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Abstract

Entanglement criteria for general (pure or mixed) states of systems consisting of two identical

fermions are introduced. These criteria are based on appropriate inequalities involving the entropy

of the global density matrix describing the total system, on the one hand, and the entropy of the

one particle reduced density matrix, on the other one. A majorization-related relation between

these two density matrices is obtained, leading to a family of entanglement criteria based on Rényi’s

entropic measure. These criteria are applied to various illustrative examples of parametrized fam-

ilies of mixed states. The dependence of the entanglement detection efficiency on Rényi’s entropic

parameter is investigated. The extension of these criteria to systems of N identical fermions is also

considered.
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I. INTRODUCTION

The entanglement features exhibited by systems consisting of identical fermions have

attracted the attention of several researchers in recent years [1–15]. Entanglement in fermion

systems has been studied in connection with different problems, such as the entanglement

between electrons in a conducting band [7], the entanglement dynamics associated with

scattering processes involving two electrons [8], the role played by entanglement in the

time-optimal evolution of fermionic systems [9, 10], the classification of three fermion states

based on their entanglement features [11], the detection of entanglement in fermion systems

through the violation of appropriate uncertainty relations [12], the entanglement features of

fractional quantum Hall liquids [13] and the entanglement properties of the eigenstates of

soluble two-electrons atomic models [14].

The concept of entanglement in systems of indistinguishable particles exhibits some dif-

ferences from the corresponding concept as applied to systems consisting of distinguishable

parts. There is general consensus among researchers that in systems of identical fermions the

minimum quantum correlations between the particles that are required by the antisymmet-

ric character of the fermionic state do not contribute to the state’s amount of entanglement

[1–15]. This means that the separable (that is, non-entangled) pure states of N fermions are

those having Slater rank 1. These are the states whose wave function can be expressed (with

respect to an appropriate single particle basis) as a single Slater determinant [3]. On the

other hand, the set of mixed non-entangled states comprises those states that can be written

as a statistical mixture of pure states of Slater rank 1. Here, when discussing systems of

identical fermions, we are considering entanglement between particles and not entanglement

between modes.

In the case of pure states of two identical fermions, necessary and sufficient separability

criteria can be formulated in terms of the entropy of the single particle reduced density

matrix [4, 6, 15]. Alas, no such criteria are known for general, mixed states of two fermions,

except for the case of two fermions with a single particle Hilbert space of dimension

4, for which a closed analytical expression for the concurrence (akin to the celebrated

Wootters’ formula for two-qubits [16]) is known. In general, to determine whether a given

density matrix of a two-fermion system represents a separable state or not is a notoriously

difficult (and largely unexplored) problem. Consequently, there is a clear need for practical
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separability criteria, or entanglement indicators, which can be extended to systems of

higher dimensionality or to scenarios involving more than two fermions [15].

Entropic separability criteria have played a distinguished role in the study of the

entanglement-related features of mixed states of multipartite systems constituted by distin-

guishable subsystems [17–23]. For this kind of composite quantum systems, non-entangled

states behave classically in the sense that the entropy of a subsystem is always less or equal

than the entropy of the whole system. If the entropy of a subsystem happens to be larger

than the entropy of the whole system, then we know for sure that the state is entangled (that

is, this constituteas a sufficient entanglement criteria). This statement can be formulated

mathematically in terms of the Rényi entropic measures,

S(R)
q [ρ] =

1

1− q
ln(Tr[ρq]), (1)

leading to the following family of inequalities satisfied by separable states [17–23],

S(R)
q [ρA] ≤ S(R)

q [ρAB]

S(R)
q [ρB] ≤ S(R)

q [ρAB]. (2)

In the above equations ρAB is the joint density matrix describing a bipartite system consisting

of the subsystems A and B, and ρA,B are the marginal density matrices describing the

subsystems. The entropic parameter in (1-2) adopts values q ≥ 1. In the limit q → 1

the Rényi entropy reduces to the von Neumann entropy. Note that the entropic criteria

considered in [17–23] and in the present work, which depend on the entropies of the total

and reduced density matrices, are different from those studied in [24], which involve entropic

uncertainty relations associated with the measurement of particular observables.

The study of entropic entanglement criteria based upon the above considerations has

been the focus of a considerable amount of research over the years [17–23]. It would be

interesting to extend this approach to systems consisting of identical fermions. The aim

of this paper is to investigate entanglement criteria for general (mixed) states of systems

of two identical fermions based upon the comparison of the entropy of the global density

matrix describing the total system and the entropy of the one particle reduced density
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matrix.

The organization of the paper is as follows. A brief review of entanglement between

particles in systems of identical fermions is given in Section II. Entropic entanglement criteria

for systems of two identical fermions based on the von Neumann, the linear, and the Rényi

entropies are derived in Section III. These entropic criteria are applied to particular families

of states of two-fermion systems in Sections IV and V. The extension to systems of N

fermions of the entanglement criteria based upon the Rényi entropies is considered in Section

VI. Finally, some conclusions are drawn in Section VII.

II. ENTANGLEMENT BETWEEN PARTICLES IN FERMIONIC SYSTEMS

The concept of entanglement between the particles in system of identical fermions is

associated with the quantum correlations exhibited by quantum states on top of the minimal

correlations due to the indistinguishability of the particles and the anti-symmetric character

of fermionic states. A pure state of Slater rank one of N identical fermions (that is, a

state that can be described by one single Slater determinant) must be regarded as separable

(non-entangled) [2, 3]. The correlations exhibited by such states do not provide a resource

for implementing non-classical information transmission or information processing tasks.

Moreover, the non-entangled character of states of Slater rank one is consistent with the

possibility of assigning complete sets of properties to the parts of the composite system [4].

Consequently, a pure state of two identical fermions of the form

|ψsl〉 =
1√
2
{|φ1〉|φ2〉 − |φ2〉|φ1〉}, (3)

where |φ1〉 and |φ2〉 are orthonormal single-particle states, is regarded as separable.

A pure state |ψ〉 of a system of N identical fermions has Slater rank 1, and is therefore

separable, if and only if

Tr(ρ21) =
1

N
, (4)

where ρ1 = Tr2,...,N(ρ) is the single particle reduced density matrix, ρ = |ψ〉〈ψ|, n is the

dimension of the single particle state space and N ≤ n [15]. On the other hand, entangled

pure states satisfy
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1

n
≤ Tr(ρ21) <

1

N
. (5)

Non-entangled mixed states of systems of N identical fermions are those that can be

written as a mixture of Slater determinants,

ρsl =
∑
i

λi|ψ(i)
sl 〉〈ψ

(i)
sl |, (6)

where the states |ψ(i)
sl 〉 can be expressed as single Slater determinants, and 0 ≤ λi ≤ 1 with∑

i λi = 1.

Systems of identical fermions with a single-particle Hilbert space of dimension 2k (with

k ≥ 2) can be formally regarded as systems consisting of spin-s particles, with s = (2k−1)/2.

The members {|i〉, i = 1, . . . , 2k} of an orthonormal basis of the single particle Hilbert

space can be identified with the states |s,ms〉, with ms = s − i + 1, i = 1, . . . , 2k.

We can use for these states the shorthand notation {|ms〉, ms = −s, . . . , s}, because

each particular example discussed here will correspond to a given value of k (and s).

According to this angular momentum representation, the antisymmetric joint eigenstates

{|j,m〉, −j ≤ m ≤ j, 0 ≤ j ≤ 2s} of the total angular momentum operators J2 and Jz

constitute a basis for the Hilbert space associated with a system of two identical fermions.

The antisymmetric states |j,m〉 are those with an even value of the quantum number j.

A closed analytical expression for the concurrence of general (pure or mixed) states of

two identical fermions sharing a single particle Hilbert space of dimension 4 (corresponding

to s = 3/2) was discovered by Eckert, Schliemann, Bruss, and Lewenstein (ESBL) in [2].

The ESBL concurrence formula is

CF(ρ) = max{0, λ1 − λ2 − λ3 − λ4 − λ5 − λ6}, (7)

where the λi’s are the square roots of the eigenvalues of ρρ̃ in descending order of magnitude.

Here ρ̃ = DρD−1, with the operator D given by
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D =



0 0 0 0 1 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1


K, (8)

where K stands for the complex conjugation operator and (8) is written with respect to the

total angular momentum basis, ordered as |2, 2〉, |2, 1〉, |2, 0〉, |2, -1〉, |2, -2〉 and i|0, 0〉.

In what follows we are going to consider systems comprising a given, fixed number of

identical fermions. Therefore, we are going to work within the first quantization formalism.

III. ENTROPIC ENTANGLEMENT CRITERIA FOR SYSTEMS OF TWO IDEN-

TICAL FERMIONS

A. Entanglement Criteria Based on the von Neumann and the Linear Entropies

Let ρ be a density matrix describing a quantum state of two identical fermions and ρr be

the corresponding single particle reduced density matrix, obtained by computing the partial

trace over one of the two particles.

If ρ = |ψsl〉〈ψsl|, where |ψsl〉 represents a separable pure state of the form (3), and

SvN[ρ] = −Tr(ρ ln ρ) (9)

is the von Neumann entropy of ρ, we have that SvN[ρ] = 0 and SvN[ρr] = ln 2. That is, for

separable pure states we have SvN[ρ]− SvN[ρr] = − ln 2. It then follows from the concavity

property of the quantum conditional entropy [25] that, for a separable mixed state ρ of the

form (6), SvN[ρ]− SvN[ρr] ≥ − ln 2. Consequently, all separable states (pure or mixed) of a

system of two identical fermions satisfy the inequality

SvN[ρr] ≤ SvN[ρ] + ln 2. (10)

Hence, if the quantity
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DvN = SvN[ρr]− SvN[ρ]− ln 2 (11)

is positive the state ρ is necessarily entangled. Indeed, in the particular case of pure states

this quantity has been used as a measure of entanglement in some applications (see, for

instance, [13] and references therein). The inequality (10) can be extended to the more

general case of systems of N identical fermions. From an argument similar to the one

used to derive (10) it follows that a separable state of N fermions (that is, a state that

can be written as a statistical mixture of pure states each having the form of single Slater

determinant) satisfies the inequality

SvN[ρr] ≤ SvN[ρ] + lnN. (12)

Consequently, a state of N fermions violating inequality (12) is necessarily entangled. In the

case of pure states of N fermions this entanglement criteria reduces to one of the entangle-

ment criteria previously discussed in [15]. The special case of this criterion corresponding

to pure states of two fermions was first analyzed in [4]. When deriving the inequalities (10)

and (12) we have used the concavity of the quantum conditional entropy. This property is

usually discussed in connection with composite systems comprising distinguishable subsys-

tems. However, within the first quantization formalism, any density matrix of two identical

fermions has mathematically also the form of a density matrix describing distinguishable

subsystems (in fact, it is just a density matrix that happens to be expressible as a statistical

mixture of antisymmetric pure states). Consequently, any mathematical property that is

satisfied by general density matrices describing distinguishable subsystems is also satisfied

by the special subset of density matrices that can describe a system of identical fermions.

An entanglement criterion for states of two fermions similar to the one already discussed

can be formulated in terms of the linear entropy,

SL[ρ] = 1− Tr(ρ2). (13)

Given a quantum state ρ of two fermions, let’s consider the quantity

c[ρ] = inf
∑
i

pic[|φi〉], (14)
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where c[|φi〉] =

√
2
[
1− Tr[(ρ

(i)
r )2]

]
, ρ

(i)
r is the one particle reduced density matrix corre-

sponding to |φi〉, ρ =
∑

i pi|φi〉〈φi|, and the infimum is taken over all the possible decompo-

sitions of ρ as a statistical mixture {pi, |φi〉} of pure states (note that c[ρ] adopts values in

the range [0,
√

2]). The quantity defined in (14) satisfies the inequality [26]

c[ρ]2 ≥ 2
[
Tr(ρ2)− Tr

(
ρ2r
)]
. (15)

If ρ corresponds to a separable state of the two fermions, we have that ρ =
∑

i pi|ψ
(i)
sep〉〈ψ(i)

sep|

with c[|ψ(i)
sep〉] = 1 for all i. Therefore, for a separable state we have c[ρ] ≤ 1 and, from

(15), 1 ≥ (c [ρ])2 ≥ 2 [Tr(ρ2)− Tr (ρ2r)]. Consequently, separable states (pure or mixed) of a

system of two identical fermions comply with the inequality,

SL[ρr] ≤ SL[ρ] +
1

2
. (16)

In other words, states for which the quantity

DL = SL[ρr]− SL[ρ]− 1

2
(17)

is positive are necessarily entangled. In the particular case of pure states of two identical

fermions, the positivity of (17) becomes both a necessary and sufficient entanglement

criterion ([15] and references therein). Moreover, a quantity basically equal to (17) has

been proposed as an entanglement measure for pure states of two fermions and indeed

constitutes one of the most useful entanglement measures for these states [8].

B. Entropic Entanglement Criteria Based on the Rényi Entropies

On the basis of the Rényi family of entropies we are going to derive now a generalization

of the separability criterion associated with inequality (10). We are going to prove that

a (possibly mixed) quantum state ρ of a system of two identical fermions satisfying the

inequality

S(R)
q [ρ] + ln 2 < S(R)

q [ρr], (18)

for some q ≥ 1, is necessarily entangled. Here S
(R)
q stands for the Rényi entropy,
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S(R)
q [ρ] =

1

1− q
ln(Tr[ρq]). (19)

The inequality (18) leads to an entropic entanglement criterion that detects entanglement

whenever the quantity

Rq = S(R)
q [ρr]− S(R)

q [ρ]− ln 2 (20)

is strictly positive. In the limit q → 1 the Rényi measure reduces to the von Neumann

entropy and we recover the entanglement criterion given by inequality (10). When q → ∞

the Rényi entropy becomes

S(R)
∞ [ρ] = − ln (λmax.) , (21)

where λmax. is the largest eigenvalue of ρ. In this limit case, the entropic criterion says that

any state satisfying

2λ(ρr)max. < λ(ρ)max. (22)

is entangled, where λ
(ρ)
max. and λ

(ρr)
max. are, respectively, the largest eigenvalues of ρ and ρr.

C. Proof of the Entropic Criteria Based on the Rényi Entropies

The following proof is based on the powerful techniques related to the majorization con-

cept [27, 28] that were introduced to the field of quantum entanglement by Nielsen and

Kempe in [27]. These authors proved that non-entangled states of quantum systems having

distinguishable subsystems are such that the total density matrix is always majorized by the

marginal density matrix associated with one of the subsystems. In the case of non-entangled

states of a system of identical fermions the total density matrix ρ is not necessarily majorized

by the one particle reduced density matrix ρr. However, as we are going to prove, there is

still a definite majorization-related relation between ρ and ρr that yields a family of inequal-

ities between the Rényi entropies of these two matrices, which leads in turn to a family of

entropic entanglement criteria.

In our proof of the entropic criterion associated with the inequality (18) we are going to use

the following fundamental property of quantum statistical mixtures. If ρ =
∑

i pi|ai〉〈ai| =
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∑
j qj|bj〉〈bj| are two statistical mixtures representing the same density matrix ρ, then there

exists a unitary matrix {Uij} such that [27, 29]

√
pi|ai〉 =

∑
j

Uij
√
qj|bj〉. (23)

Let us now consider a separable state of two identical fermions,

ρ =
∑
j

pj
2

(|ψ(j)
1 〉|ψ

(j)
2 〉 − |ψ

(j)
2 〉|ψ

(j)
1 〉)(〈ψ

(j)
1 |〈ψ

(j)
2 | − 〈ψ

(j)
2 |〈ψ

(j)
1 |) (24)

where 0 ≤ pj ≤ 1,
∑

j pj = 1 and |ψ(j)
1 〉, |ψ

(j)
2 〉 are normalized single-particle states with

〈ψ(j)
1 |ψ

(j)
2 〉 = 0.

Let us consider now a spectral representation

ρ =
∑
k

λk|ek〉〈ek| (25)

of ρ. That is, the |ek〉 constitute an orthonormal basis of eigenvectors of ρ and the λk are

the corresponding eigenvalues. Then, (24) and (25) are two different representations of ρ as

a mixture of pure states. Therefore, there is a unitary matrix U with matrix elements {Ukj}

such that

√
λk|ek〉 =

∑
j

Ukj

√
pj
2

(|ψ(j)
1 〉|ψ

(j)
2 〉 − |ψ

(j)
2 〉|ψ

(j)
1 〉). (26)

The single particle reduced density matrix corresponding to the two fermions density matrix

(24) is

ρr =
∑
j

pj
2

(|ψ(j)
1 〉〈ψ

(j)
1 |+ |ψ

(j)
2 〉〈ψ

(j)
2 |), (27)

admitting a spectral representation

ρr =
∑
l

αl|fl〉〈fl|. (28)

We now define,

q2j = q2j−1 =
1

2
pj (j = 1, 2, 3, . . .) (29)

|φ2j−1〉 = |ψ(j)
1 〉
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|φ2j〉 = |ψ(j)
2 〉 (j = 1, 2, 3, . . .). (30)

Now, since (27) and (28) correspond to two statistical mixtures yielding the same density

matrix, there must exist a unitary matrix W with matrix elements {Wjl} such that,

√
qi|φi〉 =

∑
l

Wil

√
αl|fl〉 (i = 1, 2, 3, . . .). (31)

Now, eq.(26) can be rewritten as

√
λk|ek〉 =

∑
j

Ukj
(√

q2j−1|φ2j−1〉|φ2j〉 −
√
q2j|φ2j〉|φ2j−1〉

)
. (32)

Combining (31) and (32) gives

√
λk|ek〉 =

∑
l

[∑
j

Ukj

(
W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉

)]√
αl|fl〉. (33)

Therefore, since 〈ek|ek′〉 = δkk′ and 〈fl|fl′〉 = δll′ , we have that

λk =
∑
l

Mklαl, (34)

where

Mkl=

(∑
j′

U∗kj′
{
W ∗

2j′−1,l〈φ2j′| −W ∗
2j′,l〈φ2j′−1|

})(∑
j′′

Ukj′′ {W2j′′−1,l|φ2j′′〉 −W2j′′,l|φ2j′′−1〉}

)
.

(35)

We now investigate the properties of the matrix M with matrix elements {Mkl}. First of

all, we have

Mkl ≥ 0, (36)

since the matrix elements of M are of the form Mkl = 〈Σ|Σ〉, with

|Σ〉 =
∑
j

Ukj (W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉) . (37)

We now consider the sum of the elements within a given row or column of M . The sum of

a row yields,
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∑
k

Mkl =
∑
j′j′′

δj′j′′
(
W ∗

2j′−1,l〈φ2j′ | −W ∗
2j′,l〈φ2j′−1|

)
(W2j′′−1,l|φ2j′′〉 −W2j′′,l|φ2j′′−1〉)

=
∑
j

(
W ∗

2j−1,lW2j−1,l +W ∗
2j,lW2j,l

)
=
∑
i

(
W †)

li
Wil = 1, (38)

while the sum of a column is,

∑
l

Mkl =
∑
j′j′′

U∗kj′Ukj′′

(
〈φ2j′|φ2j′′〉

[∑
l

W ∗
2j′−1,lW2j′′−1,l

]
+ 〈φ2j′−1|φ2j′′−1〉

[∑
l

W ∗
2j′,lW2j′′,l

]

−〈φ2j′ |φ2j′′−1〉

[∑
l

W ∗
2j′−1,lW2j′′,l

]
− 〈φ2j′−1|φ2j′′〉

[∑
l

W ∗
2j′,lW2j′′−1,l

])
=
∑
j′j′′

U∗kj′Ukj′′ (〈φ2j′ |φ2j′′〉δj′j′′ + 〈φ2j′−1|φ2j′′−1〉δj′j′′)

= 2
∑
j

(
U †
)
jk
Ukj = 2. (39)

When deriving the above two equations we made use of the unitarity of the matrices {Ukj}

and {Wil}. Summing up, we have,

∑
k

Mkl = 1∑
l

Mkl = 2. (40)

We now define a new set of variables {λ′i} and a new matrix M ′ with elements M ′
ij, respec-

tively given by,

λ′2k−1 = λ′2k =
1

2
λk (k = 1, 2, 3, . . .) (41)

M ′
2k−1,l = M ′

2k,l =
1

2
Mkl (k = 1, 2, 3, . . .), (42)

and so we have

λ′n =
∑
l

M ′
nlαl. (43)

By construction, then, we have

{λk} = {λ1, λ2, λ3, . . .}
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{λ′n} =

{
λ1
2
,
λ1
2
,
λ2
2
,
λ2
2
,
λ3
2
,
λ3
2
, . . .

}
. (44)

Let us now compare the matrices {Mkl} and {M ′
nl}. The matrix {M ′

nl} has twice as many

rows as {Mkl}, but the rows of {M ′
nl} can be grouped in pairs of consecutive rows such that

within each pair the rows are equal to 1/2 a row of {Mkl}. It follows that

∑
k

Mkl = 1 =⇒
∑
n

M ′
nl = 1∑

l

Mkl = 2 =⇒
∑
l

M ′
nl = 1. (45)

Thus,

∑
n

M ′
nl =

∑
l

M ′
nl = 1 (46)

and, therefore, {M ′
nl} is a doubly stochastic matrix. Interpreting the λ′n’s and the αl’s as

probabilities, it follows from (43) and (46) that the probability distribution {λ′n} is more

“mixed” than the probability distribution {αl} [25] (or, alternatively that {αl} majorizes

{λ′n} [27]). This, in turn, implies that for any Rényi entropy S
(R)
q with q ≥ 1, we have

S(R)
q [λ′n] ≥ S(R)

q [αl]. (47)

Thus,

S(R)
q [λ′n] =

1

1− q
ln

(
2
∑
k

(
λk
2

)q)
= ln 2 + S(R)

q [λk]. (48)

Therefore, all separable states of the two-fermion system comply with the inequality

S
(R)
q [λk]+ln 2 ≥ S

(R)
q [αl] and since {λk} and {αl} are the eigenvalues of ρ and ρr respectively,

S(R)
q [ρ] + ln 2 ≥ S(R)

q [ρr]. (49)

The above inequality leads to an entanglement criterion that detects entanglement when the

indicator Rq defined in equation (19) is strictly positive.
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IV. TWO-FERMION SYSTEMS WITH A SINGLE PARTICLE HILBERT SPACE

OF DIMENSION FOUR

Now we are going to apply our above derived entropic entanglement criteria to some

parameterized families of two-fermion states. To this end, consider systems consisting of

two fermions with a single particle Hilbert space of dimension 4. In this case there is an

exact, analytical expression for the state’s concurrence. It is then possible to compare the

range of parameters for which entanglement is detected by the criteria with the exact range

of parameters for which the states under consideration are entangled. As mentioned in

Section II, in this case the two-fermions states can be mapped into the states of two s = 2
3

spins. The antisymmetric eigenstates |j,m〉 of the total angular momentum operators J2

and Jz constitute then a basis of the system’s Hilbert space. These states are |0, 0〉, |2,−2〉,

|2,−1〉, |2, 0〉, |2, 1〉, and |2, 2〉.

A. Werner-Like States

First we are going to consider a family of states consisting of a mixture of the maximally

entangled state |0, 0〉 and a totally mixed state. These states are of form,

ρW = p|0, 0〉〈0, 0|+ 1− p
6

I (50)

where 0 ≤ p ≤ 1, and

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m| (51)

is the identity operator acting on the six-dimensional Hilbert space corresponding to the

two-fermion system. Evaluation of the concurrence shows that these states are entangled

when p > 0.4. For these states we have,

DvN[ρW ] = − ln 2 + ln 4− 5

6
(−1 + p) ln

(
1− p

6

)
+

1

6
(1 + 5p) ln

(
1

6
(1 + 5p)

)
DL[ρW ] = − 7

12
+

5p2

6
. (52)

The minimum values pm of the parameter p such that for p > pm the entanglement indicators

DvN, DL, R2, andRq→∞ are positive (and thus entanglement is detected by the corresponding
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FIG. 1: Minimum p-value pmin for which entanglement is detected in the case of the state ρW

defined in eq.(50) (dashed line) and of the state ρG given by eq.(55) (solid line).

criteria) are given in the following table (that is, in each case, entanglement is detected when

p is larger than the listed value).

DvN > 0 DL > 0 Rq→∞ > 0 Rq=2 > 0

pmin ≈ 0.809
√

0.7 ≈ 0.837 0.4 ≈ 0.632

The entanglement detection efficiency of the entropic criterion based upon Rényi entropy

increases with q. Indeed, in the limit q → ∞ the Rényi entropic criterion detects all the

entangled states within the family of states (50). The behaviour of the minimum value of p

for which entanglement is detected as a function of the entropic parameter q is depicted in

Figure 1.

B. θ-State

As second illustration we consider the following pure state,

|ψ〉 =
sin θ√

2

[∣∣∣∣-3

2

3

2

〉
−
∣∣∣∣32-

3

2

〉]
+

cos θ√
2

[∣∣∣∣-1

2

1

2

〉
−
∣∣∣∣12-

1

2

〉]
, (53)

for which

DvN[|ψ〉〈ψ|] = − ln 2− cos2 θ ln

[
cos2 θ

2

]
− ln

[
sin2 θ

2

]
sin2 θ
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DL[|ψ〉〈ψ|] = cos2 θ sin2 θ. (54)

Thus, DvN, DL = 0 for θ = 0, π/2, π. So S
(R)
q [ρ] + ln 2 < S

(R)
q [ρr] for all θ ∈ (0, π), θ 6= π/2.

Therefore, all entangled states are detected.

C. Gisin-Like States

As a final example let us consider the parameterized family of mixed states given by,

ρG = p|0, 0〉〈0, 0|+ 1− p
2

(|2,−2〉〈2,−2|+ |2, 2〉〈2, 2|), (55)

with 0 ≤ p ≤ 1. In this case we have,

DvN[ρG] = −(−1 + p) ln(1− p) + p ln(2p)

DL[ρG] =
1

4

(
−1− 4p+ 6p2

)
. (56)

The critical p values at which the entropic criteria based on the indicators DvN, DL, Rq→∞,

and Rq=2 begin to detect entanglement are listed in the Table bellow.

D1 > 0 D2 > 0 Rq→∞ > 0 Rq=2 > 0

pmin ≈ 0.773 2+
√
10

6
≈ 0.860 0.5 ≈ 0.667

From the evaluation of the concurrence it follows that the Gisin-like states are entangled for

p > 0.5. Thus, once again, the Rényi based entropic criterion based on the indicator Rq→∞

detects all the entangled states in the family (55).

V. TWO-FERMION SYSTEMS WITH A SINGLE PARTICLE HILBERT SPACE

OF DIMENSION SIX

Two identical fermions with a 4-dimensional single particle Hilbert space (the simplest

fermionic system admitting the phenomenon of entanglement) constitutes the only fermion

system for which an exact analytical formula for the concurrence has been obtained. It is thus

of interest to apply the entropic entanglement criteria to systems of higher dimensionality,

for which such an expression for the concurrence is not known. Here we are going to

consider a system consisting of two identical fermions with a single particle Hilbert space

16



of dimension 6. The Hilbert space of this system is 15-dimensional. Using the angular

momentum representation the two-fermion system can be mapped onto a system of two

spins with s = 5
2
. It is useful to introduce the following notation,

|m1m2| =
1√
2

[|m1〉|m2〉 − |m2〉|m1〉] . (57)

We are going to study three particular families of mixed states of the form

ρi = p|ϕi〉〈ϕi|+
1− p

15
I, (58)

where 0 ≤ p ≤ 1 and

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m|+
4∑

m=−4

|4,m〉〈4,m| (59)

is the identity operator acting on the 15-dimensional Hilbert space describing the two-

fermion system, and |ϕi〉 is an entangled two-fermion pure state. We consider three particular

instances of |ϕi〉. In each case we provide the expressions for the indicators DvN and DL, and

the minimum values pm of the parameter p such that for p > pm entanglement is detected

by the criteria based on the positivity of the quantities DvN, DL, Rq→∞ and Rq=2.

The first illustration corresponds to

|ϕ1〉 =
1√
3

[∣∣∣∣52 3

2

∣∣∣∣+

∣∣∣∣12-
1

2

∣∣∣∣− ∣∣∣∣-3

2
-
5

2

∣∣∣∣] , (60)

for which

DvN [ρ1] = ln 3− 14

15
(−1 + p) ln

(
1− p

15

)
+

1

15
(1 + 14p) ln

(
1

15
(1 + 14p)

)
DL[ρ1] =

1

15

(
−9 + 14p2

)
, (61)

resulting in

DvN > 0 DL > 0 Rq→∞ > 0 Rq=2 > 0

pmin ≈ 0.767 3√
14
≈ 0.802 2

7
≈ 0.535

The second example is given by

|ϕ2〉 = −2

3

∣∣∣∣52 3

2

∣∣∣∣− 2

3

∣∣∣∣12-
1

2

∣∣∣∣+
1

3

∣∣∣∣-3

2
-
5

2

∣∣∣∣ , (62)
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with,

DvN [ρ2] =
1

45

(
−45 ln 2− 42(−1 + p) ln

(
1− p

15

)
+ 5(−3 + 2p) ln

(
1

6
− p

9

)
− 10(3 + p) ln

(
3 + p

18

)
+3(1 + 14p) ln

(
1

15
(1 + 14p)

))
DL[ρ2] = −3

5
+

121p2

135
, (63)

and

DvN > 0 DL > 0 Rq→∞ > 0 Rq=2 > 0

pmin ≈ 0.788 9
11

≈ 0.324 ≈ 0.557

As a third instance we tackle,

|ϕ3〉 =
1√
2

[∣∣∣∣52 3

2

∣∣∣∣+

∣∣∣∣12-
1

2

∣∣∣∣] , (64)

leading to,

DvN [ρ3] =
1

15
(−p ln 7776 + p ln 248832− 9(−1 + p) ln(1− p)− 5(2 + p) ln(2 + p)

+ ln

(
1024(1 + 14p)

30517578125

)
+ 14p ln(1 + 14p)

)
DL[ρ3] = −3

5
+

17p2

20
, (65)

and

DvN > 0 DL > 0 Rq→∞ > 0 Rq=2 > 0

pmin ≈ 0.825 2
√

3
17
≈ 0.840 ≈ 0.348 ≈ 0.590

VI. SYSTEMS OF N IDENTICAL FERMIONS

Let us consider the general case of N fermions with single particle Hilbert space of general

(even) dimension n > N . The dimension of the Hilbert space associated with the N -fermion

system is then d = n!
(n−N)!N !

. The Rényi based entropic criterion for two fermions that we

derived in Section III can be extended to the case of N fermions. According to the extended

criterion a state ρ of N identical fermions satisfying the inequality

S(R)
q [ρr] > S(R)

q [ρ] + lnN, (66)
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FIG. 2: Minimum value of p, as a function of the entropic parameter q, for entanglement detection

in the states (58) with |ϕ1〉 (solid line), |ϕ2〉 (dashed line) and |ϕ3〉 (dashdotted line).

for some q ≥ 1 is necessarily entangled. This criterion can be derived following a procedure

similar to the one detailed in Section III for the case of two fermions.

As an illustration of the entanglement criterion based on the inequality (66) let us consider

a family of states of a system of N fermions having the form

p |Φ〉〈Φ|+ (1− p)
d

Id, (67)

where 0 ≤ p ≤ 1, Id is the identity operator acting on the N -fermions Hilbert space, and

the single particle Hilbert space has dimension n = kN , with k ≥ 2 integer. We also assume

that the (pure) N -fermion state |Φ〉 is of the form

|Φ〉 =
1√
k

(
|1, 2, . . . , N |+ |N+1, N+2, . . . , 2N |+ . . .+ |(k−1)N+1, (k−1)N+2, . . . , kN |

)
,

(68)

where |i1, i2, . . . , iN | denotes the Slater determinant (as in equation (57)) constructed with N

different members {|i1〉, . . . , |iN〉} of an orthonormal basis {|1〉, . . . , |n〉} of the single particle

Hilbert space. The single particle, reduced density matrix associated with the (pure) state

|Φ〉 corresponds to the totally mixed (single particle) state, 1
n
In, where In is the identity

operator corresponding to the single particle Hilbert space. On the basis of the Rényi

entropic criterion corresponding to q → ∞ we identify as entangled the states of the form

19



(67) satisfying the inequality,

lnn+ ln

(
p+

(1− p)
d

)
− lnN > 0 (69)

and hence entanglement is detected for

p >
N (n− 1)!− (n−N)!N !

n!− (n−N)!N !
. (70)

WithN fixed, we find that the efficiency of the entanglement criterion grows as the dimension

of the single particle states, n, increases (that is, pmin decreases with n).

VII. SUMMARY

In the present work new entropic entanglement criteria for systems of two identical

fermions have been advanced. These criteria have the form of appropriate inequalities

involving the entropy of the density matrix associated with the total system, on the one

hand, and the entropy of the single particle reduced density matrix, on the other one. We

obtained entanglement criteria based upon the von Neumann, the linear, and the Rényi

entropies. The criterion associated with the von Neumann entropy constitutes a special

instance, corresponding to the particular value q = 1 of the Rényi entropic parameter, of

the more general criteria associated with the Rényi family of entropies. Extensions of these

criteria to systems constituted by N identical fermions where also considered.

We applied our entanglement criteria to various illustrative examples of parametrized

families of mixed states, and studied the dependence of the entanglement detection efficiency

on the entropic parameter q. The entanglement criterion improves as q increases and is the

most efficient in the limit q →∞.
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