Establishment and development of intestinal microbiota in preterm neonates

Silvia Arboleya¹, Ana Binetti¹,², Nuria Salazar¹, Nuria Fernández³, Gonzalo Solís⁴, Ana Hernández-Barranco¹, Abelardo Margolles¹, Clara G. de los Reyes-Gavilán¹, and Miguel Gueimonde¹.

¹ Department of Microbiology and Biochemistry, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, Spain.
² Instituto de Lactología Industrial (UNL - CONICET), Faculty of Chemical Engineering, Universidad Nacional del Litoral, Santa Fe, Argentina.
³ Paediatrics Service, Hospital de Cabueñes, SESPA, Gijón, Asturias, Spain.
⁴ Paediatrics Service, Hospital Universitario Central de Asturias, SESPA, Oviedo, Asturias, Spain.

* Corresponding author: Miguel Gueimonde. Department of Microbiology and Biochemistry of Dairy Products. Instituto de Productos Lácteos de Asturias. CSIC. Ctra. Infiesto s/n, 33300 Villaviciosa, Asturias, Spain. Tel. +34 985892131, Fax. +34 985892233. E-mail; mgueimonde@ipla.csic.es

Key words: Intestinal Microbiota, preterm, infants, neonates
Abstract

Microbial colonization of the infant gut is essential for the development of the intestine and the immune system. The profile of intestinal microbiota in the full-term, vaginally delivered, breast-fed infant is considered as ideally healthy. However, in preterm infants this process is challenging, mainly due to organ immaturity, antibiotics use and hospitals stay. To assist in a proper microbiota development in these infants a detailed knowledge of the colonization process, and of differences from that of full-term breast-fed infants, is needed. We assessed the establishment of the gut microbiota and its metabolic activity in preterm neonates (n=21) during the first three months of life and compared it with that of vaginally-delivered, exclusively breast-fed full-term infants (n=20) by using qualitative and quantitative culture-independent methods. Clear differences in the gut microbiota composition between both groups were observed. Preterm infants showed higher levels of facultative microorganisms and reduced levels of anaerobes such as Bifidobacterium, Bacteroides and Atopobium. Short chain fatty acids concentrations were lower in preterm infants during the first days of life. Profound alterations occur in the process of microbiota establishment in preterm infants, indicating the need for intervention strategies to counteract them.
Introduction

Microbial colonization of the digestive tract starts immediately after birth, providing a massive microbial challenge for maturation of the immune system of the newborn. This colonization of the gut is also essential for a normal development of the intestine, playing a key role in the establishment of intestinal homeostasis and mucosal barrier function (Hooper & Macpherson, 2010).

Therefore, the early establishment of a healthy microbiota may have a profound effect on the later well-being of the individual (Conroy et al., 2009).

Gut colonization of the newborn begins with facultative anaerobes such as enterobacteria and lactobacilli, and continues with anaerobic genera, such as *Bifidobacterium*, *Bacteroides*, and *Clostridium*. Several factors may affect this process; among them, mode of delivery and feeding habits have been extensively studied (Penders et al., 2006; Reid et al., 2011). Breast-milk is known to play an important role in the establishment of the intestinal microbiota, and a protective effect of breast-feeding has been evidenced (Ip et al., 2009).

These have led to consider the fecal microbiota profile of the healthy full-term, vaginally-delivered, exclusively breast-fed (FTVDBF) infant as the standard for a healthy infant microbiota. Indeed, the promotion of a microbiota resembling that of the FTVDBF infant has often been considered as a target for improving the functionality of infant formulas (Aggett et al., 2003).

Most of the studies on the microbiota establishment process have focused on full-term infants. However, there is a group of newborns in which the establishment of a healthy microbiota is more challenging, due to organ immaturity, the frequent use of antibiotics and the stay at the Hospital’s Neonatal Unit instead of home setting—these are the preterm neonates. These
Infants would benefit from intervention strategies directed at favoring the establishment of a healthy microbiota. In order to develop such strategies a detailed knowledge of both the microbiota establishment process in preterm neonates, and how this process differs from the healthy model, that of FTVDBF babies, is needed.

Traditional plate counting methods have indicated an altered microbial colonization pattern in the gut of preterm infants (Fanaro et al., 2003; Westerbeek et al., 2006). More recently, qualitative culture-independent studies (mainly PCR-DGGE/TGGE analyses), have been carried out in preterm babies, especially in very low birth weight neonates, showing a reduced diversity of the intestinal microbiota, likely acquired from the hospital environment, (Schwiertz et al., 2003; Magne et al., 2006; Roudiere et al., 2009; Rouge et al. 2010; Jacquot et al., 2011), and suggesting the gestational age as a critical factor for colonization by bifidobacteria (Butel et al., 2007). Cloning and sequencing of amplified 16S rRNA genes have also been carried out (Magne et al., 2006; Wang et al., 2009) indicating a high relative abundance of the phylum proteobacteria. During the last year some metagenomic studies on preterm infant microbiota also became available (Mshvildadze et al., 2010; Morowitz et al., 2011). In general, a delayed colonization by commensal bacteria and increased colonization by pathogens has been suggested. However, the techniques used are not truly quantitative, and therefore, a detailed quantitative description of the preterm infant microbiota establishment process is still lacking.

The aim of this study was to evaluate the process of establishment of the intestinal microbiota in preterm infants as compared with that of FTVDBF
healthy neonates, by using both qualitative and quantitative culture-independent

techniques and by evaluating the metabolic activity of this microbiota.

Materials and methods

Volunteers and samples

Twenty healthy FTVDBF infants, (11 males/9 females) born after an

uncomplicated pregnancy, and twenty-one preterm infants (9 males/12 females)

were recruited at the Neonatology Unit of Cabueñes Hospital in Asturias

(Northern Spain). All full-term infants were vaginally delivered, at a gestational

age ranging between 38 and 41 weeks (mean 39.3) with birth weights between

3020 and 4160 grams, and were exclusively breast-fed during the study period.

The preterm infants (8 delivered vaginally and 13 by caesarean section) were

born at a gestational age between 30 and 36 weeks (mean 32.7) and birth

weights ranged between 1190 and 2820 grams. Six of the preterm infants’

mothers received intrapartum antibiotics, and 6 of the infants received

antibiotics at birth. Only 10 out of the 21 mother/prefature infant pairs did not

receive antibiotics, either intrapartum or postnatally, during the sampling period.

None of the preterm infants were exclusively breastfed during the sampling

period, all of them being in mixed feeding.

Fecal samples were collected at 2 (between 24 and 48 hours after birth),

10, 30 and 90 days of age, and immediately frozen until their analysis.

The study was approved by the Regional Ethical Committee of Asturias

Public Health Service (SESPA) and an informed written consent was obtained

from each mother.
DNA extraction

Fecal samples were melted, weighed, diluted 1/10 in sterile PBS solution, and homogenized in a LabBlender 400 stomacher (Seward Medical, London, UK) at full-speed for 4 min. DNA was extracted from the homogenised faeces, as well as from bacterial cultures used for standard curves, using the QIAamp DNA stool kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s specifications as previously described (Gueimonde et al., 2004). Extracted DNA was kept frozen at -70°C until further analyses.

Fecal microbiota analyses

Quantitative analysis of fecal microbiota by quantitative PCR. Quantification of the different bacterial populations in faeces was performed by quantitative PCR (qPCR) using the primers shown in Table 1. All reactions were performed on MicroAmp optical plates sealed with MicroAmp optical caps (Applied Biosystems, Foster City, CA) in a 7500 Fast Real Time PCR System (Applied Biosystems) using the SYBR Green PCR Master Mix (Applied Biosystems). 1 µl of template fecal DNA and 0.2 µM of each primer were used in the 25 µl PCR reaction. Thermal cycling consisted of an initial cycle of 95°C 10 min, followed by 40 cycles of 95°C 15 s, and 1 min at the appropriate primer-pair temperature (Table 1). In the negative samples the value of the detection limits obtained for the corresponding primer pair was assigned. Standard curves were made with pure cultures of appropriate strains (Table 1) which were grown overnight in GAM medium (Nissui Pharmaceutical Co, Tokio, Japan) under anaerobic conditions. Samples were analyzed by duplicate in at least two independent PCR runs.
Qualitative analysis of fecal microbiota by PCR-DGGE. Qualitative composition of the microbiota in feces at the different sampling points was determined by PCR-DGGE in a total of sixteen randomly selected infants, eight from each group. Universal primers were used to assess microbial diversity, which was defined by the number of amplification bands generated from each sample. PCR reaction products were separated by DGGE in a DCode system (BioRad Laboratories) using conditions previously described (17). The number of bands in each sample was visually determined.

Determination of Short Chain Fatty Acids in feces

The analysis of Short Chain Fatty Acids (SCFA) was carried out as follows. Supernatants from 1 mL of the homogenized feces were obtained by centrifugation (10,000 g, 30 min, 4°C) and filtration (0.20 µm). A chromatographic system composed of two 6890N GC (Agilent Technologies Inc., Pal Alto, CA, USA) connected to a FID and a MS 5973N detector (Agilent) were used for quantification and identification of SCFAs as described previously (Salazar et al., 2011).

Statistical analysis

Results were analyzed using the SPSS software (SPSS Inc. Chicago, USA). The normality of the data, at each sampling point, was checked using the KS test. Some of the bacterial groups showed non-normal distribution, and therefore, differences in bacterial levels between groups of infants were analyzed using non-parametric tests (Mann-Whitney U-test). The occurrence of different microbial groups between preterm and full-term infants was analyzed by chi-square test.
Results

Microbial population dynamics and development of the newborn’s intestinal microbiota

Noticeable qualitative and quantitative differences were found in the intestinal microbiota composition between premature and healthy FTVDBF babies.

Microorganisms from families Enterobacteriaceae and Enterococcaceae, the genera Bifidobacterium, the Bacteroides and Lactobacillus groups, as well as Weissella were detected in all infant fecal samples, either from full-term or premature infants, throughout the entire sampling period considered in this work. Against this, microorganisms belonging to the genus Shigella and to the species Staphylococcus aureus were never detected, whilst Akkermansia was only found in about 5% of the infants’ feces (6% of full-term and 5% of preterm infants) at 2 days of age, not being detected at later times. With respect to the other microorganisms analyzed, their presence varied depending on the infant group and sampling point (Table 2). Notably, during the first few days of life the pathogenic microorganism Klebsiella pneumoniae was found significantly more frequently (p<0.05) in preterm infants than in full-term ones, tending to continue being higher also at later sampling points (p=0.08 and p=0.09 at 30 and 90 days, respectively). Moreover, Clostridium difficile was only detected (although with a low occurrence rate) in fecal samples from premature babies. The occurrence of Streptococcus at 2 days of age was significantly lower (p<0.05), and that of Staphylococcus tended to be lower (p=0.065), in preterm infants; at 10 days of age the presence of Clostridium XIVa group, Atopobium and Staphylococcus was also lower in fecal samples from these babies whilst the
occurrence of *Desulfovibrio* was significantly higher (p<0.05). At one month of
life, positive samples for *Clostridium perfringens* and *Atopobium* were
significantly higher and lower (p<0.05), respectively, in premature than in full-
term infants. All these qualitative differences in the presence of the different
microorganisms analyzed, were attenuated over time, ceasing to be significant
by the age of three months (Table 2).

In general, levels of most microbial groups tended to increase over time
(Figure 1). Notable differences in bacterial levels were observed between both
groups of infants. Feces from preterm newborns showed higher levels (p<0.05)
of *Lactobacillus* group, and specifically *Weissella*, as well as *Enterococcaceae*
during the period of three months sampled, whereas the populations of
Enterobacteriaceae, *K. pneumoniae* and *Desulfovibrio* were significantly higher
in feces from these babies only at the first sampling points (no later than 30
days) (Figure 1B). On the other hand, premature infants showed significantly
lower levels of *Streptococcus* and *Staphylococcus* in the initial sampling points,
and of *Bifidobacterium*, *Bacteroides* and *Atopobium* during the whole sampling
period under study (Figure 1B).

In accordance with the results commented above, when the percentages
of each bacterial group were calculated, *Enterobacteriaceae* ranged between
45 to 63% of total microorganisms in FTVDBF infants, whereas they
represented 60 to 83% in the preterm group (Supplementary Figure 1). Among
the non-*Enterobacteriaceae* microorganisms, *Bacteroides*, *Enterococcaceae*
and *Streptococcus*, followed by *Bifidobacterium* were predominant at 2 days of
age in feces from FTVDBF babies. In the preterm group, however, the
predominant microorganisms at this time were *Enterococcaceae* and members
of *Lactobacillus* group, followed by *Streptococcus*. Between 10 days and 3
months of age *Bifidobacterium*, *Bacteroides* and *Streptococcus* predominate in
full-term infants, in contrast with the dominance of *Enterococcaceae* and
Lactobacillus group, followed by bifidobacteria, observed in premature babies
(Supplementary Figure 1).

Although the number of preterm infants may not be large enough for
within-group comparisons with appropriate statistical power, we compared the
levels of different microorganisms between vaginally (8 out of 21 infants) and
caesarean delivered preterm neonates without obtaining statistically significant
differences at any sampling point for any microbial group. When preterm infants
receiving antibiotics, or whose mothers receive intrapartum antibiotics, were
compared with those not exposed to antibiotics (10 out of 21 infants) the sole
statistically significant difference (p<0.05) regarded lower levels of bifidobacteria
at 10 days of age in the former group, without observing any other differences
for other microorganisms or time points (data not shown).

Bacterial diversity determination, as assessed by the number of bands
produced by PCR-DGGE analyses, showed lower diversity in fecal microbiota
of preterm infants than in the full-term group during the first three months of life,
the differences being significant (p<0.05) at 2 and 30 days of age (Figure 2).

Metabolic activity of the intestinal microbiota of newborns

The metabolic activity of the intestinal microbiota was determined by
measuring the SCFA concentration in feces. Total SCFA (results not shown), as
well as the main SCFA (acetate, propionate and butyrate) concentration in
feces increased over time in both groups of infants (Figure 3). Despite the high
inter-individual variation, lower levels of total SCFA (data not shown), as well as specifically acetate and propionate, were observed in preterm infants (significant differences, p<0.05, at 2 days of age for acetate and propionate and at 10 days for propionate) (Figure 3). Nevertheless, when the relative abundance of each of the main SCFA was calculated, no differences (p>0.05) were observed between both groups of infants, with a slight increase (about 6%) in the relative abundance of acetate, and a concomitant decrease in that of propionate and butyrate between 2 and 10 days of age, remaining stable afterwards (data not shown).

Discussion

Our results showed a clear delay in the intestinal colonization by commensal microorganisms, increased occurrence of pathogens, as well as high inter-individual variability and reduced microbial diversity in preterm infants, this confirming previous reports (Schwiertz et al., 2003; Magne et al., 2006; Rouge et al. 2010; Jacquot et al., 2011). In addition, our study extend these observations to the quantitative levels of different bacterial groups.

Despite the high inter-individual variability in bacterial levels, significant differences were found between preterm and full-term infants for several microbial groups, evidencing a deeply altered gut microbial colonization pattern in the former group of babies. Delivery mode and antibiotics consumption are two factors that may affect microbiota composition. Although the limited number of infants do not allow establishing firm conclusions, within our preterm group delivery mode do not seem to have affected bacterial levels. The use of
antibiotics, intrapartum or administered to the infant, showed limited effects, producing a reduction on *Bifidobacterium* levels at 10 days of age. These results suggest that immaturity itself may explain most of the differences observed in this study.

We observed increased levels of facultative microorganisms, such as *Enterobacteriaceae*, *Enterococcaceae* and *Lactobacillus* group (including lactobacilli and *Weissella*), together with reduced levels of anaerobes, including *Bifidobacterium*, *Bacteroides* and *Atopobium*, which seems to indicate a deficiency, or delay, in the establishment of the normal anaerobic gut microbiota in preterm neonates. This fact may lead to a delayed maturation of the immune system (Kelly et al., 2007), which may have profound effects on the health of the immature preterm infant due to, among other factors, an increased risk of infection.

Enterobacteriaceae and *Enterococcaceae* were the predominant microbial groups in preterm infants, which showed also reduced levels of bifidobacteria. This confirms previous studies carried out using other techniques (Hoy et al., 2000; Magne et al., 2006). Interestingly, in our study *Lactobacillus* group seem to have a predominant role on the preterm infant gut microbiota. The observation of higher levels of these microorganisms in the preterm infants is striking, as a lower colonization by lactobacilli in preterm neonates has been previously reported (Hall et al., 1990). These differences may partially account for the different methodologies used, traditional culture by Hall and co-workers vs. quantitative PCR in our case. However, it is also important to underline that the primers used by us do amplify not only lactobacilli but also related microorganisms from the genera *Weissella*. For these reason we decided to
quantify specifically the levels of this microorganisms and found that *Weissella*
appears to account for most of the observed differences, being present at
higher levels in preterm than in FTVDBF neonates.

In addition to the above mentioned differences, preterm neonates showed
an increased occurrence of other potential pathogens. Levels of *K. pneumoniae*
in these infants were significantly higher than those found in FTVDBF babies
during the first days of life, which may result in an increased risk of infection by
this microorganism. In this regard, *K. pneumoniae* has been previously reported
to often be present on the preterm infant microbiota (Hoy et al., 2000; Schwiertz
et al., 2003). Although the differences did not reach statistical significance, likely
due to the low incidence of the microorganism, it was interesting to observe that
C. difficile was detected exclusively in preterm infants. Recently, using a
qualitative culture-independent technique it has been shown that colonization by
C. difficile may be related to the microbiota composition. Infants harboring this
microorganism were found to be more frequently colonized by *K. pneumonia*
and less often by *Bifidobacterium longum* and *Staphylococcus epidermidis*
(Rousseau et al., 2011). To this respect, our preterm infants showed lower
levels of the later two microorganisms and higher levels of the former, which
may at least partially explain the appearance of *C. difficile* only in these infants
and not in the control FTVDBF group.

As expected from the large differences observed in the gut microbiota
composition, the concentration of fecal SCFA also showed differences between
both infant groups, being higher in full-term infants. The lower levels of fecal
SCFA obtained in premature infants may be related to the use of antibiotics
(Szylit et al., 1998). Gestational age has also been related to SCFA levels by
other authors, the levels being lower in extremely preterm neonates (Favre et al., 2002). The heterogeneity in the gestational age of our premature infants (between 30 and 36 weeks) may, thus, partly account for the inter-individual variation in SCFA levels observed within the group.

It is important to underline that the present work was carried out with preterm infants with gestational age over 30 weeks, which constitute the most frequent group of preterm infants in neonatal units. However, we did not include extreme-preterm-infants, a group in which differences in the process of establishment of the gut microbiota can be expected to be even higher.

A careful characterization of the intestinal microbiota in the target population should constitute the basis for the development of dietary intervention strategies (e.g. probiotics or prebiotics) directed to counteract microbiota aberrancies (Isolauri & Salminen, 2008). Our results stress this observation and identify several qualitative and quantitative alterations in the process of establishment of the gut microbiota in preterm infants when compared with the golden standard for infant gut microbiota, the healthy FTVDBF infant. The design of intervention strategies to facilitate the establishment of a proper gut microbiota in the preterm newborn should take advantage of this knowledge. Such strategies may greatly contribute to decrease the risk of disease, e.g. infection, in these highly susceptible infants.
Acknowledgements

This work was funded by a CSIC (Spain) intramural project (Ref. 200870I049).

S. A. was funded by a predoctoral JAE fellowship from CSIC, Spain. A. B. was
the recipient of a postdoctoral fellowship from CONICET, Argentina.

References

the diets of infants and young children: A commentary by the ESPGHAN

Dupont C (2007) Conditions of bifidobacterial colonization in preterm infants:

integrity and Akkermansia muciniphila, a mucin-degrading member of the
intestinal microbiota present in infants, adults, and the elderly. Appl Environ
Microbiol 73: 7767-7770.

Conroy ME, Shi HN & Walker WA (2009) The long-term health effects of

Fang H & Hedin G (2003) Rapid screening and identification of methicillin-
resistant Staphylococcus aureus from clinical samples by selective-broth and

Development of the intestinal bacterial composition in hospitalized preterm
infants in comparison with breast-fed, full-term infants. *Pediatr Res* 54: 393-
399.

Fecal short-chain fatty acids predict digestive disorders in premature infants.

Wang Y, Hoenig JD, Malin KJ, Qamar S, Petrof EO, Sun J, Antonopoulos DA,
Chang EB & Claud EC (2009) 16s rRNA gene-based analysis of fecal
microbiota from preterm infants with and without necrotizing enterocolitis.
ISME J 3: 944-954.

Westerbeek EAM, van den Berg A, Lafeber HN, Knol J, Fetter WPF & van
Table 1. Bacterial groups, standard cultures, primers and annealing temperatures used for qPCR in this study.

<table>
<thead>
<tr>
<th>Microbial target</th>
<th>Strain used for standard</th>
<th>Primer sequence 5'-3'</th>
<th>Tm (ºC)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkermansia</td>
<td>Akkermansia muciniphila CIP107961</td>
<td>F: CAGCACCTGTAAGGTGGACG
 R: CCGTGGCTTGGCCCCAGT</td>
<td>60</td>
<td>Collado et al., 2007</td>
</tr>
<tr>
<td>Atopobium group</td>
<td>Atopobium – Collinsella</td>
<td>F: GGGTTGAGAGACCCGACC
 R: CCGRGGCTTCTTCTGCAACG</td>
<td>55</td>
<td>Matsuki et al., 2004</td>
</tr>
<tr>
<td>Bacteroides group</td>
<td>Bacteroides – Prevotella – Porphyromonas</td>
<td>F: GAGAGGAAGRTCCCCAC
 R: CCGACTTGGGCTTGCACAG</td>
<td>60</td>
<td>Peso Echarri et al., 2011</td>
</tr>
<tr>
<td>Blisidobacterium</td>
<td>Blisidobacterium longum NCIMB8809</td>
<td>F: GATTCTGGCTCAGTGAAAGG
 R: CTGATAGGACGGGACCCCAT</td>
<td>60</td>
<td>Gueimonde et al., 2011</td>
</tr>
<tr>
<td>Clostridia IV</td>
<td>Clostridium leptum – Faecalibacterium prausnitzii</td>
<td>F: TTAACACAATAAGTCCACCTGG
 R: ATCACTATCCATGTTTAC</td>
<td>60</td>
<td>Ramirez-Farias et al., 2009</td>
</tr>
<tr>
<td>Clostridia XIVA</td>
<td>Blautia coccoides DSMZ935</td>
<td>F: CCGTACCTGAGATAAGAGG
 R: AGGTTTATCTCTTGGGACG</td>
<td>55</td>
<td>Rinttila et al., 2004</td>
</tr>
<tr>
<td>Clostridium difficile</td>
<td>Clostridium difficile JCM1296</td>
<td>F: TTGAGCTATTCGGTAAAGA
 R: CCATCTGTACTGGTGCACCT</td>
<td>58</td>
<td>Rinttila et al., 2004</td>
</tr>
<tr>
<td>Clostridium perfringens</td>
<td>Clostridium perfringens IPLA531</td>
<td>F: ATGCAAGTCGAGCGAG
 R: GACCTTAGATTTCTGCGAACG</td>
<td>55</td>
<td>Rinttila et al., 2004</td>
</tr>
<tr>
<td>Desulfovibrio</td>
<td>Desulfovibrio intestinalis DSMZ11275</td>
<td>F: GCGTATAGGTCGGACCAAG
 R: ACATCTAGACATCATTACATC</td>
<td>60</td>
<td>Rinttila et al., 2004</td>
</tr>
<tr>
<td>Enterobacteriaceae</td>
<td>Escherichia coli LMG2092</td>
<td>F: TGGGGCTACCGGTTAGGAGCA
 R: TCAAGGCCCCGTGTTGACG</td>
<td>60</td>
<td>Matsuda et al., 2007</td>
</tr>
<tr>
<td>Enterococaceae</td>
<td>Enterococcus faecalis IPLAIF3/1</td>
<td>F: CCCATCTGACAGGGGATAACACT
 R: ACCGGGGGCATGACAATC</td>
<td>60</td>
<td>Matsuda et al., 2007</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>Klebsiella pneumoniae subsp. pneumoniae CECT143</td>
<td>F: ATTTGAGGAGGTTGGCAAGCATR
 R: TTACTTGAAGATTTTCTTGGTTC</td>
<td>57</td>
<td>Liu et al., 2008</td>
</tr>
<tr>
<td>Lactobacillus group</td>
<td>Lactobacillus gasseri IPLAIF7/5</td>
<td>F: AGCAAGCTATAGGACGG
 R: CATGGAAGTCCACTGCTTTC</td>
<td>60</td>
<td>Peso Echarri et al., 2011</td>
</tr>
<tr>
<td>Shigella</td>
<td>Shigella sonnei CECT4887</td>
<td>F: ACCATGACTCCAGAGAAGACT
 R: TACGCCCTGATACAGCATGG</td>
<td>60</td>
<td>Lin et al., 2008</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>Staphylococcus epidermidis IPLAIF1/6</td>
<td>F: ACGGTCTTGCTCTACTTATA
 R: TACACATTGTGTTCTTGGTTC</td>
<td>60</td>
<td>Matsuda et al., 2007</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>Staphylococcus aureus IPLA SA</td>
<td>F: GCAGAATGGTGGTACGGT
 R: AGCCAACCTGTGACGGAAACTAAGC</td>
<td>55</td>
<td>Fang & Hedin, 2003</td>
</tr>
<tr>
<td>Streptococcus</td>
<td>Streptococcus salivarius IPLABM7/1</td>
<td>F: GTACAGCTGCCAGGACGATC
 R: ACCGTCTTACCATCAGTG</td>
<td>60</td>
<td>Picard et al., 2004</td>
</tr>
<tr>
<td>Weissella</td>
<td>Weissella confusa UI6</td>
<td>F: CGTGGGAAACCTTACCTTACC
 R: GACCACCTTATGGTAGCAGAACCAT</td>
<td>60</td>
<td>This study</td>
</tr>
</tbody>
</table>

Table 2. Occurrences (%) of the bacterial groups analyzed showing variability between full-term (T) and premature (P) infant groups.

<table>
<thead>
<tr>
<th>AGE GROUP</th>
<th>MICROORGANISMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 d T</td>
<td>35.3</td>
</tr>
<tr>
<td>2 d P</td>
<td>38.1</td>
</tr>
<tr>
<td>10 d T</td>
<td>68.4</td>
</tr>
<tr>
<td>10 d P</td>
<td>76.2</td>
</tr>
<tr>
<td>30 d T</td>
<td>72.2</td>
</tr>
<tr>
<td>30 d P</td>
<td>68.4</td>
</tr>
<tr>
<td>90 d T</td>
<td>66.7</td>
</tr>
<tr>
<td>90 d P</td>
<td>88.2</td>
</tr>
</tbody>
</table>

Cl. IV, Clostridium cluster IV; Cl. XIVa, Clostridium cluster XIVa; Atop, Atopobium group; Strept, Streptococcus; Staph, Staphylococcus; K. pne, Klebsiella pneumoniae; C. perf, Clostridium perfringens; Desul, Desulfovibrio; C. diff, Clostridium difficile. * p<0.05; ** p<0.01; *** p<0.001
Figure 1. Fecal levels (mean ± sd) of the different microorganisms analyzed by qPCR. **A:** Enterobacteriaceae, Enterococccaeae, Lactobacillus group, Weissella, Streptococcus, Staphylococcus, Bifidobacterium, Bacteroides group, Clostridium IV group, Clostridium XIVa group and Atopobium group. **B:** Klebsiella pneumoniae and Desulfovibrio. Asterisks indicate statistically significant differences at the corresponding sampling time. * p<0.05; ** p<0.01; *** p<0.001.

Figure 2. Microbial fecal diversity as measured by the number of bands obtained by PCR-DGGE analyses at the different time points. White boxes, full-term infants; grey boxes, premature infants. * p<0.05; ** p<0.01; *** p<0.001.

Figure 3. Concentration (mean ± sd) of the main short chain fatty acids (acetate, propionate and butyrate) in fecal samples from both full-term (white columns) and premature (black columns) infants at the different sampling points analyzed (2, 10, 30 and 90 days of age). * p<0.05; ** p<0.01; *** p<0.001.

Supplementary Figure 1. Percentages of the different fecal microbial groups, in both premature and full-term infants, at the different time points analyzed.
B

Figure 2. Log cell counts of *K. pneumoniae* and *Desulfovibrio* in full-term and preterm infants over 90 days. Cell counts are measured in log cells/ml and are represented as mean ± standard deviation. *K. pneumoniae* and *Desulfovibrio* levels peak around the 30th and 40th days, respectively, and remain relatively stable thereafter. *K. pneumoniae* shows a higher log cell count than *Desulfovibrio* in both full-term and preterm infants. *K. pneumoniae* levels are significantly higher in preterm infants compared to full-term infants at all measured time points.

- **Full-term infants**
- **Preterm infants**

Days: 2 10 30 90