Genome sequence of *Lactococcus garvieae* IPLA 31405, a bacteriocin-producing, tetracycline-resistant strain isolated from a raw milk cheese

Ana Belén Flórez¹, Pilar Reimundo², Susana Delgado¹, Elena Fernández¹, Ángel Alegría¹, José A. Guijarro², and Baltasar Mayo¹

¹Departamento de Microbiología y Bioquímica de Productos Lácteos, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Carretera de Infiesto, s/n, 33300-Villaviciosa, Asturias, Spain, and ²Área de Microbiología, Departamento de Biología Funcional, Facultad de Medicina, IUBA, Universidad de Oviedo, 33006 Oviedo, Spain

Key words: *Lactococcus garvieae*, raw milk cheese, lactic acid bacteria, starters

Short title: Genome of *Lactococcus garvieae*

*Corresponding author:

Baltasar Mayo, Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Carretera de Infiesto s/n, 33300-Villaviciosa, Spain

Tel.: +34 985 89 21 31

Fax: +34 985 89 22 33

E-mail address: baltasar.mayo@ipla.csic.es
ABSTRACT

This work describes the draft genome sequence of *Lactococcus garvieae* IPLA 31405, isolated from a traditional Spanish cheese. The genome contains a lactose-galactose operon, a bacteriocin locus, two integrated phages, a transposon harboring an active *tet* (M) gene, and two theta-type plasmid replicons. Genes encoding virulence factors were not recorded.

*Lactococcus garvieae* has repeatedly been reported as a majority component of the native microbiota of dairy products manufactured from raw milk (3, 5, 8, 10). This bacterium is the etiological agent of lactococcosis, affecting both marine and freshwater fish species (6). It also causes mastitis in cows (15) and has been involved in an increasing number of human infections (4). However, association between consumption of raw milk cheese and human infections by *L. garvieae* has never been reported. In fact, *L. garvieae* may contribute to the overall quality of dairy products by improving their safety and sensorial attributes (7, 9, 11).

Recently, the genome of several *L. garvieae* strains has been released (1, 2, 12, 13, 14). Here, we report the draft genome sequence of *L. garvieae* IPLA 31405, isolated from among the dominant microbiota of a traditional raw milk cheese (3). IPLA 31405 grows well in lactose and produces a bacteriocin active against food-borne pathogens. It has been shown to lack hemolysin and gelatinase activities, and does not produce biogenic amines (7). However, it showed resistance to tetracycline encoded by a *tet* (M) gene (7).

A genomic library of 0.5 kbp was constructed and subjected to paired-end sequencing, providing approximately 155-fold coverage, using a HiSeq 1000 System sequencer (Illumina, Inc., San Diego, CA, USA). Quality-filtered reads were assembled
into contigs using Velvet (http://www.ebi.ac.uk/~zerbino/velvet/). Annotation was performed by merging the results obtained from RAST (http://rast.nmpdr.org/), BG (Era7, Granada, Spain), and BLAST analysis (http://blast.ncbi.nlm.nih.gov). The KEGG Pathway (http://www.genome.jp/kegg/pathway/), Uniprot (http://www.uniprot.org), and COG (http://www.ncbi.nlm.nih.gov/COG/) databases were consulted for description of specific genes.

The draft genome sequence of IPLA 31405 is composed of 2,052,312 bp with a GC content of 38.53%. It encodes 2039 predicted coding sequences, which were classified into 23 classes and 308 subsystems by the RAST server. Single predicted copies of 16S, 23S and 5S rRNA genes were found, as well as 46 genes for tRNAs. Two theta-type plasmid replicons and two integrated phages belonging to the P335 group of *Lactococcus lactis* phages were recorded. In addition, the *tet(M)* gene was found to be harbored in a transposon highly similar to the conjugative Tn6086 from *Enterococcus faecalis*.

IPLA 31045 may metabolize lactose by a lactose phosphotransferase operon (*lacXGEFDCBA*) identified in its genome. However, extracellular caseinolytic peptidases were not found. Production, resistance to, and secretion of a class IIb bacteriocin identical to garvieacin Q (16), is encoded by a four-gene operon. A gene cluster likely to be involved in the synthesis of cell wall exopolysaccharides with a rhamnosyl backbone was detected, but typical capsule-encoding genes were not scored. Additionally, no evidence of virulence-related genes was obtained.

The genome sequence of strain IPLA 31405 provided further insights into the intra-specific variation of *L. garvieae*. Its comparison with those of other sequenced strains may supply information on the safety of the strains and on niche-specific genes.
Nucleotide sequence accession number. This whole genome shotgun project was deposited at DDBJ/EMBL/GenBank under accession AKFO00000000. The version described in this paper is the first version, AKFO01000000.

This study was supported by projects of the Spanish Ministry of Economy and Competitiveness (Ref. AGL2007-61869 and AGL2011-24300). V. Ladero, IPLA-CSIC, is greatly acknowledged for assistance and helpful discussions during genome analysis.

REFERENCES


