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Abstract 

  
Potentiated sulfa drugs are a combination of sulfonamides and pyrimidine potentiators, 

such as trimethoprim. They are currently used against bacterial pathogens in 

Mediterranean marine fish farming, including gilthead sea bream (Sparus aurata). The 

present work aimed studying the potential hepatotoxicity of a combination of 

sulfadiazine (SDZ) and trimethoprim (TMP) in gilthead sea bream juveniles after oral 

administration, at the recommended ratio of 5:1 (SDZ/TMP), for 10 days. Difference 

Gel Electrophoresis Technology (DIGE) coupled with MS was used to identity possible 

markers of hepatotoxicity of this treatment. The results obtained show significant 

changes in the expression of 41 proteins by treatment (p0.02). Among these proteins, 

14 increased in abundance, and 27 decreased respect to the control group. Spots 

showing differential expression respect to the control were identified by PMF and/or 

LC-MS/MS and database research. Proteins like apolipoprotein A-I and fatty acid 

binding protein (lipid metabolism and transport, and antioxidant role), 

phosphogucomutase 1 (carbohydrate metabolism), elongation factor 1-alpha (protein 

biosynthesis and antioxidant role), mitochondrial aldehyde dehydrogenase (oxidation 

regulation activity and antioxidant role), ypbc-32-D06 (aminotransferases), were 

differentially expressed in treated fish. These proteins have not been associated before 

to potentiated sulfa effect; however, they are frequently found expressed differentially 

as a characteristic cellular/tissue stress response under different experimental 

conditions, making difficult their use as specific biomarkers for this treatment. 



 
 
 

1. Introduction 
 

It is known that gilthead sea bream (Sparus aurata) is an economically very valuable 

fish species in the Mediterranean. Bacterial outbreak is the major cause of fish 

diseases and mortalities in Mediterranean cage fish farming (Rigos and Troisi 2005; 

Rigos and Katharios 2009), causing important losses. The main species causing 

important bacterial infections in gilthead sea bream are Vibrio anguillarum serotype 1b, 

and Photobacterrium damsela subsp. piscida (formerly Pausterella). Disease outbreaks 

in aquaculture are normally confronted with mass therapy, usually orally administered 

via incorporation of drugs into the feed. Antibacterial agents such as sulfonamides 

have been used to treat and control bacterial diseases in cultured fish for decades, 

essentially because of their low cost and efficacy in common infections. Sulfonamides 

mainly represented by sulfadiazine (SDZ) are a large range of structurally related 

synthetic compounds that are derivatives of sulphanilamide. Nowadays, sulfonamides 

are used in combination with pyrimidine potentiators or diaminopyrimidines such as 

trimethoprim (TMP) or ormetoprim (OMP), and are frequently called potentiated 

sulfonamides or, simply, potentiated sulfa. They have a broad spectrum of bacterial 

activity, and their combined efficacy is greater that the sum of the two separate drugs. 

This is because the sulfonamides are structural analogues and competitive antagonists 

of para-aminobenzoic acid (PABA). As such, they block normal bacterial use of PABA 

for the synthesis of dihydrofolic acid (folic acid), and the particular pyrimidine 

potentiators (TMP or OMP) used in combination, inhibit the next enzyme in the 

sequence (dihydrofolate reductase) to prevent the formation of tetrahydrofolic acid 

(folinic acid), which is required for the synthesis of DNA. This two inhibitory actions in 

the same pathway produce a bactericidal rather than bacteriostatic effect. Folic acid is 

not synthetized in fish, but it is instead a dietary requirement. This allows for selective 

toxicity to bacterial cells over fish cells.  

 Currently, potentiated sulfa are regularly used against bacterial infections in 

Mediterranean euryhaline fish farming (Rigos and Troisi, 2005), and the combination 

sulfadiazine and trimethoprim (SDZ/TMP) at a ratio of 5:1 is one of the most used 

treatments in Mediterranean aquaculture, although there are not specific data on the 

pharmacokinetic properties of sulfadiazine and trimethoprim. The recommended dose 

in fish is 25 and 5 mg kg-1 fish for SDZ and TMP respectively, for 5 -10 days presented 

on medicated food (Scott 1993; EMEA 1997). 



Previous studies on fish have shown that potentiated sulfa is rapidly absorbed 

and distributed throughout body fish tissues after oral administration, although there 

are differences in the comportment of the two antibiotics (Horsberg et al. 1997; 

Samuelsen et al. 1997; Kosoff et al. 2007). In Atlantic salmon (Salmo salar) held in 

seawater, the pharmacokinetics of SDZ/TMP after oral administration is fitted to one-

compartment model. TMP is absorbed from the intestine quickly and completely and 

the peak plasma concentration (Tmax) is reached in 12h, whereas SDZ is absorbed 

slowly and the Tmax is found 24h post administration, with a bioavailability of 100% for 

TMP and 46% for SDZ (Hormazabal and Rogstad 1992; Horsberg et al. 1997). TMP 

concentrations are higher in tissues that in plasma, while SDZ is found at higher 

concentration in plasma for much longer time, and it is distributed slowly and uniformly 

through the tissues and body fluids. Both antibiotics have been shown to accumulate in 

tissues such as plasma, muscle, liver, skin and the uveal track of the eye, and TMP 

has also been shown to bind to tissues containing melanin (Bergsjo et al. 1979; 

Hormazabal and Rogstad 1992). The accumulation of other diaminopyrimides (such as 

OMP) in fish has been related to its binding to specific proteins including probably 

those involved in haematopoiesis, that are located in head kidney and spleen; and 

OMP and/or metabolites have been detected in all tissues relative to plasma, mainly in 

the excretory tissues (i.e. liver and trunk kidney), head kidney, spleen, muscle and skin 

(Pakas et al. (1990). In fish sulfonamides are metabolized primarily in the liver, but 

metabolism also occurs in other tissues, and acetylation and glucuronidation are the 

major pathways. Biliary excretion is the main route of elimination of both drugs, 

although renal excretion has been also reported in fish (BergsjØ et al., 1979).  

 In general the toxicity related with sulfonamides in both human and animals, is 

crystalluria (renal toxicity); however, the lower doses of sufonamide used in the 

potentiated sulfa combinations makes nephrotoxicity less probable to occur than with 

sulphonamide administrated alone (The United States Pharmacological Convention, 

INC, 2007). Although there are not many reports on the specific toxic side effects of 

potentiated sulfa in fish, different immunomodulatory effects have been associated with 

the use of this antibacterial drugs. Enhanced leucocyte proliferation in vitro but not in 

vivo has been shown in rainbow trout (Oncorhynchus mykiss) after treatment with 

different sulfonamides combined with TMT (Grondel et al. 1986; Lunden and Bylund 

2002). Saglam and Yonar (2009) found decreases in haematological (haematocrit and 

leucocrit values, and haemoglobin), and immunological parameters (total plasma 

protein and total Ig levels) in the same fish species treated with sulfamerazine. This 

study also showed that sulfamerazine had an immunosuppressive effect on fish 

because of a decrease in NBT(+) cell levels. By contrast, Lunden and Bylund (2000) 



did not find neither negative effect on the immune system of rainbow trout after oral 

administration of SDZ/TMP in a ratio 5:1, nor in the survival.  Yildiz and Altunay (2011) 

reported the effect of sulfamethoxazole and TMP on the physiologial stress and 

immunological response of gilthead sea bream and sea bass (Dicentrarchus labrax). 

This study concluded that the treatment produces the activation of the classical acute 

stress response with a transient increase in plasma cortisol and glucose after 

treatment, and a decreased during the recovery period, for both species. Regarding to 

innate immune markers measured (haematocrit, lysozyme activity, C-reactive protein 

and ceruloplasmin), the authors concluded that it is difficult to consider the 

inmunosuppression in gilthead sea bream and sea bass. 

 There are not previous studies about the capacity of the SDZ/TMP to produce 

liver injury at molecular level in cultured euryhaline fish after a routinely antibacterial 

treatment. At present, proteomic technology approach has the potential to find the 

protein alterations indicative of the mode of action of chemicals without previous 

knowledge of their mode of action, and it may be useful to discover new biomarkers of 

hepatotoxicity in animals, including fish (Varó et al., 2010). Thus, the present study 

aimed at testing the potential hepatotoxicity effects of SDZ/TMP on gilthead sea bream 

juveniles after oral administration at the recommended ratio of 5:1 for 10 days. The 

liver was investigated as the principal target of toxicity due to the role of this organ in 

energetic and xenobiotic metabolism of drugs, such as SDZ/TMP. To this end the 

effect of this treatment was evaluated thought a proteomic approach, using 2-D 

differential gel electrophoresis (2D-DIGE), and proteins of interest were identified by 

mass spectrometry analysis and database search. Unveiling of the liver protein pattern 

could give useful insight to detect early hepatotoxicity effects at molecular level in 

response to a routinely (standard) SDZ/TMP treatment used in the control of bacterial 

fish diseases. The proteomic results were confirmed by real-time RT-PCR of selected 

proteins, and the study was also complemented with the histological analysis of liver. 

 
 
2. Materials and Methods  
 
 
2.1 Animals and sample preparation 
  

Juveniles of gilthead seabream (S. aurata) (359 g) were purchased from a local 

commercial aquaculture farm (Acuicola Marina SL, Burriana, Castellón, Spain), and 

kept in the facilities of the aquarium plant of the University of Valencia. Fish were 

placed in several 2000 L fibreglass tanks (120 fish per tank) filled with seawater (32 



‰), supplied with continuous aeration under room temperature (19 ± 0.5 ºC) in a 

closed circuit, and acclimated for 1 week before starting the experiment.  

After acclimation, the test fish groups were fed medicated dry food pellet with 

SDZ/TMP at the recommended concentration ratio of 5:1, equivalent to a dose of 30 

mg Kg-1 fish d-1, for 10 days (daily feeding ratio 1% body weight). The control fish 

groups were administered unmedicated pelleted feed at the same feeding schedule. 

The experimental feeds were made at the Fish Nutrition and Pathology Laboratory, 

Institute of Aquaculture, of the Hellenic Center for Marine Research in Athens 

(Greece). Commercial feed (Biomar) with the following composition: fish meal (35%), 

soya bean meal (20%), wheat meal (15%), rapeseed meal (2.7%), wheat gluten (5%), 

corn gluten (10%), fish oil (13%), premix (0,3%), were grounded, mixed with the drug, 

and prepared as dry pellets suitable for the size of the fish. The same basic procedure 

was followed for the preparation of the unmedicated diet. 

 At the end of treatment, eight fish from each experimental group were 

anaesthetized with clove oil (20mg L-1) and sacrificed before livers being dissected out. 

The samples were quickly frozen in liquid nitrogen and stored at -80º C until analysed. 

Handling of the fish was done according to national and institutional regulations for 

animal experimentation. 

 

2.2 2D difference gel electrophoresis (2D-DIGE): protein sample preparation and 

protein labelling 

 

Liver tissues used in the 2D-DIGE analyses were processed as previously described 

(Varó et al., 2010). Briefly, individual livers were homogenized with the aid of the 

grinding kit system (General Electric Healthcare) in nine volumes of DIGE buffer (7 M 

urea, 2 M thiourea, 4% CHAPS, 30 mM Tris) and 100 L mL-1 of the Complete Mini 

(Roche) as protease inhibitor. The solubilized proteins were separated from non-

solubilized cellular components by centrifugation (20,000 g x 20 min). Proteins present 

in the supernatants were precipitated using the 2D Clean-up kit (GE Healthcare, 

Uppsala, Sweden) according to the manufacturer’s instructions and resolublized in 

DIGE buffer. The pH of protein extract was adjusted to 8.5 by adding 50 mM NaOH, 

and protein concentration was determined using the Bradford Biorad Protein Assay 

(RcDc kit) with BSA (bovine serum albumin) as standard.  

 Liver proteins extracted from control (n=8) and treated (n=8) fishes were 

randomly labelled with Cy3 or Cy5. For DIGE minimal labelling, 50 µg of protein sample 

was mixed with 400 pmol CyDye (GE healthcare) by vortexing and incubated on ice in 

the dark for 30 min. The labelling reaction was stopped by the addition of 1 µL 10 mM 



lysine followed by incubation on ice for a further 10 min. The internal standard sample 

was prepared by pooling 25 µg of protein from each liver sample studied, and by 

labelling by Cy2 as described above. Combinations of a Cy3 and a Cy5 labelled 

sample were then mixed with Cy2-labeled internal standard, and DTT (65 mM final 

concentration) and ampholytes (1% final concentration, pH  = 3-10) were added to the 

mixture before running the first dimension. 

 

2.3 Gel electrophoresis (2D-DIGE gel) and image capture 

 

The 16 liver protein samples were analysed on a total of 8 analytical 2-D gels. IPG 

strips (24 cm, pH = 3-11NL) were rehydrated in 8 M urea, 4% CHAPS, DeStreak (12 

µL mL-1), and ampholytes (1% final concentration, pH = 3-10) overnight at room 

temperature. Cy-labelled samples were applied onto IPG rehydrated strips via anodic 

cup loading, and IEF was performed on a Ettan IPGphor II horizontal electrophoresis 

system (Amersham Biosciences) at 20 °C using the following program: step 1:300 V 4 

h, gradient to 1000 V 6h, gradient to 8000 V 3 h; step 2: 8000 V until reached 32000 V 

h. 

After IEF, the strips were reduced in equilibration buffer (Tris 50 mM, urea 6 M 

and glycerol 30% (v/v), 2% SDS (w/v)) containing 2% DTT, for 15 min at room 

temperature; followed by alkylation in equilibration buffer containing 2.5% 

iodoacetamide, for 15 min at room temperature. Then, the strips were transferred to 

the second dimension 12.5% acrylamide SDS-PAGE gels (25 cm x 21 cm x 1 mm) 

made between low fluorescence glass plates, and overlaid with 0.5% low melting 

agarose. The gels were run in Ettan Dalt Six Unit (GE Healthcare) electrophoresis 

system at 2 W per gel for 1 h and 15 W per gel for 6 h.  

 After electrophoresis, the 2-D gels were scanned directly in a TyphoonTM 9400 

Variable Mode Imager to visualize the labelled proteins. Excitation and emission 

wavelengths were chosen specifically for each of the dyes according to manufacturer’s 

recommendations (GE Healthcare).  

 

2.4 Data analysis 

 

Fluorescence images were analyzed using DeCyderTM V. 6.5 and DeCyderTM EDA 

software V.1.0 as described in Varó et al. (2010). Briefly, the intra-gel images were 

processed by DeCyder-DIA (Differential In-gel Analyses) software module to co-detect 

and differentially quantify the protein spots in the images, with the threshold set to 2 

standard deviations. Then, the DeCyder-BVA (Biological Variation Analysis) was 



applied to inter-gel matching, and differences in average ratios of protein expression 

were analysed by the Student´s t- test (p ≤ 0.02). Finally, EDA software was used for 

multivariate statistical analysis of data.  Principal Components Analysis (PCA) was 

carried out following the nonlinear iterative partial least squared method, including only 

proteins present in at least 80% of the spot maps and applying a t-test filter (p ≤ 0.02). 

A hierarchical cluster analysis was performed using the same protein selection criteria. 

 

2.5 Protein identification by mass spectrometry (MALDI, MS/MS) analysis 

 

 Proteins of interest were manually excised from analytical gels and digested with 

sequencing grade trypsin (Promega) as described elsewhere (Shevchenko et al. 1996), 

and subject to PMF (MALDI) and/or LC-MS/MS analyses. 

The digestion mixture was dried in a vacuum centrifuge, resuspended in 7 µL of 

0.1% TFA (trifluoroacetic acid, Sigma), and 1 μL was spotted onto the MALDI target 

plate. After the droplets were air-dried at room temperature, 0.5 μL of matrix (5 mg mL -

1 CHCA-cyano-4-hydroxycinnamic acid, Sigma) in 0.1% TFA-ACN/H2O (1:1, v/v) 

was added and allowed to air-dry at room temperature. The resulting 576 fractions 

were analyzed in a 4700 Proteomics Analyzer (Applied Biosystems, Foster City, USA) 

in positive reflection mode (2000 shots every position). Five of the most intense 

precursors (according to the threshold criteria: minimum signal-to-noise: 10, minimum 

cluster area: 500, maximum precursor gap: 200 ppm, maximum fraction gap: 4) were 

selected for every position for the MS/MS analysis. And, MS/MS data was acquired 

using the default 1 kV MS/MS method. 

The MS and MS/MS information was sent to MASCOT via the GPS software 

(Applied Biosystems). Database search on Swiss-Prot and NCBI databases was 

performed using MASCOT search engine (Matrix-Science). Searches were done with 

tryptic specificity allowing one missed cleavage and a tolerance on the mass 

measurement of 100 ppm in MS mode and 0.8 Da for MS/MS ions. 

Carbamidomethylation of Cys was used as a fixed modification and oxidation of Met 

and deamidation of Asn and Gln as variable modifications. 

The samples without a positive identification were analysed by LC-MS/MS. 

Peptide separation by LC-MS/MS was performed using an Ultimate nano-LC system 

(LC Packings) and a QSTAR XL Q-TOF hybrid mass spectrometer (MDS Sciex-

Applied Biosystems). Samples (5 µL) were delivered to the system using a FAMOS 

autosampler (LC Packings) at 40µL min-1, and the peptides were trapped onto a 

PepMap C18 pre-column (5 mm 300 m i.d.; LC Packings). Peptides were then eluted 

onto the PepMap C18 analytical column (15 cm 75 m i.d.; LC Packings) at 200 nL 



min-1 and separated using a 55 min gradient of 15–50% CAN. The QSTAR XL was 

operated in information-dependent acquisition mode, in which a 1-s TOF MS scan from 

400–2000 m/z, was performed, followed by 3-s product ion scans from 65–2000 m/z on 

the three most intense doubly or triply charged ions. 

The MS/MS information was sent to MASCOT via the MASCOT DAEMON 

software (Matrix-Science). The search parameters were defined as for MS-MS/MS 

analysis. 

 

2.6 Quantitative RT-PCR of selected proteins 

 

Total RNA was prepared from the same liver used for the proteomic analysis using the 

RNAspin MiniRNA isolation kit (GE HealthCare), according to the manufacturer´s 

instructions, and stored at -80 ºC. The purity and quantity of extracted RNA were 

measured using the Experion System (Bio-Rad). Two hundred ng of total RNA was 

reverse transcribed into cDNA using the High-Capacity cDNA reverse transcription kit 

(Applied Biosystems), with a final reaction volume of 20 µL. The RT conditions were: 

10 min at 25 ºC, 120 min at 37 ºC and 5 sec at 85 ºC. The cDNA samples were stored 

at -20 ºC until use. 

 Transcript measurements were made by real-time PCR using an iCycler IQ 

Real-time Detection System (Bio-Rad, Hercules, CA, USA), following the procedure 

described by Calduch-Giner et al. (2003) RT reactions were conveniently diluted and 

7.5 μL were used for PCR reactions in a 25 μL volume. Each PCR-well contained a 

SYBR Green Master Mix (Bio-Rad) with specific primers at a final concentration of 0.9 

μM (see Table 1). The housekeeping gene -tubulin was used as an internal control to 

normalize the data and the efficiency of PCR reactions for target and reference genes 

varied between 88% and 95%, respectively. The dynamic range of standard curves 

spanned five orders of magnitude, and the amount of product in a particular sample 

was determined by interpolation of the cycle threshold (Ct) value. The specificity of 

reaction was verified by analysis of melting curves. Fluorescence data acquired during 

the extension phase were normalized to α-tubulin by the delta-delta method (Livak and 

Schmittgen, 2001), using data in control fish as reference values. No changes in α-

tubulin expression were found in response to treatment. 

The difference in gene expression levels between control and treated fish was 

calculated by two-tailed independent Student t-test using SPSS statistics software v 

17.0. A p value  0.05 was considered statistically significant. 

 



2.7 Histology 

 

For histological analyses subsamples from the same liver used for the proteomic study 

were processed following standard procedures. The samples were immediately fixed in 

buffered formalin at 4°C for 24 h. Then, they were transferred to 70% alcohol and kept 

there until processing. Finally, samples were dehydrated in alcohol, wax-embedded, 

sliced into 6 µm thick sections and stained with the hematoxylin and eosin technique 

for histological evaluation. 

 

3. Results  

 

A representative 2D-DIGE-gel image of the liver proteins profile from treated versus 

control fish is shown in Figure 1. Proteins over the range of pH applied in this 

experiment (pH = 3-11NL) and with a molecular weight from approximately 10 to 250 

kDa were resolved, and 3994 spots in the master gel were detected using the DeCyder 

BVA software. Each protein spot was assigned an average ratio (i.e. change in 

expression level due to SDZ/TMP treatment) and p-value (t-student) to indicate the 

level of significance. Forty-one proteins were differentially expressed in the livers of the 

treated fish (standardized average volume ratio ≥ 1.3, t-student ≤ 0.02). Among these 

protein spots, 14 were up-regulated and 27 down-regulated by potentiated sulfa 

(SDZ/TMP) treatment. The positions of those differentially expressed protein spots in 

the 2D-DIGE are also shown in Figure 1. The PCA and hierarchical cluster analyses of 

data are shown in Figure 2. The PCA results obtained indicated that two components 

are enough to cluster the different experimental groups (control vs treated), with a clear 

separation in the first component (PC1) between them (Fig 2A). The pattern analyses 

showed a clustering in a hierarchical way, where protein maps corresponding to control 

group formed a cluster separated from those corresponding to the SDZ/TMP treated 

group (Fig 2B) 

 The 2D-DIGE analyses (spot nº, protein name, theoretical MW/pI, accession 

number, p-value, and the average ratio) and the results of protein identification by PMF 

and/or LC-MS/MS and database research are listed in Table 2. Ten of these forty-one 

differentially expressed protein spots were successfully identified after database 

searching in the public access data bases and the in-house developed sea bream EST 

database (only spot 3850). Most of them correspond to protein sequences that have 

previously been described in fish. The rest of the protein spots differentially expressed 

were in too low amount of protein after in-gel trypic digestion to obtain a good peptide 

mass spectrum for identification using MASCOT search. Table 2 also shows the 



biological process involved, according to Gene Ontology (UniProtKB GO). 

The analyses of biological processes of the identified proteins in terms of GO, 

revealed that the up-regulated proteins are related to carbohydrate metabolism 

(phosphogucomutase 1: PGM1, spot 1253), translational elongation activity (elongation 

factor 1-alpha: EF1, spot 1597), and oxyreductase activity (mitochondrial aldehyde 

dehydrogenase: ALDH2, spot 1543). Another up-regulated spot (spot 1902) was 

identified in EST database as ypbc-32-D06 (Yellow perch control brain library Perca 

flavescens cDNA), which is associated with amino acid metabolic processes. As for the 

down-regulated spots, a first group of three down-regulated proteins is involved in the 

cholesterol metabolism/lipid transport (apolipoprotein A-I: apoA-I, spots 3076, 3993 and 

3992). Another spot corresponds to a protein related with lipid transport (fatty acid 

binding protein FABP, spot 3850), and a last one to a binding protein (USCH1C-binding 

protein, spot 2223). Besides, potentiated sulfa treatment induced down-regulation in 

one protein of unknown function (spot 3762). 

  The relative transcript hepatic expression levels of PGM1, EF1, ALDH2, 

FABP, and Apo A-I are shown in Figure 3. The relative gene expressions apparently 

increase as a result of the potentiated sulfa treatment, even though there were not 

significant differences between control and treated fish (p  0.05). 

In the histological analyses structural or morphological differences were not 

observed between controls and potentiated sulfa treated livers, and no pathological 

alterations were found in the livers from fish treated with potentiated sulfa (Fig 4). 

 

4. Discussion  

 

Proteomic approach is an efficient method to screen for differences in protein 

expression as well as to identify new proteins in a particular tissue, which can be 

associated with specific conditions such as drug treatment, diseases or nutritional 

status. In this study, 2D DIGE analysis coupled with MS protein identification was 

performed in order to identify the hepatic proteins differentially expressed in response 

to standard potentiated sulfa treatment in gilthead sea bream. Although the same 

proteomic approach has been used to analyse the effects of ivermectin (antiparasitic 

drug) in this species (Varo et al. 2010), this is the first attempt of such approach to 

examine the potential hepatotoxicity of antibacterial drugs, such as SDZ/TMP in sea 

bream.  

 The 2D DIGE results showed that 41 spots were differentially expressed in 

response to SDZ/TMP treatment, and 10 of these were positively identified using 

MS/MS. The differences in the expression levels of 41 proteins allow discriminating 



treated fish from control fish according to the cluster analyses. Considering the 

changes in the liver proteome profile, together with the lack of hepatic damage, it is 

likely that this set of proteins indicates a transient or preliminary hepatotoxicity, and that 

these proteins could be considered as early PES (altered protein expression 

signatures) associated to SDZ/TMP treatment. This result is similar to our previous 

study on gilthead sea bream treated with ivermectin, where the changes in protein 

expression of 36 spots allowed to separate the medicated from the control group of 

fish, and thus, it was considered as a very early PES of ivermectin routine treatments 

for this species (Varó et al., 2010). Moreover, the fold changes found here in the 

protein spots were comparable to those obtained with invermectin. 

 Using PMF and/or LC-MS/MS and database research we were able to identify 

positively only 10 of the 41 proteins differentially expressed by SDZ/TMP treatment, 

because of identification of proteins unrepresented in databases from incomplete or 

non-sequenced organism remains challenging (Liska and Shevchenko 2003; Waridel 

et al. 2007). The proteins identified are involved in the metabolism of carbohydrates 

(PGM1), metabolism and transport of lipids (apoA-I, FABP), protein biosynthesis and 

binding (EF1, USH1C-), oxidation regulation activity (ALDH2), as well as in amino 

acid metabolic process (ypbc-32-D06) (Table 2), in agreement with the metabolic role 

of the liver. It should be noted that these proteins are different to those differentially 

expressed by invermectin treatment, with the exception of apo A-I (Varó et al., 2010). 

However, these proteins have been previously identified in fish, highlighting the fact 

that most of them are similar or belong to some of the most frequently detected 

proteins in proteomic studies independently of the experimental conditions or tissue 

analysed (Wang et al. 2009).  

 In the present study apoA-I was down-regulated as result of SDZ/TMP 

treatment. This is the major component of high-density lipoprotein (HDL), which is 

known to be involved in reverse cholesterol transport from tissues to the liver, and in 

lipid metabolism. Moreover, apoA-I has been reported to play other roles in fish, related 

with antimicrobial activity (Johnston et al. 2008), innate immunity (Villarroel et al. 2007), 

or osmotic regulation (Chen et al. 2009). The apoA-I responsible for these functions, 

however, is more abundantly expressed in several other tissues such as epidermis, 

gills and intestinal mucosa, than in the liver. The same decreased expression of apoA-I 

was found in the liver of gilthead sea bream after 10 days ivermectin treatment at the 

recommended dose of 0.2 mg /kg fish (Varó et al., 2010). Again, similarly, reduced 

expression of apoA-I has been observed in fish liver when transferred from freshwater 

to brackish water (Chen et al., 2009), or when fed 3-thia fatty acids (Kleveland et al. 

2006). Likewise, a decrease in apoA-I abundance was found in plasma and muscle of 



Atlantic salmon (Salmon salar) in response to crowding stress (Veiseth-Kent et al. 

2010). 

 Another protein down-regulated in the treated fish was fatty acid binding protein 

(FABP). FABPs are members of the superfamily of lipid-binding proteins. The main role 

of all the FABP family members is regulation of fatty acid uptake and intracellular 

transport. They are involved in the transport and storage of lipids, as well as cholesterol 

and phospholipid metabolism (Chmurzynska 2006). Also, FABPs are related to 

metabolic and immune response pathways (Furuhashi and Hotamisligil 2008), and to 

antioxidant functions (Wang et al. 2005). Previous studies on fish have reported 

changes in the expression of liver FABP in response to stress. Wang et al. (2008) 

found in the liver of goldfish (Crassius auratus), that one of the two spots identified as 

FABP (paralogs) decreased, whereas the other increased in the stressful environment. 

Reduced expression of liver FABP in Senegalese sole (Solea senegalensis) affected 

by hyperoxia stress has been related to protein oxidative damages (Salas-Leiton et al. 

2009). However, the increase in the level of liver FABP found in gilthead sea bream 

and Senegalese sole subjected to handling and crowing stress, was associated with an 

increase in lipid mobilization, in order to respond to the increased energetic 

requirements due to stress, as well as in preventing oxidative damage (Alves et al. 

2010; Cordeiro et al. 2012). 

 The down regulation of apoA-I and FABP found in the liver of fish treated with 

SDZ/TMP suggests a reduction in lipid metabolism and transport, and probably in their 

capacity to protect liver from oxidative stress induced by xenobiotics like potentiated 

sulfa. This fact might be important in the development of fatty livers in potentiated sulfa 

treated fish after prolonged treatments or higher doses, since no alteration was found 

in the livers of treated fish, which is in agreement with previous studies involving other 

compounds like hydrazine and ivermectin (Waterfield et al. 1997; Kleno et al. 2004; 

Varo et al. 2010). In addition, in livers of FABP deficient mouse it has already shown a 

shift in lipid distribution in favour of cholesterol, cholesterol esters, and phospholipids, 

as well as potentiated hepatic cholesterol accumulation in cholesterol-fed females, 

supporting that liver FABP is involved in the physiological regulation of cholesterol 

metabolism, which is important for the maintenance of animal homeostasis (Martin et 

al. 2003; Martin et al. 2006). 

 Likewise, it was found that potentiated sulfa (SDZ/TMP) induced an up-

regulation of phosphoglucomutase 1 (PGM1). This is a protein related to carbohydrate 

metabolism, catalysing the reverse conversion of glucose 1-phosphate into glucose 6-

phosphate. An increase in hepatic PGM1 has been found in gilthead sea bream fed 

maslinic acid, indicating a stimulation of glycogen metabolism (Rufino-Palomares et al., 



2011). An up-regulation of PGM1 has also been obtained in fish as response to long-

term anoxia (Wulff et al. 2008). Another study done on cytotrophoblasts, reported an 

increase in PGM1 as response to hypoxia (Hoang et al. 2001). Our results may 

suggest that the treatment with SDZ/TMP produce an activation of carbohydrate 

metabolism as classical stress response in fish, since glucose is required to cope with 

increased energy demand of stress responding tissues as liver. This is consistent with 

an increase in plasma glucose levels found in gilthead sea bream and sea bass 

exposed to a combination of sulfamethoxazole and TMP (Yildiz and Altunay 2011).  

 Another protein that increased in the liver of treated fish was elongation factor 

1-alpha (EF1). This protein is very abundant in eukaryotes, comprising 1 to 10% of 

total cellular protein content. In gilthead sea bream EF1 has an ubiquitous and 

uniform distribution in tissues (Nowell et al. 2000). This protein plays a central role in 

protein biosynthesis. It is the aminoacyl–transfer RNA binding factor in peptide chain 

elongation, as it promotes the GTP-dependent binding protein of aminoacyl-tRNA to 

the A-site of ribosomes during protein synthesis. In addition, EF1 has been related to 

the mobilization of the ubiquitin-proteasome pathways and protein degradation 

(Buckley et al. 2006; Gonen et al. 1994) in the cell apoptosis process in response to 

oxidative stress (Chen et al. 2000; Duttaroy et al. 1998), as well as in response to 

thermal stress (Ibarz et al. 2010; Buckley et al. 2006). In the present study the 

overexpression of hepatic EF1  found in fish treated may be related with a higher 

degree of liver protection from oxidative stress caused by potentiated sulfa (SDZ/TMP), 

since this protein is required for protein biosynthesis. This agrees with previous results 

demonstrating an increase in hepatic EF1  associated to oxidative stress and 

apoptosis in gilthead sea bream as response to cold (Ibarz et al. 2010). An increase in 

gill EF1  has also been shown in the goby (Gillichthys mirabilis) exposed to heat 

stress, and was related to the mobilization of the ubiquitin-proteasome pathways, 

whereas the repression of muscle EF1  was linked to a minor need for ubiquitylation 

and degradation of damaged proteins in this tissue (Buckley et al. 2006). 

 An increase in mitochondrial aldehyde dehydrogenase (ALDH2) in the liver of 

treated fish was also observed. This protein belongs to the aldehyde dehydrogenase 

family (ALDHs), and has an oxidoreductase activity. The ALDH2 catalyses the 

conversion of acetaldehyde into acetic acid. This enzyme is known to play a major role 

in acetaldehyde oxidation in vivo (Vasiliou et al. 2000). In fish, previous studies showed 

ALDHs enzymes to be involved in detoxification processes (Nilsson 1988; Pretti et al. 

2001). The increase in the levels of ALDH2 found in treated fish could reflect an 

increase in their capacity to process aldehydes and, therefore to protect the liver from 



oxidative stress. In fact, a down regulation of ALDHs enzymes in fish liver has been 

related to a diminution of the capacity to protect this organ from oxidative stress 

(Cordeiro et al. 2012), and also with a non-induction of detoxification processes 

(Rufino-Palomares et al. 2011). 

 We found an increase in the spot 1902 identified in EST database as ypbc-32-

D06 (Yellow perch control brain library Perca flavescens cDNA). A new search using 

BLASTx showed a sequence producing significant alignments of this EST with the 

protein annotation: PREDICTED: aspartate aminotransferase, cytoplasmic-like 

(AAT_like) (NCBI Reference Sequence: XP_003454182) described in tilapia 

(Oreochromis niloticus). AAT_like is a family that belongs to pyridoxidal phosphate 

(PLP)-dependent transaminase enzyme, and catalyses the reversible transfer of a α-

amino group between aspartate and glutamate and, as such, is an important enzyme in 

amino acid metabolism. Aspartate aminotransferase, like alanine aminotransferase, is 

a key enzyme in the protein to carbohydrate metabolism. It has a wide distribution in 

both mammalian and fish tissues (Eze 1983; Gaudet et al. 1975). The enzyme is found 

in the liver, heart, skeletal muscle, kidneys, brain, and red blood cells, and changes in 

aminotransferases activities are frequently used as biomarker to determine fish liver 

damage (De la Torre et al. 2005; Prashanth and Neelagund 2008; Inyang et al. 2010). 

The up-regulation of ypbc-32-D06 found in liver of treated fish may indicate the 

activation of aspartate aminotransferase enzyme, which could be suggesting an 

increased participation of proteins in the energy production during treatment, as 

described De Smet and Blust (2001) in carp (Cyprinus carpio) exposed to cadmium, 

since no morphological alterations were observed in the liver of fish treated with 

potentiated sulfa. In the same way, a down regulation of a mitochondrial precursor of 

aspartate aminotransferase found in gilthead sea bream under cold stress was related 

to a lower capacity for amino acid catabolism and interconversion in cold and fasting 

fish (Ibarz et al. 2010).  

 The overexpression of theses proteins involved in energy production (PGM1 

and ALDH2) and protein biosynthesis (EF1) could be related to an increased energy 

demand to cope with the xenobiotic stress caused by potentiated sulfa treatment in 

order to maintain homeostasis, as well as with a stimulation of antioxidant defences. 

 In addition, analysis of mRNA coding for 4 of the proteins identified from those 

differentially expressed in control and treated fish did not reveal significant differences, 

although they showed higher values in treated fish. The lack of correlation found 

between mRNA expression and proteomic analysis is in agreement with the results of 

Wang et al (2008), who suggested that discrepancy between the abundance of 

cognate proteins and RNA molecules is frequently observed. 

http://en.wikipedia.org/wiki/Liver
http://en.wikipedia.org/wiki/Heart
http://en.wikipedia.org/wiki/Skeletal_muscle
http://en.wikipedia.org/wiki/Kidneys
http://en.wikipedia.org/wiki/Brain


 In conclusion, this study provides a proteomic analysis of the liver protein 

expression in response to a routine 10 days potentiated sulfa treatment in gilthead sea 

bream. A set of 41 proteins was differentially expressed in response to treatment. 

These were able to separate medicated and control groups of fish, and may be 

considered as PES for possible hepatotoxicity of potentiated sulfa in this species. The 

liver proteins found to have different expression in treated fish are involved in several 

well-known processes related to metabolic stress, including amino acid, carbohydrate 

and lipid metabolism, as result of transient metabolic and energetic adjustments with a 

lack of liver injury, due probably to the short period of time of the potentiated sulfa 

treatment. These results highlight that the proteins identified are generally expressed 

differentially as characteristic cellular/tissue stress response under different 

experimental conditions, and their use as biomarkers for this treatment should be done 

with caution. 
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Figure legends  

Fig. 1. Representative 2D-DIGE gel of soluble liver proteins extracted from gilthead 

sea bream (S. aurata).  3-10NL pH range were used for IEF. Protein spots differentially 

expressed and identified are numbered as in table 2. In green down-regulated spots 

and in red up-regulated spots. 

 

Fig. 2. Multivariate analyses of liver proteomic data. (A) Principal Component Analysis 

(PCA) and hierarchical cluster analyses (B) of the proteins differentially expressed. 

PCA and the dendrogram after hierarchical analysis show a good separation of the 

spots maps corresponding to the different experimental groups (control in blue vs 

treated in red).  

 

Fig. 3. Relative liver gene expression of PGM (phosphoglucomutase 1), EF (elongation 

factor 1-alpha), ALDH2 (mitochondrial aldehyde deshydrogenase), FABP (fatty acid 

binding protein), and apoA-I (apolipoprotein A-1) in control and potentiated sulfa 

treated fish. Values are means  sd (n = 4-6). Means were compared by t-test with a p-

value of 0.05.  

 

Fig. 4. Histological sections from the liver of (A) control and (B) potentiated sulfa 

treated gilthead seabream (S. aurata) fish.  
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 Table 1. Forward and reverse primers used in the real-time quantitative PCR assay. 

 

 

     
Gene Accession 

number 
 Primer sequence Position 

     
Apolipoprotein  
A-1 

AF013120 
F GAA TAC AAG GAG CAG ATG AAG CAG ATG 664-690 
R TGG TGA CGG AGG CAG CGA TG 808-789 

     
Mitochondrial 
aldehyde 
dehydrogenase 
 

HQ228168 F CCA TCC CAG CAC CCA ACA CC 135-154 
 R CCT CAT CAG CCT CAG CCA CTT G 284-263 

 
   

     
Phosphoglucomu
tase 1 

HQ228169 F ACT CCG CCG TCA ACT GTG TC 265-284 
 R CCA GGT CAG CAG CGT AGG TC  345-326 

     
Fatty acid-
binding protein 

HQ228170 F AAA TGG TTG AGG CTT TCT GTG CTA C 48-72 
 R ATC GCT ACT GTC GGC TTG GTG 177-157 

     
Elongation Factor 
1 
 

AF184170 F CCC GCC TCT GTT GCC TTC G 560-578 

 
R CAG CAG TGT GGT TCC GT 694-674 

     

α-Tubulin AY326430 
F GAC ATC ACC AAT GCC TGC TTC 514-534 
R GTG GCG ATG GCG GAG TTC 647-630 

     

     



Table 2 – Protein identities differentially expressed in the gilthead seabream 
(Sparus aurata) liver after treatment with SDZ/TMP for 10 days. p-value 
represents the significance level of t-test performed by the image analysis 
software DeCyder of up or down regulated spots. 
 

 
 

Accession nº: NCB nº (UniProt  nº) 
Protein identification: (1)PMF= (MALDI), (2) MSMS =(Q-Star) 
(
a
) Biological process according to Gene Ontology (UNiProtKB GO); n.i., non indientified; (*) BLAST NCBI fro gene; (**) 

EST data base 
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