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Abstract 

A novel method of producing methanol from coke oven gas (COG), involving the CO2 

reforming of COG to obtain an appropriate syngas for the synthesis of methanol is 

proposed. This method is compared with a conventional process of methanol synthesis 

from natural gas, in terms of energy consumption, CO2 emissions, raw materials 

exploitation and methanol purity. Whereas this new process requires the consumption of 

less energy, the conventional process allows a higher energy recovery. CO2 emissions 

are considerably lower with the new process, but the geographic situation of the plant 

plays a determinant role. From the point of view of raw materials exploitation and 

methanol purity, the process proposed yields better results. These results suggest that 

methanol production from coke oven gas would be a more attractive alternative to 

conventional processes. 
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1. Introduction 

	  

Methanol is one of the most important chemical materials produced today due to the 

wide variety of processes in which it is used [1-6]. Its applications range from chemical 

uses (as solvent or in the production of organic products such as formaldehyde) to 

energy uses (e.g., the production of biodiesel or as a fuel itself) [1, 4-6]. Nowadays, 

methanol is manufactured using a technology based mainly on natural gas as feedstock, 

although some processes use oil [4, 7]. 

 

This process involves four steps: syngas generation, compression, the synthesis of 

methanol and distillation [4]. Syngas generation and methanol synthesis are areas of 

increasing scientific development. In a conventional methanol plant, syngas generation 

accounts for 55 % of the financial outlay required for the process units [4]. Different 

syngas production processes are available depending on the characteristics of the natural 

gas and the economics restraints imposed on the plant [2, 4, 7-13]. These processes are 

steam reforming, autothermal reforming, and combined reforming. However, in the last 

few years an alternative source of syngas production has emerged: coke oven gas [14-

23]. COG is a by-product from coking plants, consisting mainly of H2 (55–60 %), CH4 

(23–27 %), CO (5–8 %) and N2 (3–5 %) along with other hydrocarbons, H2S and NH3 

in small proportions. Most of this gas is used as fuel in the coke ovens, but usually there 

is a surplus of gas which is used in other processes of the plant, or is simply burnt away 

in torches [16, 23-27], giving rise to environmental problems, in the form of greenhouse 

gases emissions. The thermal upgrading of COG would provide an ideal solution to 

these environmental problems. However, none of the previously mentioned processes 

for syngas production from natural gas can be used if the final product is methanol. This 

is due to the high H2/CO ratios and R parameters (Eq. 1) resulting from these processes 

if the coke oven gas is used as source of methanol production [15, 18, 20, 21, 23]. 

 

 R, dimensionless = (H2 – CO2) / (CO + CO2) (Eq. 1) 

 

In order for the syngas to be used for the production of methanol the H2/CO ratio needs 

to be around 2 whereas the optimum value for the R parameter lies within the range of 

2.03-2.05 [1, 2, 28]. A possible solution to this problem could be to generate the syngas 
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by means of CO2 reforming (or dry reforming). CO2 reforming is a reaction between 

CO2 and CH4 that gives rise to H2 and CO (Reaction 1). 

 

 CH4 + CO2 ↔ 2 H2 + 2 CO  (Reaction 1) 

 

By applying CO2 reforming to the coke oven gas, under stoichiometric conditions of 

methane and carbon dioxide, it is possible to obtain a syngas with a H2/CO ratio and a R 

parameter slightly lower than the optimum values. Only minor adjustments of these 

values would then be required, and this can be done using the H2 recovered at the end of 

the process of methanol production [18]. Moreover, the production of methanol from 

coke oven gas via CO2 reforming could be considered as a “partial recycling” of carbon 

dioxide, since half of the carbon dioxide produced, when methanol is used, is consumed 

during the production process itself [15, 18, 20, 21, 23]. This balance is illustrated in 

Figure 1. 

 

 
Fig. 1. Partial recycling of CO2 in the synthesis of methanol from COG via dry 

reforming. 

 

However, this advantage has yet to be demonstrated, as it is possible that the yields and 

the energy needs of the process will affect the abovementioned balance. Moreover, no 

references can be found in the literature to any previous comparison of this technology 

with that of conventional methanol production. Hence, the aim of the present work is to 

carry out a comparative simulation analysis of methanol production from coke oven gas 
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via dry reforming and the conventional process of methanol production from natural 

gas, using Aspen Plus® software. 

 

2. Simulation Methodology 

 

Two different processes were studied: the conventional production process (CP) and the 

novel technology proposed for the dry reforming of coke oven gas (DR-COG). These 

processes were modelled using Aspen Plus® software. In each process a flow rate basis 

of 1 kmol/h of feed gas, natural gas or coke oven gas, was employed. The compositions 

of these gases are shown in Table 1. 

 

Table 1. Natural gas and coke oven gas compositions used in the simulation. 

 

Component 
Natural Gas 

(vol. %) 

Coke oven gas 

(vol. %) 

CH4 91.2 26.0 

H2 0 62.0 

CO2 1.0 1.5 

CO 0 7.0 

N2 0.5 2.2 

C2H6 6.4 0.5 

C3H8 0.8 0 

C4H10 0.1 0 

C2H4 0 0.8 

 

 

2.1. CP process model 

 

In the CP process, which is the most widespread methanol production process in use, 

the natural gas is fed into a reformer where the methane reacts with excess steam 
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through a steam reforming reaction. Since the H2/CO ratio and the R parameter of the 

syngas obtained are higher than that desired, the syngas is fed into a second reactor 

where it reacts with O2 through partial oxidation. In this way, the H2/CO ratio and the R 

parameter are adjusted to the desired values. Since there is a surplus of H2O that has not 

reacted in the first reactor, a condensation stage is required to separate the excess water. 

The syngas is then introduced into the methanol synthesis loop. Recirculation is 

required because the conversion in each cycle is very low. A purge is included in the 

loop to prevent the accumulation of inerts. 

 

The model developed for this study (Figure 2) is composed of: 

 

FIGURE 2 

 

1. A line of compressed natural gas (NG), the composition of which is shown in 

Table 1. 

2. A line of steam production (WATER). 

3. A steam reformer (REFORMER) where the NG and WATER react to give rise 

to the initial syngas (SYNGAS1), the composition of which is still far from that 

required for methanol production. 

4. A line of compressed O2 (O2-LP). 

5. A partial oxidation reactor (POX) where the SYNGAS1 and O2-LP react to give 

rise to a second syngas. After the excess of water has been separated this syngas 

is compressed (SYNGAS2) and introduced into the recycling loop. 

6. Inside the recycling loop there is a methanol synthesis reactor (SYNTHES) and 

next a condenser where the products are separated from the unreacted gases 

(CONDENS2). The unreacted gas stream is split by means of a purge (PURGE) 

into two streams, the purge stream (PURGE) and a stream of recycled products 

(RECYCLE1) which are compressed (RECYCLE1) before being mixed with 

SYNGAS2 
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Fig. 2. Aspen Plus® flowsheet of the CP process 
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Table 2 shows the operation conditions, which have been selected on the basis of 

available bibliographic data, corresponding to the main units of the process, i.e. steam 

reforming [2, 4, 7], partial reforming reactor [2, 4, 29, 30] and methanol synthesis 

reactor [1, 2, 4, 7, 29, 31]. 

 

Table 2. Simulation conditions of the main equipment [15, 18, 20, 21] 

 

Conventional (CP) Process proposed (DR-COG) 

Equipment Conditions Equipment Conditions 

Steam reformer 

[2, 4, 7] 

800 ºC 

30 bar 

Dry reformer 

[15, 18, 20, 21] 

900 ºC 

1 bar 

POX reactor 

[2, 4, 29, 30] 

1000 ºC 

30 bar 

MeOH Synthesis reactor 

[1, 2, 4, 7, 29, 31] 

230 ºC 

75 bar 

MeOH Synthesis reactor 

[1, 2, 4, 7, 29, 31] 

230 ºC 

75 bar 
Splitter 

97 % recycled 

3 % purged 

Purge 
97 % recycled 

3 % purged 
  

 

2.2. DR-COG process model 

 

Figure 3 shows a block diagram of the DR-COG process. In this case there is only one 

reactor, since it is possible to obtain a suitable syngas in one step. There is then a double 

loop: one for the recirculation and the other for recovering unreacted H2 so that the 

values of the R parameter and the H2/CO ratio can be adjusted. 
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Fig. 3. Block diagram of the proposed new process of methanol synthesis from coke oven gas via dry reforming. 
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Fig. 4. Aspen Plus® flowsheet of the DR-COG process. 
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Figure 4 shows the model developed using Aspen Plus®. 

 

This model is composed of: 

 

1. Two initial streams of CO2 (CO2) and coke oven gas (COG), the composition of 

which is shown in Table 1. 

2. A dry reformer where CO2 and COG react to give rise to the synthesis gas 

(SYNGAS1), the composition of which is adjusted using the H2 recovered at the 

end of the process. The synthesis gas obtained is then introduced into the 

recycling loop (SYNGAS2). 

3. The recycling loop is analogous to that of the CP process with the difference that 

in this case the stream purged in the CP process (RECOVERI in this case) enters 

a membrane separation unit (MEMSEP) to allow the recovery of the H2 needed 

to adjust the composition of the syngas. Since membrane separation process is 

not included in the Aspen Plus® software, it was programmed using Fortran and 

included in the model as a custom-defined split component unit [32]. The 

modelling of this unit and the Fortran programme are explained in the 

Supplementary Material. From this unit, two streams are obtained: one rich in 

H2 (H2RECOVE) and the other rich in the rest of the purged gases (PURGE). 

 

Table 2 shows the operation conditions, which have been selected in the light of the 

experimental results previously obtained and available bibliographic data, for each of 

the main units in the process, i.e. the CO2 reformer [15, 18, 20, 21] and methanol 

synthesis reactor [1, 2, 4, 7, 29, 31]. 

 

2.3. Model evaluation 

 

In order to study and compare the processes, four parameters were chosen: 

 

• Energy consumption: the total amount of energy consumed in the process was 

obtained from the model in order to determine how much energy is consumed 

per kg of methanol produced. 
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• CO2 balance: a CO2 balance was established, that included the emissions of the 

products and the purged stream, and the CO2 consumed in the dry reforming in 

the case of the DR-COG. The emissions of CO2 resulting from the consumption 

of energy by the process were included in the balance. 

 

• Carbon and hydrogen yields: in addition to energy consumption and CO2 

emissions, the efficiency of the process in terms of the exploitation of raw 

materials is also important. Since different raw materials are employed, 

efficiency was evaluated on the basis of the use of carbon and hydrogen fed in. 

The carbon and hydrogen yields were calculated as follows (Equations 2 to 5): 

 

CP 

 

Cyield = MeOHprod/(CH4fed + CO2fed + 2·C2H6fed + 3·C3H8fed + 4·C4H10fed) (Eq. 2) 

 

Hyield = 4·MeOHprod/(4·CH4fed + 6·C2H6fed + 8·C3H8fed + 10·C4H10fed + 2·(H2Ofed-

H2Orec))  (Eq. 3) 

 

where MeOHprod are the moles of methanol produced; CH4fed, CO2fed, C2H6fed, C3H8fed 

and C4H10fed are the moles of CH4, CO2, C2H6, C3H8 and C4H10 present in the natural 

gas fed into the process; H2Ofed are the moles of water fed into the reformer; and H2Orec 

are the moles of water recovered from the condenser after partial oxidation. 

 

DR-COG 

 

Cyield = MeOHprod/(CH4fed + 2·C2H6fed + 2·C2H4fed + CO2fed) (Eq. 4) 

 

Hyield = 4·MeOHprod/(2·H2fed + 4·CH4fed + 6·C2H6fed + 4·C2H4fed) (Eq. 5) 

 

where MeOHprod are the moles of methanol produced; H2fed, CH4fed, C2H6fed and C2H4fed 

are the moles of H2, CH4, C2H6 and C2H4 present in the coke oven gas fed into the 

process; and CO2fed are the moles of CO2 fed into the reformer. 
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• Quality of the raw methanol: at the end of the process of methanol synthesis, it 

is necessary to include a purification stage to obtain the required level of purity 

depending on the end use of the methanol [1]. Since the end use of the methanol 

lies outside the scope of this work, the final purification stage has not been 

included. Nevertheless, the methanol purity prior to this stage was evaluated 

given that the lower the level of purity the higher the cost (in energetic and 

economic terms) of the purification stage. 

 

 

3. Results and discussion 

 

3.1. Energy consumption 

 

The energy consumption comparison is based on the amount of methanol produced. In 

the case of the conventional CP process, with 1 kmol/h of natural gas it is possible to 

produce 0.86 kmol/h of methanol, whereas in the DR-COG process 1 kmol/h of coke 

oven gas gives rise to 0.50 kmol/h of methanol. 

 

Table 3 shows the energy consumption of all the units in both processes, with the 

exception of the membrane separation stage. The energy consumption of these units is 

the energy needed to compress the feeding gases. However, in the DR-COG process, 

the feeding gases of the membrane separation unit do not need compression since they 

already leave the previous stage (condensation) at high pressure. This table also 

includes the energy that can be obtained from the combustion of the purged gases, 

which could contribute to a reduction of the overall consumption of energy in the 

process. Since the entire study has been performed on a flow basis, the data in the table 

are expressed in units of power instead of units of energy. As can be seen, not all of the 

units consume energy. Some of them, such as condensers, coolers, methanol synthesis 

reactors and partial oxidation reactor generate energy. This energy can be recovered in 

order to reduce the overall energy consumption of the process. However, the recovery 

will not be total, since it is affected by the yields, which are normally quite low. For this 

reason, three different cases have been considered for evaluating the energy 

consumption of each process: 
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1. Case 1: where only the units which consume energy are taken into account. It is 

clear that, since the simulation has been performed without considering 

efficiencies, at least this amount of energy is going to be consumed, whereas it is 

impossible to determine how much energy can be recovered from the units 

which generate energy. In this case, the energy consumption of the CP process is 

4.92 kW·h/kg of methanol and the consumption of the DR-COG process is 

4.08 kW·h/kg of methanol. 

 

2. Case 2: where the units which consume energy and the energy generated by the 

combustion of the purge are taken into account. The purged gases give rise to a 

highly energetic by-product stream which can be burnt to obtain energy, 

something that is common practice in this kind of plants. In this case the energy 

consumption in both processes is very similar: 2.63 kW·h/kg of methanol in the 

CP process and 2.59 kW·h/kg of methanol in the DR-COG process. 

 

3. Case 3: where the units which consume energy, the energy generated by the 

combustion of the purge and the energy recovered from the reactors are taken 

into account. In this case, the energy recovered from the reactors has been 

included in the balance, since the recovery of energy from the condenser may be 

affected by lower yields than those of the reactors. In this case, the CP process 

energy consumption is 1.07 kW·h/kg of methanol compared to an energy 

consumption of 1.74 kW·h/kg of methanol for DR-COG. 

 

Although the results of the energy consumption differ depending on the assumptions 

used in the evaluation, two main conclusions can be drawn: (i) the DR-COG process 

consumes less energy per kg of methanol produced, (ii) the CP process allows a higher 

energy recovery. Thus the design of the process and the yields achieved will play a key 

role in determining whether the DR-COG is able to compete with the CP process from 

the point of view of energy consumption. 
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Table 3. Power of the different units and purge streams of each process. 

 

CP process DR-COG process 

Unit Power (kW) Unit Power (kW) 

COMP1 5.01 HEATER1 10.66 

EVAP 26.29 DRY-REF 19.01 

COMP2 13.64 COOLER1 -11.31 

REFORMER 39.56 COMP1 13.40 

COMP3 3.52 COMP2 18.24 

POX -19.64 SYNTHES -13.54 

CONDENS1 -63.92 CONDENSE -31.85 

COMP4 3.86 HEATER2 0.14 

HEAT1 14.45 HEATER3 3.55 

SYNTHES -22.50   

CONDENS2 -51.04   

COMP5 26.22   

    

PURGE -61.61 PURGE -23.77 

 

In this study no pre-conditioning processes have been considered, despite the fact that 

they may influence the results of the energy balance. Especially noteworthy is the case 

of the desulfurization stage. Coke oven gas is used in several processes of steelmaking 

plants, and it is mandatory to subject it to several conditioning processes, including 

BTX, NH3 and H2S removal. For this reason, COG surplus is conveniently treated and 

does not need any further pre-treatment prior to its use in the DR-COG process. On the 

other hand, sulphur compounds are present in large amounts in natural gas (up to 5% 

vol.), making a desulphurization step is necessary, which increases the energy 

requirements of the conventional process. It should also be noted that, although it is not 

included in the balances, the production of pure O2 for use in the partial oxidation 
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reactor involves considerable energy requirements that will also affect the energy 

balance again, increasing the energy requirements of the conventional process. 

 

3.2. CO2 balance 

 

Table 4 shows the direct CO2 emissions (i.e., those associated with the different streams 

involved in the carbon dioxide balance of each process). 

 

Table 4. CO2 emissions in the different processes 

 

CP DR-COG 

Source 
Emission 

(kmol/h) 
Source 

Emission 

(kmol/h) 

Methanol 0.817 Methanol 0.491 

Purge 0.243 Purge 0.121 

  CO2 feed - 0.245 

Total 

(mol CO2/mol CH3OH) 
1.23 

Total 

(mol CO2/mol CH3OH) 
0.74 

 

Leaving aside the CO2 emissions resulting from the energy used in the processes, it can 

be seen from the table that, although partial recycling is not able to recover 50 % of the 

CO2 emitted, the DR-COG process is able to prevent 40 % of the CO2 emitted per mol 

of methanol produced. However, energy consumption also produces CO2 emissions that 

need to be considered in this balance. In order to cover as many different scenarios as 

possible, all three cases contemplated in the evaluation of energetic consumption were 

considered. Given that the CO2 emissions per kW·h produced vary according to the 

country in which the plant is located, 4 different references have been used: the USA, 

the People’s Republic of China, the European Union and Spain. Table 5 shows the kg 

CO2 emitted/kW·h produced in these countries during the period 2007-2010 [33]. 
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Table 5. CO2 emissions per kW·h (in kg CO2/kW·h) produced in USA, the People’s 

Republic of China, the European Union and Spain [33]. 

 2007 2008 2009 2010 

USA 0.560 0.545 0.517 0.522 

China 0.822 0.803 0.800 0.766 

EU 0.480 0.458 0.439 0.429 

Spain 0.387 0.327 0.297 0.238 

 

 

To perform these calculations only the most recent data available (from 2010) have 

been employed. Figure 5 shows the final emissions of CO2 per mol of methanol 

produced in each process for the different scenarios previously defined. 

 

As can be seen, DR-COG gives rise to considerably lower CO2 emissions, even when 

the emissions due to energy consumption are included. The differences vary from 6 % 

in the least favourable case (Case 3 in China) to 31 % in the most favourable case (Case 

1 in Spain). Thus, the environmental benefit obtained with DR-COG depends to a large 

extent on the location of the plant. 

 

As was mentioned in Section 3.1, pre-treatments and the production of O2 for the partial 

oxidation reaction can affect the energy balance and, consequently, CO2 emissions. The 

need for pre-treatment and generation of O2 in the case of the CP process will give rise 

to higher CO2 emissions, increasing the gap between the emissions of CO2 produced in 

the COG-based process and the natural gas based process. 
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Fig. 5. CO2 emissions of the CP and DR-COG processes from the streams and energy consumption. 
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3.3. Carbon and hydrogen yields 

 

Besides energy consumption and CO2 emissions, another key issue in any industrial 

process is the need to ensure an efficient exploitation of the raw materials employed. 

Since in the processes we are comparing the raw materials are different, the most 

practical way to compare them from the point of view of the raw materials exploitation 

is to evaluate the carbon and hydrogen yields (Equations 2 to 5), which will provide an 

idea of the efficiency with which the raw materials are being exploited. Table 6 shows 

the carbon and hydrogen yields achieved in each process. 

 

Table 6. Carbon and hydrogen yields of the CP and DR-COG processes 

 

 CP DR-COG 

Carbon yield (%) 75.8 79.7 

Hydrogen yield (%) 73.2 83.9 

 

Although both processes show high levels of exploitation of the raw materials, the DR-

COG process is more efficient than the CP process. Both, the carbon and hydrogen 

yields are higher in the case of the DR-COG process. Especially noteworthy is the H2 

yield, which is more than 10 % higher in the case of DR-COG. Given that methanol is 

expected to play an important role as H2 carrier in the future, this higher yield may be 

crucial in deciding in favour of the industrial implantation of methanol production from 

COG using CO2 reforming to generate the syngas. 

 

3.4. Methanol quality 

 

Finally, the purity of the methanol obtained at the end of the process might necessitate 

the inclusion of additional purification units (e.g., distillation columns) [1, 4]. 

Depending on its subsequent use, methanol must be able to satisfy different purity 

requirements, e.g. 99.85 wt % if it is to be used in chemical synthesis or 97-98 wt % if it 

is to be blended with gasoline as fuel [1]. 
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In the case of the CP process, simulation data show that raw methanol purity is 96.8 wt 

%, whereas in the case of the DR-COG, the raw methanol purity is 98.4 wt %. 

Therefore, methanol produced by means of the DR-COG process can be directly used as 

fuel in blends with gasoline, whereas additional purification is required for other uses. 

In the case of the CP process, additional purification stages are necessary, which will 

entail additional energetic and economic costs. 

 

4. Conclusions 

 

A new process for producing methanol from coke oven gas, using CO2 reforming to 

produce syngas, has been proposed and compared with the conventional process from 

different points of view: that of energetic performance, CO2 emissions, raw materials 

exploitation and methanol quality. 

 

In the analysis of energy consumption, it was found that the CP process has higher 

energy requirements than the DR-COG process. However, the CP process allows a 

higher energy recovery, which might result in lower energy consumption per kg of 

methanol produced than in the case of DR-COG. 

 

The CO2 balance revealed that the DR-COG process is more sustainable than the CP 

process. With respect to direct emissions, although DR-COG is not able to achieve the 

50 % of CO2 recycling, it avoids 40 % of the CO2 emitted in the conventional CP 

process. However, the energy consumed produces substantial emissions that 

significantly affect the global balance of CO2, which depends to a large extent on the 

geographic location of the plant. 

 

From the viewpoint of raw materials exploitation, both processes show a high level of 

exploitation, though DR-COG is the more efficient. Especially interesting are the results 

of the H2 yield, which is more than 10 % higher in the case of DR-COG (83.9 % as 

against 73.2 % with the CP process). 

 

The raw methanol obtained with the DR-COG process also fulfils the purity 

requirements for use as a fuel without the need for additional purification stages though 

a higher level of purification will be required for other uses. In the case of the CP 
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process, the level of purity achieved is lower, and further purification will be required in 

all cases, which will entail higher costs. 

 

To sum up, the novel DR-COG process has been shown to be superior to the 

conventional CP process from the perspective of environment, raw materials 

exploitation and purification costs. From the energy point of view, an appropriate 

energy integration strategy will play a decisive role in turning the scales in favour of 

one process or the other. DR-COG requires lower energy inputs, but the possibility of 

recovering energy is considerably higher in the CP process, which could result in a 

reduction in energy consumption to a level below that achieved by DR-COG. 
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