the soft case in absence of

electric field (see, Ref. 10) are recovered. The results of Ta-

ble I indicate that the semisoft behaviour decreases the inter-

val of stretching ratio for which the director is rotating with

and without the presence of the electric field. Moreover, as

expected, the application of the electric field tends to

increase the values of the stretching ratios k for which the

rotation of the director starts and is finished.

The free energies of the system for the soft and semi-

soft cases and in absence and presence of electric field as a

function of the stretching ratio k are shown in the Figure 2.

More theoretical as well as experimental work should be

done in order to enlarge these conclusions for more general

cases.
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