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Abstract—Cellular Nonlinear Networks (CNN) establish a
theoretical framework in which programmable focal-plane image
processing arrays can be developed. The conventional support
for its analog programmability in VLSI is the implementation
of transconductor-based multiplication of the input, output and
state variables times the corresponding template elements. How-
ever, some distributions of weights can be greatly affected by
the intrinsic nonidealities of the physical implementation. This
is exactly the case when implementing linear diffusion within
a transconductor-based CNN implementation. In this paper we
propose an alternative implementation: a resistive grid based
on MOSFETs operating in the triode region to realize linear
diffusion of the input image, considered as the initial state of the
network. In addition, these MOS-resistors can be employed as
switches in order to sub-divide the image into bins, sized to track
features on the appropriate scale. Thus, by simply controlling
the size of the binning and for how long the pixel voltages will
diffuse, it will be possible to segment and track dynamic textures
along an image flow. Each frame of the flow is described by a
smaller image in which each pixel represents the energy of the
corresponding image bin, once the non-relevant spatial frequency
components have been filtered out. We will demonstrate that the
resulting low-resolution representation of the scene is very robust
to the different sources of nonidealities in a standard CMOS
technology.

I. INTRODUCTION

Cellular Nonlinear Networks (CNN) [1] define a framework

for analog parallel array processing based on elementary

processing units interacting only with a finite neighborhood.

The interest in CNNs arises mainly from two facts. Firstly,

many tasks related to the processing of images can be defined

in terms of operations among neighborg pixels and thereby di-

rectly mappable onto a CNN. And secondly, the local scope of

the interactions makes them simpler for VLSI implementation

compared to more general fully-connected neural networks.

Thus it has leaded to numerous physical implementations

of focal-plane image processing arrays based on the CNN

framework. These arrays are meant to carry out low-level

operations over images in a massively parallel and efficient

way. Within such operations, the implementation of linear

diffusion turns into essential. It is an ubiquitous tool in image

processing and vision algorithms. Its application field ranges

from obtaining representations of a scene at different scales [2]

to simply reducing the effects caused by noise. Nonidealities

intrinsically associated with the physical implementation of

the interconnection weights can however render the imple-

mentation of linear diffusion in transconductor-based CNNs

impractical [3]. An alternative is the use of a resistive grid.

The VLSI implementation of true resistors is, however, bulky,

specially if we are interested in performing time-controlled

diffusion. Instead MOS transistors can be used as resistors,

in spite of their nonlinearities. By carefully choosing the

signal range and an adequate design of the geometry of the

transistors, a wide range of resistive grids can be emulated

with moderate accuracy [4]. Besides, by controlling the gate

voltage, it is possible to determine the processing realized by

the grid.

In this paper we present a reconfigurable focal-plane pro-

cessor based on performing CNN processing through diffusion

dynamics in image blocks of programmable size. The primitive

block employed to implement the connections is a MOSFET

operating in ohmic region. Though relatively simple, the type

of filtering that we are realizing on each image frame turns

into a very powerful aid in order to segment dynamic textures.

A dynamic texture (DT) is a spatially-repetitive time-varying

visual pattern whose temporal variation presents certain sta-

tionarity [5]. They are very common in natural scenes, e. g.

smoke or a flock of birds. However, both spatial and temporal

extents of a DT cannot be determined in advance. This is why

segmentation at early image processing stages can help to real-

time tracking of phenomena manifested in the form of visual

DTs. Therefore, our circuit takes advantage of their spatial

repeatability. Both in the size of the image bins in which

the full frame is divided, and in the duration of the linear

diffusion –that is related to the spatial cut-frequency of the

spatial Gaussian low-pass filter implemented–, we can encode

the distinctive frequency signature of the targeted texture.

Notice that, in the real circuit, this is achieved by selecting

the interconnecting MOS-resistors that will be turned on, and

controlling the amount of time they will be effectivelly on.

Once the filtering is done, the energy of each pixel is locally

computed and the energy of the bin is obtained by charge

redistribution with the help of another transistor grid. The

result is a reduced representation of the scene in which each

pixel contains the energy of the corresponding bin. It permits

to focus only on those regions where this energy meets certain

conditions. We will finally show simulations on the robustness

of the VLSI implementation of the array against mismatch and

temperature drift.



Fig. 1. Resistive grid performing linear diffusion

II. SCENE REPRESENTATION

One of the main functionalities of a focal-plane analog array

processor is to reduce the amount of information transmitted

for subsequent –usually digital– processing stages. In other

words, a simplified representation of the original raw scene

must be delivered containing only the necessary data for the

rest of the processing. In our case, the desired outcome is the

segmentation of a certain dynamic texture. And the necessary

data are on the frequency bands which define its signature. We

therefore require spatial filtering analog hardware capable of

extracting information about different bands of frequencies.

Consider the resistive grid depicted in Fig. 1. In order to

determine the spatial filtering which performs, let the initial

voltage at the capacitor of every node be the value of the

corresponding pixel. If we permit the network to evolve from

this initial state, the equation satisfied at each node inside the

network is:

τ
dVij

dt
= −4Vij + Vi+1,j + Vi−1,j + Vi,j+1 + Vi,j−1 (1)

where τ = RC. Applying the DFT to this equation we obtain:
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dV̂uv

dt
= −4V̂uv + e

2πiu
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−2πiu
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where we have considered an array whose size is M × N
pixels. Eq. (2) can be rewritten as:

τ
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and solving now in the time domain we obtain:

Ĥuv(t) =
V̂uv(t)

V̂uv(0)
= e−

4t
τ [sin2(πu

M )+sin2(πv
N )] (4)

where V̂uv(0) represents the DFT of the image defined by

the initial voltages at the capacitors and V̂uv(t) is the DFT of

the image defined by those same node voltages after a certain

time interval t since the network started to evolve at time

instant t0 = 0. Thus Eq. (4) describes the filtering process

undergone by the initial image as the network evolves. It is

an approximation of the lowpass isotropic filtering performed

by an ideal continous-plane diffusion process [6]. For VLSI

implementation, MOS transistors can substitute resistors one

by one. It permits to obtain larger resistances with less area

than resistors made with polysilicon or diffusion strips1. Be-

sides, it is possible to adjust the lowpass filtering implemented

by controlling the ratio t/τ through the gate voltage. It turns

the transistors into switches with voltage-controlled resistance.

A resolution between 6 and 7 bits with respect to an ideal

resistive grid can be achieved within a wide signal range

despite nonlinearities and mismatch in the transistors [4].

One of the most interesting aspects of the filtering per-

formed by a resistive grid is that information about any band

of spatial frequencies with approximately the same norm can

be extracted by stopping the diffusion at two different time

instants. Nevertheless, we need a procedure for summarizing

the filtering process and thereby obtaining a simplified repre-

sentation of the scene. And such a procedure is the focal-plane

computation of the energy. Let Vij(t) be the voltages at the

nodes of a M×N MOSFET-based resistive grid after a certain

interval of diffusion t. The total energy is defined as:

E(t) =

M−1
∑

i=0

N−1
∑

j=0

|Vij(t)|
2 =

M−1
∑

u=0

N−1
∑

v=0

|V̂uv(t)|2 (5)

Eq. (5) along with Eq. (4) mean that the amount of energy

that remains in the image accounts for the filtering undergone

during the diffusion. The total charge in the whole capacitor

array is conserved, but, naturally, the system evolves towards

the less energetic configuration. Thus the energy at each time

instant is a measure of the evolution of the diffusion process.

The longer t the less E(t). The energy lost between two

consecutive points in time during the difussion corresponds

to that of the spatial frequencies filtered. Notice that changing

the reference level for the amplitude of the pixels does not

have an effect outside of the DC component. A constant value

added to every pixel does not eliminate nor modify any of the

spatial frequency components already present, apart from that

at the origin of the Fourier space.

III. FOCAL-PLANE HARDWARE

A DT can appear into a scene at any location. We therefore

need flexible focal-plane hardware capable of extracting the

desired information in different zones of the scene. Moreover,

as the scale of the DT can also vary, the size of the zones

where the signature is searched must be programmable. That

is to say, the hardware which we are looking for must carry

out a programmable image binning. Within every bin, a

1For example, in a standard 0.35µm CMOS process, a PMOS transistor
with dimensions 0.4/1 achieves an equivalent resistance of 85kΩ. To reach
the same resistance with p-type diffusion, a strip of around 600 squares would
be necessary.



Fig. 2. Hardware structure for programmable image binning and filtering

controlled diffusion process and the subsequent computation

of the energy will lead to the targeted simplified representation.

Consider the circuit depicted in Fig. 2. It consists of a

M × N grid where the value of each pixel is stored in a

capacitor. Each capacitor is 4-connected to the neighboring

capacitors by means of MOS transistors. Both the capacitors

and the transistors are nominally identical throughout the

grid. The gate voltage of each transistor is controlled by

the corresponding selection signal SRi,i+1
or SCj,j+1

which

respectively connects the i/j-th row/column with the i+1/j+1-

th row/column. When selected, the MOSFETs are biased

in the ohmic region, behaving as resistors connecting two

nodes. Otherwise the MOS transistors are off, establishing

the boundary of a bin. Thus a particular distribution in the

set of row and column selection signals determines the size

and amount of bins in which the image plane is divided.

Finally, once the image plane division is defined, a charge

diffusion process is performed within the bin whenever the

corresponding control signals remain selected. By deselecting

them, the diffusion is stopped.

The hardware employed to calculate the energy of the bins

is very simple. It consists of a charge-redistribution grid like

that of Fig. 2 linked pixel to pixel with the grid performing

the controlled diffusion. For this new grid, all the capacitors

must be pre-charged to a reference voltage VREF . The link

between both grids is realized by means of the circuit depicted

in Fig. 3, where CP represents the sensing capacitor storing the

pixel value and CE the corresponding capacitor pre-charged

to VREF . Once the diffusion has been stopped, the switch SE

in all the pixels is switched on during a fixed period of time

TE . The final voltage at CE is:

Fig. 3. In-pixel circuit for the computation of the image energy

VEij
= VREF −

TE

CE

β[Vij(t) − Vth]2 (6)

We are assuming that all the transistors ME , operating in sat-

uration, are nominally identical. Deviations occur from pixel

to pixel due to mismatch in the threshold voltage (Vth), the

transconductance parameter (β), and the body-effect constant

(γ, not appearing explicitly in this equation). Being area

dependent effects, transistors ME are tailored to control the

resulting error in the computation. Also, mobility degradation

contributes to the deviation from the behaviour depicted in

Eq. (6). The useful signal range will be limited by this. When

SE is switched back off in all the pixels after time TE , a total

charge redistribution takes place at the nodes VEij
with the

same binning scheme as for the controlled diffusion. It results

in averaging the pixel energy at each bin:

¯VEkl
= VREF −

βTE

WHCE

kW+W−1
∑

i=kW

lH+H−1
∑

j=lH

[Vij(t) − Vth]2

(7)

where the indexes k and l identify the bin and W ×H repre-

sents its size in pixels. This voltage is proportional to the total

energy of the pixels of that bin t seconds after the diffusion

started. As referred before, the offset introduced by Vth does

not affect any spatial frequency other than the DC component.

Finally, in order to achieve the reduced representation of the

scene, only one pixel out of every bin needs to be read as all

the capacitors within the bin will be at the same voltage ¯VEkl
.

IV. SIMULATION RESULTS

Consider the circuit depicted in Fig. 4. It corresponds to an

elementary cell inside an array implementing the previously

described hardware. Note that each MOS-resistor is shared

by the corresponding neighbor cell. The used models of

the transistors belong to a standard 0.35µm CMOS 3.3V

process. Note that the sensing capacitance CP in Fig. 3 is

implemented by a MOS-based capacitor. This capacitor, along

with the four nominally identical transistors which connect

it to its neighbors, are designed to emulate a resistive grid

with τ = 85ns for typical mean conditions. It is possible

to obtain the same value of τ by reducing the dimensions

of the NMOS transistor implementing CP and increasing the

length of the PMOS transistors emulating a certain resistance.

It would mean less area. However, it also introduces too

many charge errors coming from the PMOS transistors on



Fig. 4. Elementary cell of the simulated array

switching to control the diffusion. The signal range for this

MOS-based resistive grid is [1.5V, 2.5V ]. It keeps the RMSE

with respect to the equivalent ideal resistive grid below 0.75%
for a diffusion process applied to a grayscale Lena image [4].

Regarding the capacitance CE in Fig. 3, it is also implemented

by a MOS-based capacitor. Its design is determined by the

dimensions of the transistor ME , which must be long enough

to reduce short-channel effects as much as possible, and by

the period of time TE . In our case, we choose TE = 20ns,

which is a feasible requirement for the control signal VctrlE . In

addition to the switch SE , we have introduced the precharging

switch connected to the reference voltage VDD and controlled

by the signal Vctrlpre
. In this way, by sweeping the signal

range of Vij , that is, all the possible values of the pixels, and

computing for every case the energy at VEij
, the parameters

in Eq. (6) can be estimated. Specifically, by applying a least

square fitting for typical mean conditions to VDD −VEij
, with

VDD = 3.3V , a RMSE less than 0.8% can be obtained for the

energy computation of the pixel values. The signal range for

VEij
is [2.16V, 3.02V ]. Finally, this node is connected to its

neighbors through PMOS transistors. It implements the charge

redistribution grid for energy computation. Control signals

SREi,i+1
and SCEj,j+1

establish the binning scheme in this

grid, like their counterparts SRi,i+1
and SCj,j+1

in the grid for

controlled diffusion. The dimensions of the PMOS transistors

are the minimum possible.

At this point, it can be demonstrated that a focal-plane

array composed of elementary cells like that of Fig. 4 is

very robust to parameter variations, mismatch and temperature

dependences associated to the transistors in a standard CMOS

process. Consider that the image plane is divided into bins

whose size is 8×8 px. Let us also assume that the initial values

of the bin pixels are those of the first pattern depicted in Fig. 5,

which does not contain any distinctive frequency component.

This initial state will be referred to as B0. Our objective is

the segmentation at this scale of two different textures, namely

DT1 and DT2, whose characteristic patterns are depicted in

Fig. 5. DT1 corresponds to a signature with significant content

at wave number indexes (u, v) = (4, 0) and (u, v) = (0, 4).
DT2 corresponds to a signature with significant content at

(u, v) = (1, 0) and (u, v) = (0, 1). In order to perform the

segmentation of these patterns we are going to compute three

values of energy for every bin of each image: the total energy

ET , that is, the initial energy without filtering, the energy Et1

after a certain diffusion duration t = t1, and the energy of the

DC component EDC . The time instant t1 must be set in such a

way that the presence of the patterns can be distinguished. To

this end, let us define t1 as the time instant at which the energy

associated to the wave number with index (u, v) = (2, 0),
or equivalently (u, v) = (0, 2), has been filtered a 50%.

According to Eq. (4), this condition means:

|Ĥ2,0(t1)|
2 = e

−8t1
τ

sin2( 2π
8

) = 0.5 (8)

which is translated into t1 = 0.17τ . With this filtering, the

energy of the components at (u, v) = (4, 0) and (u, v) = (0, 4)
has been reduced a 75% approximately while the energy of

the components at (u, v) = (1, 0) and (u, v) = (0, 1) has been

reduced only a 20% approximately. It leads to the following

definitions:

PH = 100
ET − Et1

ET − EDC

% (9)

which is an estimation of the percentage of frequency com-

ponents higher than (u, v) = (2, 0) with respect to the energy

of all the components other than the DC component and:

PL = 100
Et1 − EDC

ET − EDC

% (10)

which defines an estimation of the percentage of frequency

components lower than (u, v) = (2, 0) with respect to, again,

the energy of all the components other than the DC component.



B0 DT1 DT2

Fig. 5. Patterns considered in a bin whose size is 8 × 8 px.

The main contributor to the total energy of a set of pixels is

normally the DC component by far. That is the reason why

the previous definitions are relative to the total energy without

this component. It permits to obtain meaningful values of PH

and PL. In this way, we extract from simulation ET , Et1

and EDC for the patterns B0, DT1 and DT2. Keep in mind

that any of the nodes VEij
belonging to the corresponding

bin could be read out once computed some of these values

of energy, as previously mentioned. Subsequently, PH and

PL are calculated off-line by a digital processor. Notice that

the size of the resulting images from the processing is much

more manageable. Finally, it is important to remark that energy

will be expressed in the results as VREF − VEij
according to

Eq. (7), with VREF = VDD = 3.3V . In Fig. 6, the evolution

of the voltages VEij
(upper part of the plot) and Vij (lower

part of the plot) for the different computations performed over

the characteristic pattern of DT1 is depicted. This evolution

shows how the capacitor CE at every cell is precharged

before computing the initial energy of the pixels. Then a

diffusion step is carried out in order to subsequently compute

Et1 . Finally, after a complete diffusion, EDC is computed.

Simulations for all the corners of the CMOS process have

been realized. The results are summarized in Table I. Notice

that, according to the previously mentioned errors associated

to the controlled diffusion and energy computation, an A/D

converter with an equivalent resolution between 6 and 7 bits

would suffice for Vij and VEij
. For such a converter, the

values of energy for B0 in all the corners would be barely

distinguishable. It means that this pattern does not contain any

significant frequency component for the bands considered. In

this way, the values of PH and PL for B0, although included

for completeness, are meaningless. However, when it comes

to the characteristic pattern of DT1 and DT2, the values

of energy can be perfectly distinguished from the described

converter. Specifically, the differences between ET and Et1

for DT1 and between Et1 and EDC for DT2 clearly highlight

the presence of the respective pattern within the bin. In short,

it is possible to detect the presence of the patterns considered

within any bin by simply monitoring the corresponding values

of ET , Et1 and EDC . Finally, to emphasize the robustness

of the processing, 30 Monte-Carlo simulations at different

temperatures have been realized. Typical mean conditions were

used, introducing independent Gaussian deviations of W , L,

µ0 and tox with σ = 10%. These deviations generate in turn

deviations in the crucial parameters Vth, γ and β [7] which

directly affect the previously described equations defining the

processing. The results are summarized in Table II. It can be

observed that the mean values of the different parameters keep

the same tendency than in Table I. Concerning the standard

deviations, notice that for the case of the DT1 and DT2

patterns the deviations in PH and PL do not prevent from

detecting their presence within the bin. However, for the B0

pattern, the closeness of the energy values implies abrupt

changes in PH and PL. Thus its standard deviation is very

significant and they are again calculated for completeness.

Analogous simulations intended to segment three different

patterns with a size of bin of 32 × 32 pixels confirm all the

described results. In fact, the accuracy of the processing is

even greater. Note that the larger the size of the bin the less

the influence that strong deviations in a cell have in the rest

of them within the bin. On averaging the energy among more

cells, the effect of wrong values in the result is attenuated.

Finally, it is interesting to remark that the pixel values in

the patterns DT1 and DT2 correspond to the maximum and

minimum within the prescribed signal range. By reducing

the relative amplitude of these values, the energy of the

corresponding pattern is also reduced, making more difficult

its segmentation. The sensitivity of the processing will thus

depend not only on its resolution but also on the nature of

the background from which pattern is to be segmented. For

example, the segmentation against a background where only a

DC component exists will be easier than against a background

whose spectral content already includes certain energy at the

spatial frequency of the targeted patterns.

V. CONCLUSIONS

A focal-plane analog parallel processing array has been pre-

sented. It is intended to segment dynamic textures in an image

flow. The segmentation is performed by two simple MOS-

based resistive grids linked node by node with a transistor.

The processing carried out by the array, based on the diffusion

operation, is massively parallel and power-efficient, suitable

for vision systems with strict power budgets. Finally, the

robustness of the VLSI implementation of the array has been

demonstrated even for extreme temperatures and mismatch.
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Corner Bin ET Et1 EDC PH PL

tm (τ = 85ns)

B0 0.6468V 0.6321V 0.6264V 72.06% 27.94%

DT1 0.6853V 0.6339V 0.6316V 95.74% 4.26%

DT2 0.6898V 0.67V 0.6333V 35.11% 64.89%

wo (τ = 107ns)

B0 0.8501V 0.838V 0.8209V 41.43% 58.57%

DT1 0.8949V 0.8351V 0.8296V 91.62% 8.38%

DT2 0.8947V 0.8716V 0.8406V 42.63% 57.37%

wz (τ = 60ns)

B0 0.4957V 0.4854V 0.4778V 57.54% 42.46%

DT1 0.5346V 0.4908V 0.4839V 83.8% 16.2%

DT2 0.5351V 0.5233V 0.4847V 23.40% 76.6%

ws (τ = 148ns)

B0 0.3754V 0.3672V 0.3603V 54.3% 45.7%

DT1 0.4084V 0.3703V 0.3645V 86.69% 13.31%

DT2 0.408V 0.3967V 0.3683V 28.3% 71.7%

wp (τ = 49ns)

B0 1.0608V 1.0438V 1.0266V 49.7% 50.3%

DT1 1.1V 1.0423V 1.0423V 100% 0%

DT2 1.1001V 1.0844V 1.0381V 25.27% 74.73%

TABLE I
RESULTS OF SIMULATION FOR THE DIFFERENT CORNERS OF THE CMOS PROCESS

Temperature (◦C) Bin ĒT (σ) Ēt1(σ) ĒDC(σ) P̄H(σ) P̄L(σ)

0
B0 0.7364V (0.0235V) 0.7231V (0.023V) 0.7142V (0.0225V) 60.99% (30.98%) 39.01% (30.98%)

DT1 0.7885V (0.0305V) 0.7319V (0.028V) 0.7237V (0.0272V) 87.3% (9.06%) 12.7% (9.06%)

DT2 0.7939V (0.0311V) 0.7767V (0.0284V) 0.7296V (0.0231V) 26.77% (9.29%) 73.23% (9.29%)

27
B0 0.6502V (0.0204V) 0.6394V (0.0201V) 0.6316V (0.02V) 61.84% (17.91%) 38.16% (17.91%)

DT1 0.6951V (0.0277V) 0.6471V (0.0247V) 0.6405V (0.0237V) 87.82% (5.49%) 12.18% (5.49%)

DT2 0.6941V (0.0262V) 0.6804V (0.0251V) 0.6421V (0.02V) 26.32% (9.61%) 73.68% (9.61%)

85
B0 0.5169V (0.0173V) 0.5097V (0.0167V) 0.504V (0.0165V) 61.33% (35.5%) 38.66% (35.5%)

DT1 0.5522V (0.0225V) 0.5166V (0.0201V) 0.5110V (0.0196V) 86.47% (6.76%) 13.53% (6.76%)

DT2 0.5517V (0.0204V) 0.5423V (0.0199V) 0.5129V (0.0169V) 24.12% (7.53%) 75.88% (7.53%)

TABLE II
RESULTS OF 30 MONTE-CARLO SIMULATIONS FOR TYPICAL MEAN CONDITIONS AT DIFFERENT TEMPERATURES


