The transcription factors Snail1 and Snail2 repress vitamin D receptor during colon cancer progression

María Jesús Larriba a,*, Félix Bonilla b, Alberto Muñoz a

a Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier 4, 28029 Madrid, Spain

b Hospital Universitario Puerta de Hierro Majadahonda, Joaquín Rodrigo 2, 28222 Majadahonda, Spain

* Corresponding author. Tel.: +34-91-5854452; fax: +34-91-5854401.
E-mail address: mjlarriba@iib.uam.es (M.J. Larriba).

Abstract

Vitamin D receptor (VDR) mediates the antitumoral action of the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). However, VDR expression is lost during colon cancer progression, possibly causing unresponsiveness to 1,25(OH)2D3. Although several mechanisms responsible for resistance to 1,25(OH)2D3 action in different types of cancer had been reported, none explained the loss of VDR expression.

We have found that the transcription factors Snail1 and Snail2, known as inducers of epithelial-to-mesenchymal transition (EMT), inhibit VDR expression and block 1,25(OH)2D3 action in colon cancer cells. Snail1 and Snail2 have an additive repressing effect on VDR gene promoter. These effects are specific to the Snail family, as other transcription factors that function as EMT inducers do not inhibit VDR expression in colon cancer cells. Moreover, we also found that the RNA expression of SNAI1 and SNAI2 are upregulated in human colorectal tumors and inversely correlate with that of VDR. Our results suggest that high levels of SNAI1 and SNAI2 are a probable cause of VDR downregulation and 1,25(OH)2D3 unresponsiveness in colon cancer. In addition, they may contribute to the improvement of protocols for the clinical use of vitamin D compounds, as they indicate that advanced colon cancer patients overexpressing SNAI1 and SNAI2 are not suitable candidates for this therapy.

Keywords: Snail1; Snail2; vitamin D receptor; 1α,25-dihydroxyvitamin D3; colon cancer

Abbreviations: EMT, epithelial-to-mesenchymal transition; VDR, vitamin D receptor; 1,25(OH)2D3, 1α,25-dihydroxyvitamin D3
1. Introduction

1α,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃) and a number of less calcemic analogs are in clinical trials as anticancer agents against colon cancer and other neoplasias based on their antiproliferative, prodifferentiation, pro-apoptotic and antimetastatic activity in cultured cells and experimental animal models [1,2]. We have shown that 1,25(OH)₂D₃ inhibits proliferation and promotes differentiation of human colon cancer cells via the induction of several genes such the invasion suppressor CDH1/E-cadherin and the candidate tumor suppressor CST5/cystatin D, and by the antagonism of the Wnt/β-catenin pathway that is aberrantly activated in most colon tumors [3-5].

Although preclinical studies are promising, initial clinical trials in colon cancer have shown acceptable toxicity but low activity of vitamin D compounds [1]. As is usual in the development of new antitumoral drugs, patients enrolled in these trials had not responded to any other therapy and they were unselected in terms of putative responsiveness to 1,25(OH)₂D₃. A better understanding of the physiology of the vitamin D system and the identification of the mechanisms responsible for resistance to 1,25(OH)₂D₃ may help us to design future clinical trials more rationally.

2. Vitamin D receptor is downregulated during colon cancer progression

Most, if not all, 1,25(OH)₂D₃ effects are mediated by the vitamin D receptor (VDR), a transcription factor of the nuclear receptor superfamily. Thus, cellular VDR expression is required for a clinical response to vitamin D compounds. VDR is expressed in normal colon epithelial cells and also in some colon cancer cells. Remarkably, elevated VDR expression is associated with high differentiation, absence of node involvement and favourable prognosis in colorectal cancer [6,7]. However, VDR expression is downregulated during colon cancer progression [8-10] probably causing 1,25(OH)₂D₃ unresponsiveness.

Although VDR downregulation in colon cancer was first described more than a decade ago, its molecular basis had remained elusive. Deletions, rearrangements or point mutations affecting the coding region of the VDR gene had not been found in cancer. Neither had epigenetic silencing or transcriptional repression mechanisms been described. Several polymorphisms had been described in the VDR gene, some of which have been associated with increased risk of breast, prostate and colon cancer. However, their consequences for VDR expression or functionality, and therefore their implication in the development of 1,25(OH)₂D₃ resistance remain to be established [11,12].
3. The transcription factors Snail1 and Snail2 repress VDR expression in colon cancer cells

A novel mechanism responsible for VDR downregulation in colon cancer has emerged in recent years. Our group has revealed that the transcription factors Snail1 and Snail2 (also known as Snail and Slug) encoded by Snai1 and Snai2 genes, respectively, bind to the promoter region of exon 1a of human VDR gene and repress its expression. The repressive effects of Snail1 and Snail2 on VDR gene promoter are quantitatively similar and are mediated by three E-boxes (CAGGTG/CACCTG, reported binding sites for Snail factors) present in the first 400 nucleotides of human VDR promoter. In addition, we found that both transcription factors cooperate to repress VDR promoter, showing an additive effect [13,14].

We also found that the overexpression (by means of retrovirus-mediated gene transfer) of Snail1 or Snail2 in human colon cancer cells decreases VDR RNA and protein expression and strongly inhibits the regulation of 1,25(OH)₂D₃ target genes such as CDH1/E-cadherin, p21CIP1 and CYP24A1/1,25(OH)₂D₃-24-hydroxylase. Accordingly, Snail transcription factors block the epithelial differentiation induced by 1,25(OH)₂D₃ in colon cancer cells (Fig. 1) and also the inhibitory effect of 1,25(OH)₂D₃ on Wnt/β-catenin signaling pathway [13-15].

4. Relevance of VDR downregulation for the epithelial-to-mesenchymal transition induced by Snail1 and Snail2

Snail1 and Snail2 belong to the Snail family of zinc-finger transcription factors and modulate processes that imply cell movement during embryonic development and tumor progression. Cellular overexpression of Snail1 or Snail2 induces the epithelial-to-mesenchymal transition (EMT), which entails the loss of epithelial characteristics and the acquisition of a mesenchymal fibroblastic phenotype [16,17]. Therefore, the expression of Snail1 or Snail2 in carcinoma cells promotes their migratory and invasive properties favoring tumor invasion and metastasis. Accordingly, the aberrant overexpression of SNAIL1 and/or SNAIL2 has been observed in different types of carcinomas and is frequently associated with invasiveness, metastasis and poor prognosis [16,17].

EMT induction is not an exclusive effect of Snail factors. Other transcriptional regulators such as E47, Twist1 and E2-2 (members of the basic-helix-loop-helix family), and Zeb1 and Zeb2 (of the Zeb family) also promote this process. EMT is mainly the result of transcriptional changes induced by these factors such as the repression of CDH1/E-cadherin, OCLN/occludin, several claudins and other epithelial genes and the induction of mesenchymal genes such as FN1/fibronectin, VIM/vimentin, LEF1 and numerous matrix metalloproteases [16,17].
As ligand-activated VDR induces epithelial differentiation and the expression of CDH1/E-cadherin and other intercellular adhesion genes, VDR repression by Snail1 and Snail2 guarantees the induction of EMT even in the presence of 1,25(OH)2D3. This effect seems to be specific to the Snail family of transcription factors, since other EMT inducers such as Zeb1, Zeb2, E47 and Twist1 do not inhibit human VDR gene promoter [14].

5. Snail1 and Snail2 are responsible for VDR downregulation in colon cancer

To confirm the importance of Snail transcription factors in VDR downregulation during colon cancer progression, we analyzed SNAI1, SNAI2 and VDR RNA expression in normal and tumoral biopsies from approximately one hundred colon cancer patients. We found that SNAI1 RNA was not present in any normal colonic tissue but it was expressed in 60-70% (depending on the study) of colon tumors. VDR expression in tumors was reduced with respect to that detected in the corresponding normal tissue in a similar percentage of tumors. In contrast, basal SNAI2 RNA expression was detected in most normal tissues and was also upregulated in 60% of colon tumors. Importantly, we observed that the overexpression of either SNAI1 or SNAI2 in individual tumors correlates with VDR downregulation [13,14,18,19]. In addition, we found that SNAI1 and SNAI2 RNA expression correlate directly and, therefore, a high percentage of tumors (42%) express both transcription factors. Remarkably, VDR downregulation was stronger in the tumors that express both SNAI1 and SNAI2 than in those that express only one of these genes. This is consistent with the additive effect exerted by Snail1 and Snail2 on VDR gene promoter in cultured human colon cancer cells [14]. Therefore, it seems that Snail1 and Snail2 collaborate in the repression of VDR gene in human colon cancer.

Based on the hypothesis that tumors cells can influence adjacent normal cells and that some genetic alterations occur before the development of histologically abnormal tissue, we have recently expanded our studies to analyze the effect of tumoral SNAI1 overexpression on the levels of VDR in the histologically normal colonic tissue adjacent to the tumor. We have found that tumoral SNAI1 overexpression correlates with VDR downregulation both in the tumor and in the normal adjacent tissue, indicating that SNAIL1 induce the release of paracrine signals from the tumoral cells that affect adjacent normal cells [20]. This could extend the unresponsiveness to vitamin D compounds to the normal tissue surrounding the tumor.

The repression of VDR by Snail transcription factors is not exclusive to colon cancer, as it has also been observed in human breast cancer cells (ref. 21 and unpublished results). Also, Snail1 inhibits VDR expression in mouse osteoblasts [22]. As SNAIL1 and/or SNAIL2 upregulation has been reported in several types of
cancer [16], this mechanism could explain the resistance to 1,25(OH)₂D₃ action due to the VDR repression found in other types of tumors [10].

6. Conclusion

Our studies indicate that the transcription factors Snail1 and Snail2 are repressors of VDR and thus of 1,25(OH)₂D₃ action in colon cancer cells (Fig. 2). Data from colon cancer biopsies indicate that SNAIL1 and SNAIL2 may be responsible for VDR downregulation during colon cancer progression.

Colon cancer patients with high levels of SNAIL1 and SNAIL2 have lower VDR expression and, therefore, will be resistant to a therapy with vitamin D compounds. Thus, tumor expression of SNAIL1 and SNAIL2 may be used as an indicator of patient adequacy to this treatment. Several groups have detected tumor-associated RNA in the serum/plasma of cancer patients [23]. If tumor overexpression of SNAI1 and SNAI2 could be monitored by RT-PCR analysis of the RNA present in the serum/plasma, it would constitute a non-invasive method to select suitable patients for therapy with vitamin D compounds.

Acknowledgements

We thank Toffa Evans and Robin Rycroft for their help with the English manuscript. The work in authors’ laboratories is supported by the Ministerio de Ciencia e Innovación of Spain (SAF2007-60341, ISCIII-RETIC RD06/0020/0009 and RD06/0020/0020), Comunidad de Madrid (S-GEN-0266/2006) and European Union (MRTN-CT-2005-019496, NucSys).

References

Figure Captions

Fig. 1. The overexpression of Snail1 or Snail2 blocks the acquisition of the epithelial differentiated phenotype induced by 1,25(OH)_2D_3 in SW480-ADH human colon cancer cells. Representative phase-contrast images (upper panels) and confocal laser immunofluorescence images showing β-tubulin staining (lower panels) of Mock, Snail1- and Snail2-overexpressing SW480-ADH cells treated with 100 nM 1,25(OH)_2D_3 or vehicle for 48 h. Scale bar, 25 μm (upper panels) and 10 μm (lower panels).

Fig. 2. Scheme showing the repression of VDR and thereby of 1,25(OH)_2D_3 action during the EMT induced by Snail1 or Snail2. Normal colon epithelial cells express VDR and are responsive to 1,25(OH)_2D_3 target genes induction and antitumoral activity. Snail1 and/or Snail2 overexpression induce EMT through the regulation of several target genes. Among them, Snail factors bind to three E-boxes present in human VDR gene promoter and inhibit its expression, thus blocking 1,25(OH)_2D_3 action.
EPITHELIAL CELL

- VDR
- human VDR gene
- 1,25(OH)₂D₃
- CDH1/E-cadherin
- CST5/cystatin D
- p21CIP1
- 1,25(OH)₂D₃ target genes
- 1,25(OH)₂D₃ antitumor activity

MESENCHYMAL CELL

- Snail1
- Snail2
- EMT
- human VDR gene
- 1,25(OH)₂D₃ target genes
- Blockade of 1,25(OH)₂D₃ action