FUNCTIONAL Benefits of Psyllium fiber supplementation

Julia Wärnberg1,2, Ascensión Marcos3, Gloria Bueno4 and Luís A. Moreno5

1Department of Preventive Nutrition and Public Health, Faculty of Medicine, University of Navarra, Pamplona, Spain; 2Unit for Preventive Nutrition, Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm; 3Immunonutrition Group, Department of Metabolism and Nutrition, Instituto del Frio-ICTAN, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain; 4Grupo GENUD (Growth, Exercise, Nutrition and Development), Departamento de Pediatría, University of Zaragoza, Spain; 5Grupo GENUD (Growth, Exercise, Nutrition and Development), Escuela Universitaria de Ciencias de la Salud, University of Zaragoza, Spain

[Received December 23, 2008; Accepted April 15, 2009]

ABSTRACT: Commonly called Psyllium (Ispaghula Psyllium, Plantago ispaghula and Plantago ovata), has a long history of use as a dietary fiber supplement, primarily as a gentle bulk-forming laxative to promote the regulation of large bowel function, but it has as well a potential role in the treatment and prevention of bowel diseases such as diverticulosis, irritable bowel syndrome and inflammatory bowel disease, and could even play a protective role in the prevention of colon cancer. During the last decade, dietary supplementation with psyllium has been shown to lower blood cholesterol levels, and especially LDL cholesterol (Williams et al., 1995; Brown et al., 1999; Anderson et al., 2000a; Anderson et al., 2000b) as well as to maintain blood glucose homeostasis, which together are the most effective preventive measures against diabetes and cardiovascular diseases (CVD). Considering that cardiovascular diseases is one of the major causes of death in most Western countries, and that dietary intervention should be the first-line approach, increasing soluble dietary fiber has been recommended as safe and practical for cardiovascular disease prevention.

Much interest has been shown internationally by the general public, the scientific community, and federal US regulators in the medical application of foods with specific health benefits (functional foods), foods that favorably modify physiologic function. There is also considerable interest in health claims by the industry to produce functional foods and to ensure efficacy of action. The intent of this review is to summarize the documented functional benefits of Psyllium fiber consumption.

WHAT IS PSYLLIUM?

According to the European Pharmacopoeia, Psyllium seed (Psyllii semen) consists of the ripe, whole, dry seeds of Plantago afra L. (Plantago psyllium L.) or Plantago indica L. (Plantago arenaria Waldstein and Kitaiibel). Husk and seeds from Plantago ovata (Plantaginis ovatae) is however commonly also referred to as Psyllium, although the correct definition of Plantago ovata Forsk. (P. ispaghula Roxb.) is Ispaghula husk and seeds. Ispaghula, or commonly psyllium husk, consists of the episperm and collapsed adjacent layers removed from the seeds of Plantago ovata Forsk and are obtained by milling the seed to remove the hulls. We are, in this review of Psyllium, referring to water-soluble fiber derived...
from all above mentioned plants.

The physiologically active component of psyllium husk is shown to be a highly branched, neutral arabinoxylan consisting of a xylose backbone and arabinose- and xylose-containing side chains. In contrast to arabinoxylans in cereal grains that are extensively fermented, psyllium husk possesses a structural feature, as yet unidentified, that hinders its fermentation by typical colonic microflora (Marlett and Fischer, 2003). Psyllium is classified as a mucilaginous fiber due to its powerful ability to form a gel in water and through animal and human feeding experiments, it has been shown that a gel-forming fraction, amounting to some 55–60% of the husk, is responsible for both the laxative and cholesterol-lowering activities (Marlett and Fischer, 2002). Other viscous, non-nutrient polysaccharides, such as β-glucans and pectins, lower blood cholesterol levels by the same mechanism as psyllium, but these substances have negligible effects on bowel function. They are rapidly and completely fermented in the gut, whereas psyllium husk largely survives, increasing stool output and imparting a gel-like consistency to the excreta (Marteau et al., 1994; Marlett and Fischer, 2003; Fischer et al., 2004).

PSYLLIUM AND GASTROINTESTINAL REGULATION

Constipation and diarrhea
Most dietary fiber sources promote laxation by increasing colonic contents, which stimulate propulsion. Unfermented or incompletely fermented fiber and the accompanying moisture it holds contributes to increase stool mass. These fibers also provide substrate for microbial growth and induces therefore a greater bacterial mass (Stephen and Cummings, 1980; Chen et al., 1998), another factor for increased colonic content. Another benefit is that psyllium containing stools contains an unfermented gel which functions as an emollient and lubricant leading to a greater ease of passage of the stools (Marlett et al., 2000). Psyllium fiber is widely used as a fiber supplement for the treatment of constipation and has in clinical trials repeatedly reported significantly increased levels of stool moisture, as well as wet and dry stool weight in healthy subjects (Prynne and Southgate, 1979; Spiller et al., 1979; Stevens et al., 1988; Tomlin and Read, 1988; Gelissen et al., 1994; Marteau et al., 1994; Levitt et al., 1996; Marlett et al., 2000) and in patients with gastrointestinal disease (Eastwood et al., 1978; Kumar et al., 1987; Prior and Whorwell, 1987; Thorburn et al., 1992; Gelissen et al., 1994; Ashraf et al., 1995; Cheskin et al., 1995; McRorie et al., 1998). It has been proposed that each gram of Psyllium fiber increases stool weight an average of 5.9-6.1g (Marteau et al., 1994; Marlett et al., 2000) compared with 4.9 - 5.4g and 3.4 - 4.5g for consumed wheat bran fiber or oat bran fiber, respectively (Cummings, 1993; Chen et al., 1998).

On the opposite of the desired effect against constipation, and because of its great ability to retain water, Psyllium has also been shown to slow down the gastric emptying time and colon transit, this being of benefit for individuals with fecal incontinence from liquid stools or diarrhea (Washington et al., 1998; Bliss et al., 2001).

Bowel diseases
Psyllium supplementation may be helpful in the treatment of irritable bowel diseases, inflammatory bowel disease and ulcerative colitis. While the beneficial effects of Psyllium in treatment of irritable bowel syndrome is most probably associated with its anticonstipation activity, the beneficial effects on ulcerative colitis and inflammatory bowel disease seem to be due to anticonstipation activity together with increased levels of the short-chain fatty acid butyrate (Bijkerk et al., 2004). Anaerobic fermentation of Psyllium fiber in the intestines results in a considerable production of the short-chain fatty acids acetate, propionate, and butyrate (Mortensen et al., 1992; Marteau et al., 1994; Nordgaard et al., 1996; Pylkas et al., 2005) which have anti-inflammatory and anti-oxidant properties (Tedelind et al., 2007; Hamer et al., 2008) as well as being an important source of energy-yielding substrates to the colonic mucosa (Mortensen and Clausen, 1996).

Psyllium supplementation is widely used also for hemorrhoids and diverticulitis, although evidence has been questioned (Tan and Seow-Choen, 2007). Its consumption has been shown to be beneficial for hemorrhoids with improvement in reduction of bleeding on contact and of congested hemorrhoidal cushions (Webster et al., 1978; Perez-Miranda et al., 1996; Alonso-Coello et al., 2005). The treatment should, however, last more than a month as no amelioration was noted in another trial of 30 days. Less evidence is available for the effectiveness of fiber in the treatment of uncomplicated diverticulitis (Petruzzelli et al., 2006), yet widely used among patients to relieve overall symptoms.

Other conditions
Colon cancer prevention
Short chained fatty acids and specifically butyric acid nourishes the colonocytes, which is important in colon cancer prevention (Clausen et al., 1991). In vitro, butyrate also exerts potent inhibition of inflammation and carcinogenesis, reinforcing various components of the colonic defence barrier and decreasing oxidative stress (Hamer et al., 2008). As mentioned above, the colonic anaerobic fermentation of Psyllium yields a considerable production of this short-chain fatty acid (Mortensen et al., 1992; Marteau et al., 1994; Nordgaard et al., 1996; Pylkas et al., 2005) and therefore its consumption could have a preventive effect against cancer. Additionally, in vitro assays have proposed that an antineoplastic activity against cancer cells is provided by phytosterol beta-sitosterol that has been isolated from Psyllium (Nakamura et al., 2004; Nakamura et al., 2005). Together with the well known protective effect of fiber consumption for colon cancer prevention, strengthen, but doesn’t explain, the possible benefits of Psyllium supplementation in colon cancer prevention.

Prebiotic effect
Prebiotics are food ingredients that stimulate selectively the growth and activity of bifidobacteria and lactobacilli in the gut and thereby benefit health (Cummings and Macfarlane, 2002). The defining property of prebiotics is their effect on the microflora of the large bowel (Kanauchi et al., 2003; Rodriguez-Cabezás et al., 2003). Poor microbiologic evidences are nevertheless available.
concerning the ability of Psyllium derivates to promote the
growth of bifidobacteria in human gut and thus act as a
prebiotic. A recent study suggests that Psyllium seed husk
can be metabolized by bifidobacteria only after partial hydrolysis
(Elli et al., 2008). This study in women demonstrates that the
bifidogenic potential can only be detected in healthy subjects
with low levels of fecal bifidobacteria before Psyllium
supplementation.

Anti-inflammatory properties
Recent evidence suggests that inflammation may be an important
mediator in the association between consumption of dietary fiber
and CVD. Cross-sectional research has demonstrated an association
between dietary fiber and levels of C-reactive protein (CRP), a
mediator in the association between consumption of dietary fiber
and cardiovascular diseases.

In a randomized crossover intervention trial of a naturally high-
fiber diet (30 g/d) or a Psyllium-supplemented diet (30 g/d), lean
normotensive participants experienced a greater relative reduction
in CRP measurements (40% vs. 10%) than the obese hypertensive
persons (King et al., 2007). In another trial, by the same authors,
again, no significant differences were observed in several
inflammatory serum markers including CRP after a Psyllium
supplementation for 3 months (King et al., 2008).

PSYLLIUM AND CARDIOVASCULAR DISEASE
PROTECTION

The role of dietary fiber in the prevention of cardiovascular
disease has been the subject of considerable attention in the last
decade. The functional benefits are now very well recognized
and several national agencies concerned about cardiovascular
health are acknowledging a role for fiber and especially soluble
fiber, such as Psyllium, in cholesterol reduction. The FDA was
one of the first national agencies to recognize a role for fiber in
cardiovascular disease risk reduction (FDA, 1998). Products that
contain 0.75 g β-glucan or 1.78 g psyllium/serving are permitted
to carry a health claim stating that the product “will reduce the
risk of coronary heart disease” (FDA, 1998). The FDA further
determined that 4 servings of these foods are likely to provide the
effective daily dose. In the European Union, a common regulation
on nutrition and health claims made on foods was introduced in
2007 (EC Regulation, 2008). This Regulation provides
opportunities for the use of health claims on foods in Europe,
including reduction of disease risk claims. Although the
Regulation will not be fully implemented until January 2010
some European countries have applied voluntary codes of practice
on health claims for foods, awaiting the Regulation (Asp and
Bryngelsson, 2008). Generally most national codes already claim
that soluble fiber such as β-glucan or Psyllium reduces cholesterol,
and prevents cardiovascular diseases.

Although not as documented as for cholesterol reduction,
Psyllium supplementation is also widely used for weight control
and to maintain glucose homeostasis that together with cholesterol
reduction are the most effective preventive measures against
cardiovascular diseases.

Lipid lowering
Already in 1965 it was observed that Psyllium administered as
a hydrophilic mucilloid (i.e., the commercial bulk-forming laxative)
reduced serum triglycerides by 9% after supplementation with 20
g of psyllium/day for 5 wk (Garvin et al., 1965). To lower serum
cholesterol the first dietary fibers of interest were pectin and guar
gum (Jenkins et al., 1975); later attention focused on oat β-glucan
and Psyllium (Brown et al., 1999).

In a large number of studies, Psyllium has generally solidly
proved to lower blood lipid levels, and specially LDL cholesterol
(Anderson et al., 1988; Bell et al., 1990; Neal and Balm, 1990;
Pastors et al., 1991; Eversen et al., 1992; Sprecher et al., 1993;
Gupta et al., 1994; Ganji and Kies, 1996; Olson et al., 1997;
Anderson et al., 2000a; Anderson et al., 2000b; Jenkins et al.,
2002; Cicero et al., 2007; Sola et al., 2007; Uehleke et al., 2008).
Together with LDL cholesterol reductions, results are also observed
in triglycerides and apolipoprotein B with no concluding effect
on HDL-cholesterol. The postprandial exposure to triglycerides
seems to be lower if the meal is supplemented with Psyllium
(Khosousi et al., 2008).

Also in children has the effect of Psyllium been studied for
the control of hypercholesterolemia (Glassman et al., 1990;
Dennison and Levine, 1993; Davidson et al., 1996). The effect of
Psyllium to lower LDL-cholesterol serum concentrations in the management of hypercholesterolemic
children, ranged from 3 to -23%; the effect in HDL-
cholesterol from -4 to 3%; and the effect on triglycerides from
9 to -20% (Moreno et al., 2003).

The mechanism by which Psyllium lowers LDL cholesterol
concentrations is not entirely clear but several mechanisms may
play a synergic effect (Turley and Dietschy, 1995). The primary
mechanism of action is likely to be related to the ability to stimulate
bile acid synthesis and loss (Kritchevsky and Story, 1974;
Miettinen and Tarpira, 1989). Summing up are as well an increased
fecal fat loss (Ganji and Kies, 1994), and presumably a lower fat intake (Turnbull and Thomas, 1995) with Psyllium
supplementation.

Diabetes Control
The aim of the management of type 2 diabetes patients is the
normalisation of blood glucose values and HbA1C (American
Diabetes Association, 2005). The advantages of high-fiber diets
for diabetic patients include the lowering of blood glucose and
cholesterol, as well as weight reduction and maintenance. It is
especially soluble fiber that has beneficial effects on carbohydrate
metabolism. Several studies have assessed the effect of Psyllium in
the control of type 2 diabetes (Jarijis et al., 1984; Pastors et al.,
1991; Frati Munari et al., 1998; Rodriguez-Moran et al., 1998;
Anderson et al., 1999; Sierra et al., 2001; Sierra et al., 2002;
Moreno et al., 2003; Ziai et al., 2005; Cicero et al., 2007; Khosousi
et al., 2008). The percentage change in glucose levels after Psyllium
supplementation ranged from -12 to -20%.

Psyllium may slow the absorption of carbohydrates in the small
intestine, thereby blunting postprandial glucose peaks (Ellis et al.,
1991; Wolever et al., 1991; Fairchild et al., 1996).
Hypertension
Successful control of hypertension (both systolic and diastolic blood pressure) is also important in diabetes control. Psyllium, but not guar gum lowered blood pressure in a 6 months trial of hypertensive and obese subjects (Cicero et al., 2007). Nevertheless, as weight reduction was observed and confounders were not controlled for, more studies need to confirm these results. Other studies have not shown any changes in blood pressure (Bell et al., 1990).

Weight control
Psyllium may have a satiating effect on appetite, which may help people to reduce energy intake by earlier termination of meals (Delargy et al., 1995; Turnbull and Thomas, 1995; Cicero et al., 2007). Psyllium supplementation (20g pre-meal and another 20g postmeal) significantly increased feelings of fullness after meals, and significantly reduced ad libitum fat intake (Turnbull and Thomas, 1995).

Psyllium as a functional food
There are various commercial uses of Psyllium in food, pharmaceutical and other industries. Although obtaining dietary fiber from whole foods is preferable because it is accompanied by additional nutrients and phytochemicals, a fiber supplement should be recommended to close the fiber gap.

It has been a continuous effort to improve the physicochemical, functional, sensory, and biological properties of psyllium for promoting its food utilization and enhancing its safety. It is a great challenge to disperse psyllium in water or aqueous solutions even with vigorous agitation because of its extremely strong water-absorbing capacity. The readers are referred to an excellent review focused on the approaches to improve the functionality (Yu et al., 2009). Psyllium is most frequently added to breakfast cereals, meal replacements, bread, biscuits and other bakery products to improve the fiber content of the food but is also added to juices, shakes, yogurt, soups and even ice creams. It can also be used as a thickener in drinks or frozen deserts. Although Psyllium fiber has positive physiologic benefits, its high viscosity could make it difficult to incorporate into food products and a task is to get it acceptable to consumers. Their clinical relevance has been questioned because of the extreme unpalatability of products tested with high content of viscose fiber (Ellis et al., 1991). To incorporate lower amounts of fiber into different foods during the day is therefore important to attain the recommended amount for cholesterol lowering (FDA, 1998).

Possible adverse effect of psyllium supplementation
Psyllium may alter nutrient and drug absorption, decrease caloric availability by reducing food intake or suppressing appetite, increase bloating and flatulence, cause abdominal pain, and elicit anaphylactic symptoms. Many studies detected the possible adverse effects of Psyllium intake, although others demonstrated that Psyllium is generally safe for human consumption.

Psyllium is known to be the cause of occupational allergy (rhinitis, asthma) in health care and pharmaceutical workers. With the increased prevalence of consumption due to its cholesterol lowering effects has led to its recognition as an emerging food allergen (Lantner et al., 1990). Clinical manifestations of allergy range from upper respiratory tract symptoms on inhalation to anaphylaxis on ingestion (Khalili et al., 2003).

Fermentation of dietary fiber by anaerobic bacteria in the large intestine produces gas, which may be related to complaints of distention or flatulence as well as bloating and diarrhea. When dietary fiber is increased, fluid intake should also be increased, and fiber intake should gradually be increased to allow the gastrointestinal tract time to adapt (Uehleke et al., 2008). Normal laxation may be achieved with smaller amounts of dietary fiber, and the smallest dose that results in normal laxation should be accepted. Cholesterol reduction however, needs higher doses for optimal effects and this could compromise the adherence to treatment.

Potential negative effects of dietary fiber include reduced absorption of calcium, iron, trace metals, and certain vitamins (Heaney and Weaver, 1995; Asvarujanon et al., 2004). It is unlikely that healthy adults who consume fiber in amounts within the recommended ranges will have problems with nutrient absorption; however, dietary fiber recommendations of 25 g/day may not be appropriate for children and the elderly (Slavin and Greenberg, 2003).

Because of the wide individual variability of responses to dietary fiber and the potential problems with large doses, the smallest dose of dietary fiber that produces the desired result should always be used.

Conclusions
We consider that strong scientific evidence exists that regular consumption of Psyllium provides modest reductions in blood levels of LDL cholesterol as well as total cholesterol. This reduction does however not appear to have effects on HDL cholesterol while more research is needed to clarify if Psyllium consumption reduces ApoA or triglyceride levels. There is good scientific evidence for the use of Psyllium supplementation for constipation as most studies observe an increased stool weight, an increase in bowel movements per day, and a decrease in total gut transit time. There is also good scientific evidence that Psyllium has an effective stool bulking effect, against diarrhea. Unclear scientific evidence exists to relieve or prevent the symptoms of hemorrhoids or inflammatory bowel disease or irritable bowel syndrome. Although Psyllium supplementation taken with meals could improve blood glucose homeostasis, better evidence is necessary to conclude its benefits for diabetes control. Obesity related disorders such as dyslipidemia and hyperglycemia could improve by Psyllium supplementation, but further studies are needed to elucidate mechanisms involved and how its consumption affects body weight. Finally, although promising studies attempt to show anti-carcinogenic effect of Psyllium, and specifically in colon cancer, more studies are needed to determine if Psyllium can help prevent cancer.
CONFLICT-OF-INTEREST STATEMENT
None of the authors have any conflict of interests to declare.

REFERENCES


Bell LP, Hectorn KJ, Reynolds H and Hunninghake DB (1990) Cholesterol-lowering effects of soluble-fiber cereals as part of a prudent diet for patients with mild to moderate hypercholesterolemia.


Pastors JG, Blaisdell PW, Balm TK, Asplin CM and Pohl SL (1991) Psyllium fiber reduces rise in postprandial glucose and insulin


Psyllium fiber supplementation