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Abstract 

 

Mercury in coal and its emissions from coal-fired boilers is a topic of primary 

environmental concern in the United States and Europe. The predominant forms of 

mercury in coal-fired flue gas are elemental (Hg0) and oxidized (Hg2+, primarily as 

HgCl2).  Because Hg2+ is more condensable and far more water-soluble than Hg0, the 

wide variability in mercury speciation in coal-fired flue gases undermines the total 

mercury removal efficiency of most mercury emission control technologies. It is 

important therefore to have an understanding of the behaviour of mercury during coal 

combustion and the mechanisms of mercury oxidation along the flue gas path. In this 

study, a temperature programmed decomposition technique was applied in order to 

acquire an understanding of the mode of decomposition of mercury species during coal 

combustion. A series of mercury model compounds were used for qualitative 

calibration. The temperature appearance range of the main mercury species can be 

arranged in increasing order as HgCl2<HgS<HgO<HgSO4.Different fly ashes with 

certified and reference values for mercury concentration were used to evaluate the 

method. This study has shown that the thermal decomposition test is a newly developed 

efficient method for identifying and quantifying mercury species from coal combustion 

products. 
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1. Introduction 

 
Mercury is considered a dangerous heavy metal to both humans and the 

ecosystem because it is highly toxic to the central nervous system and it tends to bio-

accumulate in the human body. Coal fired power plants are one of the main sources of 

mercury emission to the environment [1]. As a consequence, legislative bodies both in 

Europe and USA are considering the reduction of mercury emissions from coal fired 

power plants an important priority [2-5]. According to a ruling announced in USA, 

mercury emissions from utility boilers must be reduced to a final cap of 15 ton/year by 

2018, equivalent to nearly 70 percent reduction [6]. 

During combustion, the mercury in the coal is transformed into three species: (i) 

particle-bound mercury (Hgp); (ii) vapour-phase elemental mercury (Hg0) and (iii) 

vapour-phase oxidized mercury (Hg2+), primarily in the form of HgCl2.  For the optimal 

removal of mercury from flue gas a high level of oxidation is beneficial since, unlike 

Hg0, HgCl2 is water soluble which makes its removal in wet flue gas desulphurisation 

units (FGD) possible. Particle-bound Hgp is easily removed by dust control equipment 

such as baghouse filters and electrostatic precipitators (ESPs) [7-8]. Therefore, the 

conversion of mercury from one form to another is important for selecting the 

appropriate mercury removal technology. 

Hg0 may be oxidized to Hg2+ via homogeneous (gas-gas) or heterogeneous (gas-

solid) reactions [9]. Mercury in coal begins to volatilize at temperatures below 200oC 

almost regardless of the mode of occurrence of mercury in the coal. At temperatures 

above 600-700oC, Hg0 is the only stable form [10]. At temperatures <400oC and in the 

presence of chlorine, part of the Hg0 vapour is oxidized to HgCl2(g) by direct reaction of 

atomic chlorine Cl with elemental mercury [11]. According to the equilibrium reactions 

model proposed by Frandsen et al., [12] HgSO4(s) and HgO(s) also become 
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thermodynamically stable species in conventional coal combustion systems at low 

temperatures (110-320ºC). A theoretical assessment of the equilibrium composition of 

mercury-containing species over the 100-1600ºC range in a combustion atmosphere 

without chlorine indicated that Hg(g) is the most abundant species in gas phase with the 

presence of small amount of HgO(g), the exact proportions of these two species varying 

with temperature [13].  

The oxidation of mercury depends on the composition of the flue gas and 

especially on the quantity of HCl, NOx and SO2 present [14]. Furthermore, an increase 

of mercury oxidation has been observed in systems equipped with selective catalytic 

reduction (SCR) units for NOx control [15]. 

Experimental evidence suggests that fly ash is able to catalyze the oxidation of 

elemental mercury [16-22]. Although the role of inorganic components of fly ashes in 

mercury speciation is still unclear, iron oxide, aluminosilicates and calcium oxide seem 

to be the main promoters of this oxidation [17, 18, 20].  

In order to understand the behaviour of mercury from combustion processes and 

its range of oxidation, it is important to identify which mercury species are associated 

with coal combustion products. A method employed to speciate mercury in solid 

samples is thermally induced desorption. This method has been applied to identify 

mercury compounds in soil contaminates, sediment samples, iron-based sorbents [23-

25] and even in mercury lamp wastes [26]. However, there is a lack of a similar 

knowledge concerning the speciation of mercury in coal combustion products [27]. 

Feng et al. [28] identified and quantified different mercury species (Hg0, HgCl2, HgS 

and HgO) in airborne particulate matter. The study showed the presence of 23% HgCl2 

and 40% HgO, suggesting effluence of industrial processes to the sampling site.  

Milobowski et al. [29] conducted a similar type of study on samples from wet flue gas 
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desulfurization processes. They tested samples made up of pure mercury compounds 

and obtained distinct thermal decomposition curves for four pure mercury compounds. 

However, it was difficult to distinguish between HgS and HgO in samples containing 

more than one compound because the thermal decomposition curves overlapped each 

other. Moreover, there was no attempt to quantify the results of this work. Accordingly, 

the goal of this study was to develop an experimental method for better identifying the 

thermally induced behaviour of the main mercury species in coal combustion products. 

This work will form a useful basis for subsequent studies on the mercury oxidation 

mechanism in fly ashes and will help to improve mercury removal in coal-fired power 

plants. 

 

 
2. Experimental 

 
To study mercury speciation and the assignment of different mercury species to 

specific anions, a commercially available thermal dissociation module (PS Analytical 

Thermogram model 50.042) coupled to a mercury analyser (PS Analytical Sir Galahad 

Mercury Analyser model 10.525) was used. The Sir Galahad mercury analyser employs 

an atomic fluorescence detector which is specific for Hg0 and is able to measure (in 

continuous real-time mode) mercury at a mass flow as low as 1 ng/minute. The mercury 

compounds present in the sample are carried through the oven tube in a stream of argon, 

at a flow rate of 250 ml min-1. The commercial unit was modified to improve the 

temperature distribution along the work-tube between the programmed dissociation 

furnace and the “cracker” furnace, where the volatilized mercury compounds are fully 

dissociated prior to detection as elemental mercury. The heating rate from room 

temperature to 650°C is nominally 10oC min-1.  
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 A number of pure mercury compounds (HgCl2, HgS, HgSO4, HgO, Hg2Cl2, 

Hg2SO4, HgBr2) were tested to determine their specific thermograms in order to obtain 

a set of “fingerprints” which could serve as a standard of comparison for the profiles 

obtained from the coal combustion products. The content of mercury in the samples was 

approximately between 1.0-3.0 µg. The pure mercury compounds were diluted using 

silica flour as inert material. Origin 6.0 professional software was used to deconvolute 

overlapping peaks of thermal decomposition curves.  

The calibration test was performed using a PS Analytical CAVKIT dynamic 

dilution unit. The CAVKIT unit works on the principle of diluting a saturated mercury 

vapour at known temperature which provides a known concentration of mercury in a 

stream of argon at a known flow rate. This results in a final concentration of mercury 

presented to the analyser of range 5 – 500 ng/L. A standard fly ash (NIST 1633 b) and 

two reference fly ashes (FA1 and FA2) were used in this study to verify the quantitative 

analysis. The mercury content in FA1 and FA2 samples was analysed using a cold 

vapour atomic absorption (CVAA) spectrophotometer.  

 In order to improve our understanding of the behavior of mercury species, 

thermodynamic equilibrium models were used in order to predict the composition of the 

chemical species in the gas phase using the HSC-Chemistry 5.0 software.  

 

  

3. Results and discussion 

 
3.1. Studies of single pure compounds 

The thermograms obtained from the mercury standards HgCl2, Hg2Cl2, HgS, 

HgO, HgSO4, Hg2SO4, HgBr2 are shown in Figure 1. The compounds chosen initially 

were HgCl2, HgS, HgO and HgSO4, as they are the most likely species to form during 
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coal combustion and in a wet scrubber environment.[29] Apart from chloride, other 

halogens, such as bromide, have been found in the effluent during coal combustion [30]. 

This might influence the behaviour of the mercury during the process and for this 

reason HgBr2 was also included in this study. The results are summarized in Table 1. 

The following features were observed: 

(a) HgCl2 (Figure 1a). The decomposition of this mercury phase occurs at low 

temperatures ranging from 70 to 220ºC (maximum at 120ºC). 

(b) Hg2Cl2 (Figure 1a). Two peaks appear within the approximate range 60 to 

220ºC with their maxima at 80 and 130ºC, respectively. As already mentioned in other 

works [26] these two peaks are probably related to the decomposition of Hg2Cl2 in two 

steps: 

Hg2Cl2  Hg0 + HgCl2 

HgCl2  Hg0 + Cl2 

As can be observed the decomposition temperature for the second peak of Hg2Cl2 is 

close to the temperature found for HgCl2 (120oC) 

(c) HgBr2 (Figure 1a). This presents a sharp peak at approximately 110ºC. 

(d) HgS (Figure 1b). There are two different HgS crystalline structures: black 

HgS or metacinnabar and red HgS or cinnabar. Metacinnabar decomposes 

approximately between 170 and 290ºC with two small peaks appearing at the top at 200 

and 250ºC. This fact suggests that metacinnabar starts to decomposition at 200 ºC but its 

completely decomposition is at 250ºC in the experimental conditions of this study. 

Cinnabar decomposes at a higher temperature (310ºC) compared with metacinnabar. 

The thermal desorption curves for metacinnabar and cinnabar are similar to those found 

in other studies [25]. The structure of cinnabar is trigonal with Hg arranged on a 
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rhombohedral lattice whereas the structure of metacinnabar is cubic. Mercury release 

temperatures for mercury suphides may vary slightly due to different crystallinity [24]. 

(e) Hg2SO4 (Figure 1b). The thermal decomposition of this mercury species, 

unlike the other mercury model compounds, shows a broad signal over the range 120 to 

480ºC which sharpens and peaks at 280ºC.   

(f) HgSO4 (Figure 1c). This curve presents a pronounced shoulder, extending 

from 300 to 450ºC with a sharply defined peak at 540ºC. 

(g) HgO (Figure 1c). A maximum peak appears at approximately 500ºC with a 

smaller peak at about 325ºC.  

Considering that different heating rates and carrier gas flow rates are employed 

by individual workers and therefore, variances in the thermal desorption can be 

observed,  the order of the mercury appearance temperatures can be considered similar 

to those found by Feng et al [28] in matrices of fly ashes (HgCl2<HgS<HgO). This 

order suggests that the thermal release of mercury species is related to the vapour 

pressure [23,28]. When the vapour pressure decreases, the mercury release temperature 

increases.  

In order to confirm the decomposition of different mercury species, a theoretical 

study was carried out using argon atmosphere as employed in the experiments, and 

using thermodynamic data at the equilibrium. Figure 2 shows two examples of the 

thermodynamic analysis. When the HgSO4 is heated in an inert atmosphere, the HgSO4 

starts to decompose at 300ºC and finishes decomposing at 700ºC (Figure 2a). Possibly 

for this reason the fingerprint of this compound (Figure 1c) showed a pronounced 

shoulder. According to the thermodynamic equilibrium data, HgSO4*HgO may also 

form when HgSO4 is heated, in which case it would remain stable only until 600ºC 

(Figure 2a) and this agrees with the experimental results of thermal decomposition 
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(Table 1). The thermodynamic studies show that HgO is totally decomposed by 

approximately 550ºC (Figure 2b) for both the yellow (Y) and red (R) forms. The 

experimental results again agree with the theoretical studies, as the thermo-

decomposition of HgO took place in the 430-560ºC temperature interval (Table 1) The 

difference between these two compounds is the crystallite size but unlike the mercury 

sulphides (cinnabar and metacinnabar), both forms of HgO have the same crystallite 

structure, and therefore, their thermal decomposition takes place at very similar 

temperatures (Figure 2b). It must not be forgotten that with this software, although it is 

possible to calculate thermodynamic equilibrium data, the kinetic phenomena are not 

taken into account. 

 

3.2. Study of mixtures of model compounds 

In order to check for any potential interference or interaction resulting from the 

thermal release of different mercury species, several mixtures of standards were 

analyzed (Figures 3-7). Figures 3-5 shows three examples of the thermograms obtained 

with mixtures of black HgS and HgSO4 at a ratio 2:1,  black HgS, HgSO4 and Hg2SO4 

at a ratio 1:1:1 and black HgS and Hg2SO4 at a ratio 1:1 by mercury weight. The three 

sulphur containing mercury species could be identified and therefore they do not appear 

to interfere with each other.  Only in the case of the first mixture (Figure 3), does the 

maximum peak of HgSO4 appear to be slightly displaced at about 520ºC. Figure 6 

shows the thermogram obtained for the mixture HgCl2/Hg2Cl2 (1:1). The peaks for each 

mercury compound could again be identified (Table 1). As it can be observed in Figure 

7, similar expected peak temperatures were obtained from a combination of the four 

main model compounds, where the order of thermal decomposition was chloride, 

followed by sulphide, oxide and sulphate. Moreover, overlapping peaks were separated 
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in these mercury standard mixtures by the origin 6.0 software used. The mercury 

response signals obtained for each mixture were deconvoluted into individual mercury 

peaks, which are in agreement with the thermal decomposition temperatures for the 

individual mercury compounds (Table 1),  (e.g. Figure 6). Two peaks (grey dot) 

correspond to the thermal decomposition of Hg2Cl2 whereas the other peak (grey dash) 

corresponds to HgCl2 (Figure 1a, Table 1).  

 

3.3. Quantitative studies 

In addition to the qualitative study of the different mercury species, a 

quantitative analysis was also carried out. Table 2 shows the quantitative analysis 

results for the mercury standard mixtures (Figures 3-7). The peak area of each 

individual mercury peak was computed using the PeakFit programme with a Lorentzian 

distribution.  The presence of broad peaks with overlapping (Figures 5-7) and potential 

errors incurred due to adjustment of the base line by the Origin program used to 

calculate the peak area (Figure 4) has only allowed a semi-quantitative analysis of each 

individual mercury compound (Table 2). The analysis can only be considered 

quantitative when the mixtures show peaks clearly separated peaks of good fit (Figure 

3). Despite this, the measured ratios of the components were reasonably satisfactory 

(Table 2). 

In order to confirm the total mercury content in the samples, a reference material 

of coal fly ash (NIST 1633b) with a certified value for total mercury and two fly ash 

samples with a mercury concentration analyzed by means of CVAA were used (Table 

3).  Although the precision of the quantitative results obtained from the thermal 

decomposition studies, calculated as standard deviation, is lower than that of CVAA, 

accurate results were obtained, considering also, the low levels of mercury 
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concentration in these types of materials. Figure 8 shows the thermograms for NIST 

1633b and FA1. Two peaks, ranging from 70 to 300ºC, were obtained suggesting that 

the main mercury species are Hg-Cl and Hg-S (Table 1). The profile from the sample of 

coal fly ash (Figure 8b) was deconvoluted in order to clarify the mercury halide and 

sulphur-containing species (Figure 9). The deconvoluted profile suggests that the main 

mercury species present in this fly ash would be HgCl2 with also some HgS 

(metacinnabar) (Table 1). The peaks are slightly displaced to the right indicating that 

some component(s) of the fly ash could be interfering in the thermal decomposition of 

some mercury compounds. 

 

4. Conclusions 

 
 The thermal decomposition method allows different species of mercury to be 

identified since each presents a characteristic decomposition temperature. The 

temperature rate of the mercury species can be arranged in increasing order as 

HgBr2<HgCl2<Hg2Cl2<HgS(black)<Hg2SO4<HgS(red)<HgO<HgSO4.  

Multiple model compounds within a sample were clearly identified. Therefore, 

thermal desorption appears to be a viable technique for identifying different mercury 

species in products from coal combustion. 

Programmed thermal dissociation coupled with a mercury analyzer allows 

quantify small amounts of mercury in fly ashes. 
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