Characterization and in vitro properties of potentially probiotic

Bifidobacterium strains isolated from breast milk

Running title: Potentially probiotic bifidobacteria from breast-milk

Silvia Arboleya¹, Patricia Ruas-Madiedo¹, Abelardo Margolles¹, Gonzalo Solís², Seppo Salminen³, Clara G. de los Reyes-Gavilán¹, and Miguel Gueimonde¹,³*

¹. Departamento de Microbiología y Bioquímica de Productos Lácteos. Instituto de Productos Lácteos de Asturias (IPLA). Consejo Superior de Investigaciones Científicas (CSIC). 33300 Villaviciosa, Asturias, Spain.

². Servicio de Pediatría. Hospital de Cabueñes, SESPA. 33203 Gijón, Asturias, Spain.

*Correspondence to: Miguel Gueimonde. Departamento de Microbiología y Bioquímica de Productos Lácteos. Instituto de Productos Lácteos de Asturias (IPLA-CSIC). Ctra. Infiesto s/n, 33300, Villaviciosa, Asturias, Spain. E-mail: mgueimonde@ipla.csic.es.

Tel. +34 985892131 Fax. +34 985892233.
Abstract

Most of the current commercial probiotic strains have not been selected for specific applications, but rather on the basis of their technological potential for use in diverse applications. Therefore, by selecting them from appropriate sources, depending on the target population, it is likely that better performing strains may be identified. Few strains have been specifically selected for human neonates, where the applications of probiotics may have a great positive impact. Breast-milk constitutes an interesting source of potentially probiotic bifidobacteria for inclusion in infant formulas and foods targeted to both pre-term and full-term infants. In this study six Bifidobacterium strains isolated from breast-milk were phenotypically and genotypically characterised according to international guidelines for probiotics. In addition, different in vitro tests were used to assess the safety and probiotic potential of the strains. Although clinical data would be needed before drawing any conclusion on the probiotic properties of the strains, our results indicate that some of them may have probiotic potential for their inclusion in products targeting infants.

Keywords: Bifidobacterium, breast-milk, infant mucus, probiotics.
Probiotics are defined as *live microorganisms which when administered in adequate amounts confer a benefit on the host* (FAO/WHO, 2006). Different microorganisms are currently used as human probiotics; among them *Lactobacillus* and *Bifidobacterium* constitute the most frequently used genera. Most of the current commercial probiotic strains have not been selected for specific applications but rather selected on the basis of their technological potential. Nevertheless, it is well known that probiotic effects are strain specific, therefore it is very likely that better performing strains may be selected when a rational, use-specific selection process is followed. The selection of strains from appropriate sources depending on the target population, such as neonates, children, pregnant women or the elderly, whose microbiota may differ from that of healthy adults (O’Toole and Claesson, 2010), may constitute a promising approach. In this regard most of the strains currently available have targeted the adult population but few strains have been selected for other groups of age, such as human neonates, where the applications of probiotics may have a great positive impact (Salminen et al., 2009).

Microbial colonization of the neonate gut is a stepwise process that provides important signals for the maturation of the immune system and the development of the intestine (Cebra, 1999; Stappenbeck et al., 2002), thus greatly contributing to the establishment and maintenance of the gut barrier (Penders et al., 2006; Rakoff-Nahoum et al., 2004). Aberrancies in this process can predispose to disease in later life (Kalliomaki et al., 2001, 2008). Thus, initial microbial colonization provides an important starting point for the later
homeostasis and well-being of the individual. One of the factors having a strong influence in this process is the feeding habits of the infant (Harmsen et al., 2000), with breast-feeding constituting the golden standard for infant nutrition. In fact, the protective effect of breast-feeding on allergies, diarrhoea or respiratory infections has been shown in different studies (Björksten et al., 2001; Majamaa et al., 1995). One of the main differences observed between breast and formula-fed infants is the composition of the gut microbiota, with bifidobacteria constituting the most predominant microorganisms in the former group. Increasing bifidobacterial levels is often considered a target in the development of infant formulas (Agget et al., 2003). Traditionally, the higher level of bifidobacteria observed in breast-fed infants has been attributed to the presence of bifidogenic oligosaccharides in breast-milk (Aggett et al., 2003). Also, more recently the presence of bifidobacteria in breast-milk has been reported (Gueimonde et al., 2007a; Martín et al., 2009; Solis et al., 2010), which may also play a role in the dominance of this microorganism observed in breast-fed infants. This fact has directed attention towards the supplementation of infant formulas. However, most of the strains currently used were not isolated from the natural source but from the commercially available strains. The inclusion of breast-milk bifidobacteria in formulas targeted at both pre-term and full-term infants constitutes a very promising area for the development of new products aiming at the establishment of a healthy gut microbiota and a proper intestinal barrier resembling that of breast-fed infants.

In a previous study (Solis et al., 2010) we isolated three *Bifidobacterium longum* and three *Bifidobacterium breve* strains from breast-milk. Now we aim to identify these isolates at strain level by using different phenotypic and
genotypic methods as well as to characterise them by using different *in vitro* tests following the FAO/WHO guideline recommendations (2006).

Material and Methods

Strains and growth conditions

Six *Bifidobacterium* strains, *B. longum* IPLA 20001, 20002 and 20003 and *B. breve* IPLA 20004, 20005 and 20006, previously isolated from breast-milk of five healthy mothers (Solis et al., 2010) were included in this study. *B. longum* strains IPLA 20002 and 20003 were isolated from breast-milk of the same women at different time points (10 days and 1 month postpartum, respectively). The other four strains were isolated from different women at different times; *B. longum* IPLA 20001 at 1 day postpartum, *B. breve* strains IPLA 20004 and 20005 at 1 month and *B. breve* IPLA 20006 at 3 months postpartum. The strains were routinely grown in MRS medium (Difco, Becton-Dickinson and Company, Le Pont de Claix, France) supplemented with a 0.25% L-cysteine (Sigma Chemical Co, St. Louis, MO, USA) (MRSc) and using anaerobic incubation conditions (10% H₂, 10% CO₂ and 80% N₂) in a chamber Mac 500 (Don Whitley Scientific, West Yorkshire, UK) at 37°C. The pathogens used in the different experiments were *Clostridium difficile* DSMZ 12056, *Salmonella enterica* subsp. *enterica* serovar. Typhimurium LMG 15860, *Cronobacter sakazakii* LMG 5740 (formerly *Enterobacter sakazakii* LMG 5740), *Shigella sonnei* LMG 10473 and *Staphylococcus aureus* CECT 435. These pathogenic microorganisms were selected due to their role as pathogens for humans and their presence in the human gut. For the experiments of *in vitro* growth
inhibition, the strains of *Shigella*, *Salmonella* and *Cronobacter* were grown in Nutrient Agar plates, whilst for *Clostridium* and *Staphylococcus* the agar media used were Brain Heart Infusion (BHI) (Oxoid Ltd., Basingstoke, Hamshire, England) and Trypticase Soy Broth (TSB) (Oxoid), respectively. *Clostridium difficile* was grown at 37°C under anaerobic conditions whereas the other pathogens were grown in aerobiosis at 32°C for *Cronobacter* and at 37°C for the remaining microorganisms.

For adhesion to mucus experiments, all the bacteria were grown in Gifu Anaerobic Medium (GAM) broth (Nissui Pharmaceutical CO., Tokio, Japan) and incubated at 37°C under anaerobic conditions. In adhesion and competitive exclusion assays, bacteria were grown for 18 h, harvested, and then washed twice with phosphate-buffered saline (PBS) buffer. Microorganisms were metabolically labelled by the addition of 10 μL/mL tritiated thymidine (5-3H-thymidine 1.0 mCi/mL, Amersham Biosciences, UK) to the media.

The widely used probiotic *Bifidobacterium animalis* subsp. *lactis* Bb12 was included in the tolerance to acid and bile as well as adhesion assays for comparison purposes.

Species identity of bifidobacterial strains by partial sequence analysis of the 16S rRNA gene.

The strains were identified at species level by partial sequence analysis of the 16S rRNA gene. DNA was extracted from 1 mL of culture by using the GenElute™ Bacterial Genomic DNA Kit (Sigma) following the manufacturer’s instructions. 16S rDNA was amplified using *Bifidobacterium* specific primers Bif164 and Bif662 as indicated elsewhere (Ruas-Madiedo et al., 2005).
Amplified PCR products were purified using the GenElute™ PCR clean-up Kit (Sigma) and sequencing of the amplicons was done at Secugen SL (Madrid, Spain) in an automated sequencer ABI Prism (Applied Biosystems, Foster City, CA, USA). The sequences obtained were compared with those held at the databases by using BLAST (Altschul et al., 1997).

Genetic typing of strains

Randomly amplified polymorphic DNA (RAPD)-PCR. DNA extracts were employed for breast-milk bifidobacteria typing by RAPD-PCR using previously described conditions and the primer 5’-TGCCGAGCTG-3’ (Mättö et al., 2004) (Sigma Genosys). PCR reactions were run in a UnoCycler VWR-AD™ (VWR Internacional Eurolab S.L., Spain) thermocycler. Amplification products were subjected to electrophoresis in 1% agarose (Sigma) and gels were stained and visualized by ethidium bromide staining.

DNA restriction patterns by pulsed-field gel electrophoresis (PFGE). Intact high molecular weight genomic DNA was isolated and digested in agarose plugs. Cells were grown to an OD$_{600}$ of 1.5, harvested by centrifugation, washed three times in buffer TE pH 8.0 (10 mM Tris-HCl, 1 mM EDTA pH 8.0) and resuspended in 500 µL of the same solution. To form agarose plugs, the cell suspension was heated to 50ºC, mixed with an equal volume of 2% PFGE agarose (Bio-Rad Laboratories, Richmond, Ca., USA) in 0.5X TBE buffer and added to moulds. Plugs were incubated for 24 h at 37ºC in 1 mL of lysis buffer (per plug) containing 50 mM EDTA pH 8.0, 0.5 mg/mL N-laurylsarcosine, 5 mg/mL Brij58, 2 mg/mL deoxicholate, 2 mg/mL lysozyme, 15 U/mL mutanolysin and 2 µg/mL RNase and then deproteinized by incubation at 50ºC for 24 h in a
solution containing 0.5 M EDTA pH 8.0, 40 mM Tris-HCl pH 8.0, 1% w/v SDS and 1.5 mg/mL proteinase K (all reagents were purchased from Sigma). They were finally washed for 1 h in TE and incubated for 24 h at 37ºC in TE pH 8.0 containing 0.29 mg/mL pefabloc SC (Merck, Darmstadt, Germany).

Thin slices of agarose plugs were cut and washed six times for 30 min at room temperature in TE buffer. DNA within the plugs was digested with 20 U of the restriction enzyme XbaI. Electrophoresis was carried out at 6 V/cm and 14ºC using a CHEF DRII apparatus (Bio-Rad) in 1% PFGE certified agarose (Bio-Rad) gels with 0.5 x TBE buffer. Pulse times ranged from 2 to 25 s during the 22 h electrophoresis. A DNA pulse marker (LowRange PFG Marker N0350S, New England Biolabs, Ipswich, MA, USA) was used as the molecular size standard. Gels were stained and visualized by ethidium bromide staining.

Characterization of strains by enzymatic and carbohydrate fermentation profiles

Fermentation profiles of strains were obtained in API 50 CH strips (Bio-Mérieux, Marcy l’Etoile, France) following the manufacturer’s instructions. Enzymatic activity profiles were determined using API Zym strips (Bio-Mérieux).

Antibiotic resistance profiles

The minimal inhibitory concentration (MIC) of the strains towards gentamicin, kanamycin, streptomycin, neomycin, tetracycline, erythromycin, clindamycin and chloramphenicol was determined by the microdilution method using the microtiter VetMIC Lact-1 panel for susceptibility testing of bacteria (Statens Veterinarmedicinska Anstalt, Uppsala, Sweden). The Standard Operating Procedure (SOP) proposed by the EU funded ACE-ART project, and
currently being evaluated for approval as an international standard by the
ISO/IDF working group (ISO/DIS 10932|IDF 223), was followed. In brief, strains
were grown in MRSc agar, colonies were resuspended in LSM medium (90% Isosensitest medium [Oxoid] + 10% MRS medium [Difco]) supplemented with
0.3 g/L-cysteine to OD_{600nm} 0.2 and the suspension was diluted 1000 times in
the same medium. 100 μL were then added to each microtiter plate well and
incubated at 37ºC under anaerobic conditions for 48 hours. Growth within each
well was determined visually after incubation.

Tolerance to acid and bile

Five mL bacterial cultures were grown overnight at 37ºC under anaerobic
conditions. Then, cells were harvested, washed twice with 0.85% NaCl and
resuspended in 500 μL of the same solution. 100 μL of bacterial suspensions
were added to 900 μL of simulated gastric juice (125 mM NaCl, 7 mM KCl, 45
mM NaHCO₃, and 3 g/L pepsin [Sigma], adjusted to pH 2.5 with HCl) or bile
juice (45 mM NaCl, 1 g/L pancreatin [Sigma] and 3 g/L Oxgall [Sigma], adjusted
to pH 8.0 with NaOH). Suspensions were then incubated in anaerobiosis for 90
or 180 min with acid and bile juices, respectively. Plate counts in MRSc were
done at time 0 and after incubation and results represented as % of survival.

In vitro inhibition of pathogen growth

The ability of the supernatants from the *Bifidobacterium* strains to inhibit
the growth of pathogenic microorganisms was determined using the agar
diffusion tests by measuring the diameter of the inhibition zones.
Five mL samples were taken from growing cultures of the bifidobacterial strains at two different growth phases; exponential (OD between 1 and 2) and stationary (OD between 4 and 5, depending on the strain). After centrifugation, supernatants were divided in two aliquots, one was adjusted to pH 6.2 and the other one left unadjusted. Supernatants were then stored at -20ºC until use in the agar diffusion tests.

Overnight (16 h) pathogen cultures were used to inoculate (1% v/v) agar media, 5 mm wells were cut out of the agar and 25 µL of each supernatant were added to the well. Tetracycline (100 µg/mL) was used as a positive control. Plates were then incubated for 24 h under appropriate conditions for each specific pathogen. After incubation the diameter of the inhibition zone, if any, was measured. Two independent replicates were conducted for each experiment.

Adhesion to HT29 cell line

The adhesion capability of the strains was assessed with the epithelial intestinal cell line HT29 (ECACC No. 91072201), derived from human colon adenocarcinoma, purchased from the European Collection of Cell Cultures (Salisbury, UK). The cell line was maintained in McCoy’s medium supplemented with 10% (v/v) heat-inactivated bovine foetal serum and a mixture of antibiotics to give a final concentration of 50 µg/mL penicillin, 50 µg/mL streptomycin, 50 µg/mL gentamicin, and 1.25 µg/mL amphotericin B. All media and supplements were obtained from Sigma. The incubations took place at 37ºC, 5% CO₂ in an SL Water-jacketed CO₂ Incubator (Sheldon Mfg. Inc., Cornelius, Oregon, USA). Culture media were changed every two days and the cell line was trypsinized
with 0.25% trypsin-EDTA solution (Sigma) following standard procedures. For experiments, 10^6 cells/mL were seeded in 24-well plates and incubated to confluence (reaching about 10^7 cells/mL) during 13±1 days.

Bacterial cultures were harvested by centrifugation, washed twice with Dulbecco’s PBS buffer (Sigma) and resuspended in McCoy’s medium without antibiotics at a concentration of about 10^8 cfu/mL. HT29 monolayers were washed twice with Dubelco’s PBS to remove the antibiotics before adding the bacterial suspensions. Plates were incubated for 1 h at 37°C, 5% CO$_2$ in a Heracell® 240 incubator (Thermo Electron LDD GmbH, Langenselbold, Germany). After the incubation period, supernatants were discarded and wells were softly washed three times with Dulbecco’s PBS buffer to remove the non-attached bacteria. Afterwards, the monolayers were trypsinized and bacterial counts were carried out in agar-MRSc to determine the number of adhered bacteria. Results were expressed as the percentage of bacteria adhered with respect to the amount of bacteria added (% cfu bacteria adhered / cfu bacteria added). Experiments were carried out in replicate (using two HT29 plates) and in each plate the strains were also tested in duplicate.

Adhesion to human infant mucus

Human intestinal mucus was obtained from 2 and 6-month-old infant faeces as described earlier (Kirjavainen et al., 1998). Mucus was dissolved (0.5 mg protein/mL) in HEPES-Hanks buffer (HH; 10 mM HEPES, pH 7.4). Radiolabeled bacteria optical density (OD$_{600}$ nm) was adjusted to 0.25 ± 0.05 to standardize the bacterial concentration (10^8 bacteria/mL). The adhesion assessment was carried out as previously described (Gueimonde et al., 2005).
Adhesion was expressed as the percentage of radioactivity recovered after adhesion relative to the radioactivity of the bacterial suspension added to the immobilized mucus. Adhesion was determined in three independent experiments, and each assay was performed in triplicate to calculate intra-assay variation.

Inhibition of pathogen adhesion to infant mucus

To test the ability of the bifidobacteria to inhibit the adhesion of pathogens, the procedure described by Collado et al. (2005) was used. In brief, unlabeled bifidobacteria (10^8 bacteria/mL) or HH buffer (control) were added to the wells and incubated for 1 h at 37°C and wells were washed twice with HH buffer (to remove unattached bifidobacteria in the corresponding wells). Radiolabeled pathogens (10^8 bacteria/mL) were then added to the wells and incubated at 37°C for 1 h. The wells were then washed and bound bacteria were recovered after lysis. Radioactivity was measured by liquid scintillation. The percentage of adhesion inhibition was calculated as the change in the adhesion of the pathogen in the presence of the different bifidobacterial strains with regard to that in the control (set arbitrarily to value zero). Inhibition was determined in three independent experiments and each assay was performed in duplicate.

Statistical analysis

Data were statistically analysed using the SPSS 11.0 software for Windows (SPSS Inc., Chicago, IL, USA). One-way ANOVA tests were performed to determine differences among strains. When appropriate the post-hoc mean comparison LSD test was additionally used.
Results

Identification at species level

The partial 16S rDNA sequences obtained from the amplification products confirmed the identity of the strains previously determined by using another primer pair (Solis et al., 2010). The sequences obtained are held at Genbank database under deposit numbers HM856586 to HM866591.

Genotypic and phenotypic characterisation of the strains

The six bifidobacterial strains were genotyped by using two different methods. The RAPD profiles obtained allowed us to distinguish the strain *B. breve* IPLA 20006 from the other two *B. breve* strains, which showed identical profiles, and *B. longum* IPLA 20001 from the other two *B. longum* strains, which also showed the same RAPD profile (Figure 1a). PFGE macro-restriction showed identical profiles for the strains *B. breve* IPLA 20004 and IPLA 20005, these being different from that of *B. breve* IPLA 20006 (Figure 1b), and allowed distinguishing among the three *B. longum* strains, including those indistinguishable by RAPD (IPLA 20002 and IPLA 20003). Overall, RAPD produced four different profiles, whilst PFGE showed a higher discriminatory power establishing five different profiles.

With regard to the phenotypic characterisation, none of the six *Bifidobacterium* strains fermented glycerol, erythiol, D-arabinose, L-xylose, D-adonitol, methyl-βD-xylopyranoside, L-sorbose, L-rhamnose, dulcitol, inositol, methyl-αD-mannopyranoside, methyl-αD-glucopyranoside, N-acetyl-glucosamine, amygdalin, arbutin, D-cellulbiose, D-trehalose, inulin, starch,
xylitol, D-lyxose, D-fucose, L-fucose, D-arabitol, L-arabitol, gluconate, 2-
ketogluconate or 5-ketogluconate. All the strains fermented D-ribose, D-
galactose, D-glucose, D-maltose, D-lactose, D-mellibiose, D-saccharose and D-
raffinose. In addition, only the three *B. longum* strains were able to ferment L-
arabinose and D-xylose whilst aesculin was only fermented by the *B. breve*
strains. The results obtained for those sugars showing variability within each
species are shown in Table 1. Sugar fermentation profiles allowed
distinguishing between two *B. breve* strains (IPLA 20004 and IPLA 2005), which
showed identical RAPD and PFGE profiles, and corroborates previous reports
indicating a higher discriminatory power for the combination of phenotypic and
genotypic techniques than for the genotypic methods alone (Gueimonde et al.,
2004).

Analysis of enzymatic activity profiles of the six *Bifidobacterium* isolates
showed that α-fucosidase, as well as the harmful β-glucuronidase activity, were
not present in any strain, whilst all microorganisms presented high levels (≥ 30
nanomoles, results not shown) of leucine arylamidase, β-galactosidase, α-
glucosidase and α-galactosidase activities. The presence of this last activity
was in accordance with the capacity of these microorganisms to ferment
raffinose. The three *B. longum* strains lacked β-glucosidase activity which was
present on the *B. breve* strains. Enzymatic activities showing variability are
shown in Table 1.

Antibiotic resistance profiles of the strains

B. longum strains showed higher resistance levels than *B. breve*, although
strain-specific variability was found (Table 2). The strain *B. longum* IPLA 20001
showed resistance to erythromycin (4 µg/mL) and clindamycin (>16 µg/mL),
eight and over 50 times higher, respectively, than that found for any of the other
strains tested.

Tolerance to acid and bile

The widely used probiotic strain B. lactis Bb12 was included for reference
and comparison purposes. Tolerance to low pH was highly variable. B. lactis
Bb12 showed the highest stability in simulated gastric juice with 74.5% survival
after 90 min of exposure (Table 3). Among the tested strains B. breve IPLA
20006 displayed the highest survival (23.36%) whilst the recovery of all the
other strains was less than 1.5%. Interestingly, simulated bile juice was more
toxic than the gastric juice. In fact, survival percentages after exposure for 180
min to bile juice were lower than 1% for all the strains tested. B. longum IPLA
20003 showed the highest survival with a 0.84% whereas the reference strain
B. lactis Bb12 survived only a 0.0004% after bile juice challenge. When the
results of tolerance to both gastric and bile juices are taken together it appears
that the strain B. longum IPLA 20003 has the highest ability to survive during
gastrointestinal transit, this being even higher than that of the reference strain
B. lactis Bb12.

In vitro inhibition of pathogen growth

The inhibition ability of supernatants from the different bifidobacterial
strains against some pathogens was determined by the agar diffusion test. The
positive control used (tetracycline) produced inhibition zones for all pathogens
with diameters ranging from 14 to 29 mm. No inhibition was observed for any of
the supernatants in which the pH was neutralized (results not shown). None of
the *Bifidobacterium* non-neutralized culture supernatants inhibited the growth of
St. aureus or *C. difficile* (results not shown). For the other three pathogens
tested, inhibition was found for some of the non-neutralized stationary phase
bifidobacterial cultures supernatants (Table 4). *S. enterica* was inhibited by non-
neutralized supernatants of *B. longum* IPLA 20002, *B. longum* IPLA 20003, *B.
breve* IPLA 20004 and *B. breve* IPLA 20005, but not by those of *B. longum*
IPLA 20001 and *B. breve* IPLA 20006. Similarly, all non-neutralized stationary
phase culture supernatants, except that of *B. breve* IPLA 2006, inhibited the
growth of *Sh. sonnei* and all of them were able to inhibit *Cr. sakazakii* growth.
This last microorganism was, in addition, inhibited by the non-neutralized
exponential phase supernatants from *B. longum* IPLA 20002 and *B. breve* IPLA
20005 (diameter of the inhibition zones: 8 mm), these being the only cases in
which inhibition was observed for exponential growth phase culture
supernatants (results not shown).

Adhesion to intestinal epithelial cells

Adhesion ranged between 0.1 and 5.5% depending on the strain, with
some of the breast-milk strains adhering significantly better (p<0.05) than the
reference strain *B. lactis* Bb12 (Figure 2).

Adhesion to human infant mucus

B. longum IPLA 20001 was the strain showing a significantly better
adhesion to 2-month-old infant mucus (55.3%) (Figure 3). When 6-month-old
infant mucus was used, *B. longum* IPLA 20002 and *B. breve* IPLA 20005
showed significantly higher adhesion values than the other strains. The strain *B. breve* IPLA 20004 showed the lowest adhesion values in both models (2 and 6-month-old infant mucus). Interestingly, strains *B. longum* IPLA 20001, *B. breve* IPLA 20006 and the reference strain *B. lactis* Bb12 adhered significantly better to mucus from 2-month-old infant than to that obtained from 6-month-old infants.

Inhibition of adhesion of pathogens to human intestinal mucus

The adhesion of the pathogens tested on 2 and 6-month-old infant mucus was 3.27±0.51 and 3.23±0.79 %, respectively, for *S. enterica*, 1.69±0.48 and 3.83±1.25 % for *Cr. sakazakii*, 13.21±2.18 and 12.50±1.62 % for *Sh. sonnei*, 3.49±1.09 and 5.19±1.10 % for *St. aureus* and 4.26±0.21 and 4.86±0.53 % respectively, for *C. difficile*. *Cr. sakazakii* adhered significantly better (p<0.05) to mucus isolated from 6-month-old infants than that from 2-month-old babies.

The ability of the breast-milk bifidobacterial strains to inhibit the adhesion of the pathogens to infant intestinal mucus was determined (Figure 4). *B. lactis* Bb12 was also included for comparative purposes. All the bifidobacterial strains increased significantly the adhesion of *S. enterica* to infant mucus in at least one of the two models (2 and 6-month-old infants), with increases ranging from 4 to 210% when compared to the control (buffer without bifidobacteria). The reference strain *B. lactis* Bb12 caused the highest increase in the adhesion of the pathogen, 210 and 177% in 2 or 6-month-old infant mucus, respectively.

None of the strains affected significantly the adhesion of *Sh. sonnei* in these mucus models. *B. breve* IPLA 20004 and *B. lactis* BB12 increased significantly the adhesion of *C. difficile* to 2-month-old infant mucus (22 and 31%,
respectively) whilst *B. breve* IPLA 20006 increased the adhesion of the pathogen to 6-month-old infant mucus. Similarly, *B. longum* IPLA 20001 and IPLA 20003 as well as *B. lactis* Bb12 significantly increased the adhesion of *St. aureus* to 2-month-old infant mucus, whereas no effect was found with the other strains tested, or in the 6-month-old infant mucus model. The adhesion of *Cr. sakazakii* to 2-month-old infant’s mucus was significantly increased (70%) by the reference strain *B. lactis* Bb12, whilst *B. breve* IPLA 20005 significantly reduced (43.4%) the adhesion of this pathogen in that model. This was the only case in which the adhesion of a pathogen was significantly inhibited by one of the strains tested.

Discussion

Human breast-milk constitutes an interesting source to obtain new and specific probiotic strains for neonates aiming at assisting a proper development of the gut microbiota and the immune development in infants who, for different reasons, cannot be breast-fed.

Here we confirmed the identity of six *Bifidobacterium* strains, previously isolated from breast-milk (Solis et al., 2010), by partial sequencing of the 16S rRNA gene. Three of the strains were identified as *B. longum* and the other three as *B. breve*. These strains were typified and characterised by using phenotypic and genotypic tests. A step-wise process was used to this end following the guidelines established by the FAO/WHO working group (FAO/WHO, 2006), which recommends to carry out strain identification by phenotypic and genotypic methods as well as *in vitro* functional characterization.
and safety assessment before enrolling on clinical trials. In accordance with previous studies, genetic typing techniques have shown a high discriminatory power with PFGE showing a higher resolution than RAPD (Mättö et al., 2004). Our results are in good agreement with previous reports (Gueimonde et al., 2004) indicating that the combination of genotypic and phenotypic methods extended the discriminatory power of the former alone, as shown with the B. breve strains IPLA 20004 and IPLA 20005 which displayed identical genetic profiles but different phenotypic traits. In addition, phenotypic tests provide data on the specific properties and the metabolic potential of the strains related to functionality and safety. The presence of potentially deleterious enzymatic activities may, sometimes, be a concern and it was also checked. The enzymatic activity profiles of our strains indicate the absence of potentially deleterious activities such as β-glucuronidase, related to the conversion of pre-carcinogens to carcinogens.

In addition to proper strain identification it is always important to pay attention to safety. B. longum and B. breve are considered safe and have QPS status according to EFSA (EFSA, 2007). However, when identifying and characterizing new strains it is always advisable to take into account any potential safety concern. Several reports have underlined the importance of establishing antibiotic resistance profiles, which have become mandatory in some countries (Health Canada, 2009). For these reasons we determined the antibiotic resistance profiles of our strains. In general, the antibiotic resistance levels observed are in the range of those previously reported for these species (ISO10932/IDF223; Kushiro et al., 2009; Mättö et al., 2007). Intrinsic resistance to aminoglycosides (streptomycin and gentamicin) is normally present in
bifidobacteria due to the anaerobic nature of these microorganisms (Mättö et al., 2007) and the subsequent lack of cytochrome-mediated transport (Bryan and Kwan, 1981). According to the breakpoint values established by EFSA for antibiotic resistance in the genus *Bifidobacterium* (EFSA, 2008) one of the *B. longum* strains included in this study (IPLA 20001) presented resistance to erythromycin (4 µg/mL versus breakpoint for *Bifidobacterium* of 0.5 µg/mL) and clindamycin (>16 µg/mL versus breakpoint of 0.25 µg/mL). The presence of resistance to these two antibiotics in the same strain has been previously reported and suggests a common resistance mechanism against both antibiotics. It is known as the macrolide-lincosamide-streptogramin (MLS) phenotype and in a recent study this phenotype was found in 7 out of 17 *B. longum* strains tested (Ammor et al., 2008). The MIC for tetracycline obtained for the three *B. longum* strains was also above the breakpoint established by EFSA (EFSA, 2008) for this antibiotic in the genus *Bifidobacterium* (16 µg/mL versus breakpoint value of 8 µg/mL). This suggests the possible presence of tetracycline resistance genes, such as *tet(W)* which has been reported to be commonly present in this species (Ammor et al., 2008). The genetic basis and potential transferability of these resistances, even if they are common in *B. longum*, require further clarification. It is worth commenting that strains showing high non-transferable resistance to certain antibiotics provide an interesting tool for co-administration with antibiotics, in order to stabilize the microbiota, potentially avoiding certain side-effects of antibiotics, such as associated diarrhoea. On the contrary, strains harbouring transferable resistances should not be used.
It is also important to determine *in vitro* potential probiotic properties of the strains before engaging in long and expensive clinical trials. Tolerance to gastrointestinal transit (acidic pH in the stomach and bile in the small intestine), antimicrobial activity, as well as the ability to adhere to the human intestinal mucosa are among the most frequently used selection tests.

Survival in simulated gastric juice and in the presence of simulated bile juice were independently determined as indicators of the survival potential of the strains during gastrointestinal transit. The tolerance to gastric juice was highly variable, *B. lactis* Bb12 being the strain showing higher survival followed by *B. breve* IPLA 20006. Bile juice was more toxic than acidic conditions, *B. longum* IPLA 20003 showing the highest survival. Combining the results of both, acid and bile tolerance, *B. longum* IPLA 20003 appears to display the highest ability to survive during gastrointestinal transit. Nevertheless, the relevance of these tests in the selection of probiotics for application in neonates is not clear as newborns have a reduced acid and bile secretion (Bhat et al., 1997; Lebenthal and Lebenthal, 1999) and, therefore, even strains not showing a good *in vitro* tolerance may perform well in the *in vivo* situation.

The production of antimicrobial compounds against pathogens by breast-milk isolates was determined using the agar diffusion test. *St. aureus* and *C. difficile* were not inhibited by any of the bifidobacterial supernatants. Inhibition of *S. enterica*, *Sh. sonnei* and *Cr. sakazakii* was obtained with non-neutralized supernatants from some of the bifidobacterial strains, whilst no inhibition was observed for any of the supernatants in which the pH had been neutralized. This indicates that most likely the inhibition was due to the production of organic acids. In addition, supernatants taken from stationary growth phase cultures
were more inhibitory than supernatants from exponential growth, supporting the role of acid production in such inhibition.

Adhesion to human intestinal mucus has been shown to vary depending on the age of the host (Ouwehand et al., 1999). Because of this we decided to use in the present work, in addition to the HT29 cell line, mucus from infants as they constitute a very clear target in the human population for breast-milk probiotic strains. The two adhesion models used (HT29 vs. infant mucus) clearly showed different results. In fact, the strain showing higher adhesion to HT29 cells, *B. breve* IPLA 20004, was found to be the less adhesive to infant mucus. Interestingly, all *B. breve* strains and *B. longum* IPLA 20001 adhered significantly better to HT29 cells than the reference strain *B. lactis* Bb12, considered a highly adhesive strain. The same is true for the strain *B. longum* IPLA 20001 when mucus obtained from 2-month-old infants was used, this strain showing the highest adhesion. These results indicate good adhesion ability for some of the breast-milk *Bifidobacterium* strains included in this study. In this regard, the strain *B. longum* IPLA 20001 was isolated from breast-milk from a 1-day old baby’s mother and isolates showing identical PFGE profiles were also found in the infant faeces at 1, 10 and 30 days of age (results not shown), which suggests a good colonization ability for this strain.

The mucus adhesion levels observed for the reference strain *B. lactis* Bb12 are comparable to those reported by other authors using infant mucus (Juntunen et al., 2001). In general, the adhesion values obtained are slightly higher than those usually found when using intestinal mucus isolated from adults (Collado et al., 2005; He et al., 2001), which corroborates previous results showing that adhesion to intestinal mucus varies depending on the age.
or health status of the mucus donor (Ouwehand et al., 1999, 2003). Higher adhesion of some *Bifidobacterium* strains to 2-month-old than to 6-month-old infant mucus, or to mucus isolated from adults or elderly subjects, has previously been reported (Ouwehand et al., 1999), supporting our findings of higher adhesion of some strains in mucus of younger infants.

In accordance with previous reports (Collado et al., 2005; Gueimonde et al., 2007b) the inhibition of pathogens’ adhesion was found to be rather specific, depending on both the bifidobacterial strain and the pathogen used. Interestingly, some *Bifidobacterium* strains seemed to increase the adhesion to infant intestinal mucus of some of the pathogens tested, suggesting that bifidobacteria may facilitate the adhesion of pathogens through their attachment to the bifidobacterial cells. Increases in the adhesion of pathogens to human mucus in the presence of bifidobacteria and lactobacilli have previously been reported (Collado et al., 2005; Gueimonde et al., 2006, 2007b). However, the biological significance of this phenomenon is unknown, it is possible that the pathogen adhered to the bifidobacteria is no longer available to invade the mucosa. Only one of the strains tested (*B. breve* IPLA 20005) was able to significantly inhibit the adhesion of one of the pathogens tested (*Cr. sakazakii*) in the 2-month-old infant mucus model, whereas none of the strains was inhibitory in the 6-month-old infant mucus model.

In short, in this study we characterised phenotypically and genotypically six *Bifidobacterium* strains isolated from breast-milk according to international guidelines for probiotics. In addition, different *in vitro* tests were used to assess the probiotic potential of these strains. Although clinical data would be needed before any conclusion on the probiotic properties of the strains can be drawn,
our results demonstrate that some of the tested strains isolated from breast-milk may have good probiotic potential for their inclusion in products targeting infants.

Acknowledgements. This study was funded by projects PIE 200870I049 (CSIC) and RM2007-00003-00-00 (INIA). S. Arboleya was the recipient of a JAE predoctoral fellowship from CSIC.

References

EFSA, 2007. European Food Safety Authority Scientific Committee (EFSA) public consultation on the Qualified Presumption of Safety (QPS) approach for the safety assessment of microorganisms deliberately added to food and feed. Annex 3: Assessment of gram positive non-sporulating bacteria with respect to a qualified presumption of safety.

EFSA, 2008. Technical guidance prepared by the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) on the update of the
criteria used in the assessment of bacterial resistance to antibiotics of human

FAO/WHO, 2006. Probiotics in food. Health and nutritional properties and
guidelines for evaluation. FAO Food and Nutrition paper 85. ISBN 92-5-
105513-0

Gueimonde, M., Delgado, S., Mayo, B., Ruas-Madiedo, P., Margolles, A., de
los Reyes-Gavilan, C.G., 2004. Viability and diversity of probiotic *Lactobacillus*
and *Bifidobacterium* populations included in commercial fermented milks.

Food Research International 37, 839-850.

Adhesion and competitive inhibition and displacement of human
enteropathogens by selected lactobacilli. Food Research International 39,
467-471.

source of bifidobacteria for infant gut development and maturation?

Neonatology 92, 64-66.

Gueimonde, M., Margolles, A., de los Reyes-Gavilán, C.G., Salminen, S.,
2007b. Competitive exclusion of enteropathogens from human intestinal
mucus by *Bifidobacterium* strains with acquired resistance to bile-A preliminary

Gueimonde, M., Noriega, L., Margolles, A., de los Reyes-Gavilán, C.G.,
Salminen, S., 2005. Ability of *Bifidobacterium* strains with acquired resistance
to bile to adhere to human intestinal mucus. International Journal of Food
Microbiology 101, 341-346.

Kalliomaki, M., Kirjavainen, P., Eerola, E., Kero, P., Salminen, S., Isolauri, E., 2001. Distinct patterns of neonatal gut microflora in infants in whom atopy was
and was not developing. Journal of Allergy and Clinical Immunology 107, 129-134.

Journal of Applied Microbiology 97, 459-470.

antibiotics as determined by the Etest method. International Dairy Journal 17, 1123-1131.

Solís, G., de los Reyes-Gavilan, C.G., Fernández, N., Margolles, A.,
Gueimonde, M., 2010. Establishment and development of lactic acid bacteria
and bifidobacteria microbiota in breast-milk and the infant gut. Anaerobe. 16,
307-310.

of intestinal angiogenesis by indigenous microbes via paneth cells.
Proceedings of the National Academy of Sciences of the United States of
America 99, 15451-15455.
Table 1. Carbohydrate fermentation and enzymatic activities (expressed as nanomoles according to the API Zym strips manufacturer) demonstrating variability among the strains included in this study.

<table>
<thead>
<tr>
<th>Carbohydrate</th>
<th>B. longum</th>
<th>B. breve</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-fructose</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>D-mannose</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-mannitol</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>D-sorbitol</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Salicin</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-melezitose</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Glycogen</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gentiobiose</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D-turanose</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

Enzymatic activity

<table>
<thead>
<tr>
<th>Enzymatic activity</th>
<th>B. longum</th>
<th>B. breve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkaline phosphatase</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Esterase (c4)</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>Esterase lipase (c8)</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Lipase (c14)</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Valine arylamidase</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cystine arylamidase</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Trypsin</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>α-chymotrypsin</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Acid phosphatase</td>
<td>30</td>
<td>≥40</td>
</tr>
<tr>
<td>Naphthol-AS-BI-phosphohydrolase</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>β-glucosidase</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N-Acetyl-β-glucosaminidase</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>α-mannosidase</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>
Table 2. Antibiotic resistance profiles. MICs (µg/mL) obtained for the different bifidobacterial strains included in this study.

<table>
<thead>
<tr>
<th>Strain</th>
<th>GE</th>
<th>KA</th>
<th>ST</th>
<th>NE</th>
<th>TE</th>
<th>ER</th>
<th>CL</th>
<th>CH</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. longum IPLA 20001</td>
<td>16</td>
<td>256</td>
<td>16</td>
<td>32</td>
<td>16</td>
<td>4</td>
<td>>16</td>
<td>1</td>
</tr>
<tr>
<td>B. longum IPLA 20002</td>
<td>32</td>
<td>512</td>
<td>64</td>
<td>128</td>
<td>16</td>
<td>0.5</td>
<td>0.12</td>
<td>2</td>
</tr>
<tr>
<td>B. longum IPLA 20003</td>
<td>64</td>
<td>512</td>
<td>64</td>
<td>>256</td>
<td>16</td>
<td>0.5</td>
<td>0.12</td>
<td>2</td>
</tr>
<tr>
<td>B. breve IPLA 20004</td>
<td>2</td>
<td>64</td>
<td>2</td>
<td>16</td>
<td>1</td>
<td>0.12</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>B. breve IPLA 20005</td>
<td>8</td>
<td>256</td>
<td>4</td>
<td>64</td>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
<td>0.5</td>
</tr>
<tr>
<td>B. breve IPLA 20006</td>
<td>32</td>
<td>256</td>
<td>32</td>
<td>64</td>
<td>2</td>
<td>0.12</td>
<td>0.06</td>
<td>1</td>
</tr>
</tbody>
</table>

GE, gentamycin; KA, kanamycin; ST, streptomycin; NE, neomycin; TE, tetracycline, ER, erythomycin, CL, clindamycin, CH, chloramphenicol
Table 3. Percentage of survival of bifidobacterial strains after 90 or 180 min of exposure to simulated gastric or bile juices, respectively.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Tolerance to gastric juice (Mean ± sd)</th>
<th>Tolerance to bile juice (Mean ± sd)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. longum IPLA 20001</td>
<td>0.1625 ± 0.025</td>
<td>0.0006 ± 0.0004</td>
</tr>
<tr>
<td>B. longum IPLA 20002</td>
<td>0.2445 ± 0.050</td>
<td>0.0018 ± 0.0013</td>
</tr>
<tr>
<td>B. longum IPLA 20003</td>
<td>0.9235 ± 0.132</td>
<td>0.8400 ± 0.1318</td>
</tr>
<tr>
<td>B. breve IPLA 20004</td>
<td>0.0160 ± 0.009</td>
<td>0.0002 ± 0.0001</td>
</tr>
<tr>
<td>B. breve IPLA 20005</td>
<td>1.1940 ± 0.486</td>
<td><0.00001</td>
</tr>
<tr>
<td>B. breve IPLA 20006</td>
<td>23.3580 ± 6.644</td>
<td><0.00001</td>
</tr>
<tr>
<td>B. lactis Bb12</td>
<td>74.5000 ± 4.950</td>
<td>0.0004 ± 0.0002</td>
</tr>
</tbody>
</table>
Table 4. *In vitro* inhibition of the growth of pathogens by the bifidobacterial strains tested. Results display the diameter of the inhibition zones (mm) obtained for the stationary growth phase non-neutralized supernatants from the *Bifidobacterium* strains and the corresponding pH values.

<table>
<thead>
<tr>
<th>Strain</th>
<th>IPLA 20001</th>
<th>IPLA 20002</th>
<th>IPLA 20003</th>
<th>IPLA 20004</th>
<th>IPLA 20005</th>
<th>IPLA 20006</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4.5</td>
<td>4.3</td>
<td>4.4</td>
<td>4.3</td>
<td>4.3</td>
<td>4.5</td>
</tr>
<tr>
<td>Cr. sakazakii</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Sh. sonnei</td>
<td>11</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>S. enterica</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
Figure 1. (a) RAPD-PCR profiles obtained for the *B. breve* (A) and *B. longum* (B) strains included in this study. A: Lane 1, molecular weight marker; lane 2, IPLA 20005; Lane 3, IPLA 20006; Lane 4, IPLA 20004. B: Lane 1, molecular weight marker; lane 2, IPLA 20001; lane 3, IPLA 20002; lane 4, IPLA 20003. (b) PFGE macrorestriction profiles obtained with *XbaI* for the *Bifidobacterium* strains included in this study. Lanes: 1, molecular weight marker; 2, *B. longum* IPLA 20001; 3, *B. breve* IPLA 20004; 4, *B. breve* IPLA 20005; 5, *B. longum* IPLA 20002; 6, *B. longum* IPLA 20003; 7, *B. breve* IPLA 20006.

Figure 2. Percentage of adhesion to HT29 cells of the *Bifidobacterium* strains included in this study and the control strain *B. lactis* Bb12. (ANOVA, *p* = 0.000). Bars with different letters differ significantly (*p*<0.05; LSD test).

Figure 3. Percentage of adhesion to intestinal mucus, from 2 month old (black bars) and 6 month old (white bars) infants, of the *Bifidobacterium* strains included in this study and the control strain *B. lactis* Bb12. Bars with different letters within the same mucus group (2 or 6 months) differ significantly (both cases ANOVA, *p* = 0.000) (*p*<0.05; LSD test). Asterisks indicate statistically significant differences between adhesion of the strain to mucus from 2 or 6 month-old infants (*p*<0.05).

Figure 4. Inhibition of the adhesion of model pathogens to intestinal mucus isolated from 2 month-old (black bars) or 6 month-old (white bars) infants by the bifidobacteria tested and the control strain *B. lactis* Bb12. An asterisk indicates strains which significantly modified the adhesion with regard to the
corresponding 2 or 6 month mucus control (HH buffer without bifidobacteria, arbitrarily set to value zero). Positive values indicate increases in the adhesion of the pathogens whilst negative values indicate inhibition of adhesion. Results are expressed as mean values, coefficients of variation ranged between 2 and 19%.
Figure 1. Arboleya et al.
Figure 2. Arboleya et al.

![Graph showing adhesion levels of B. longum and B. breve strains.](image-url)

Adhesion (%)
Figure 3. Arboleya et al.
Figure 4. Arboleya et al.

Change in adhesion (%)

S. enterica

B. longum B. breve

B. longum B. breve

Sh. sonnei

C. difficile

Cr. sakazakii

St. aureus

B. longum B. breve B. longum B. breve