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ABSTRACT

Photodynamic therapy using methyl 5-aminolevulinate (MAL) as a 

precursor of the photosensitizing agent protoporphyrin IX is widely used in 

clinical practice for the treatment of different pathologies, including cancer. In 

this therapeutic modality, MAL treatment promotes the forced accumulation of 

the endogenous photoactive compound protoporphyrin IX in target malignant 

cells. Subsequent irradiation of treated tissues with an appropriate visible light 

source induces the production of reactive oxygen species (ROS) that, once 

accumulated above a critical level, promote cell death. Here we demonstrate 

that a photodynamic treatment with low MAL concentrations can be used to 

promote a moderate production of endogenous ROS, which efficiently 

stimulates cell growth in human immortalized keratinocytes (HaCaT). We also 

show that this proliferative response requires Src kinase activity and is 

associated to a transient induction of cyclin D1 expression. Taken together, 

these results demonstrate for the first time that a combination of light and a 

photoactive compound can be used to modulate cell cycle progression through 

Src kinase activation and that a moderate intracellular increase of 

photogenerated ROS efficiently stimulates cell proliferation. 

Keywords: methyl aminolevulinate, protoporphyrin IX, reactive oxygen species 

(ROS), photodynamic therapy, cell proliferation, cyclin D1, Src kinase.  
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INTRODUCTION 

Photodynamic therapy (PDT) is an efficient clinical approach for the 

treatment of different types of cancer and other pathologies (Juarranz et al., 

2008, Dolmans et al., 2003). This therapeutic modality is based on the 

combination of three elements: light, oxygen and a photosensitizer (PS). Once 

incorporated into target cells and during irradiation with an adequate light 

source, the PS absorbs photons of a specific wavelength and transfers the 

excitation energy to the molecular oxygen contained in the cell, giving rise to a 

range of highly reactive oxygen species (ROS), mainly singlet oxygen (1O2) 

(Dolmans et al., 2003, Juarranz et al., 2008). Raising ROS levels above a 

critical threshold irreversibly results in cell death (Buytaert et al., 2007, Oleinick 

et al., 2002). A critical step for an efficient PDT is the selective or enhanced 

accumulation of the PS in target cells. This process mainly relies on the specific 

chemical properties of the PS and on the altered metabolism of target cells in 

relation to the chemical properties of the PS (Juarranz et al., 2008). 5-

Aminolevulinic acid (ALA) and its derivative methyl aminolevulinate (MAL) are 

the photosensitizing precursor agents most widely used in clinical practice 

(Kloek and Beijersbergen van, 1996, Kennedy et al., 1990, Casas and Batlle, 

2002). These compounds are not PSs per se but metabolic precursors of the 

natural PS, protoporphyrin IX (PpIX). Incorporation of ALA or MAL to 

mammalian cells promotes the entry of both compounds in the heme 

biosynthetic pathway, resulting in an increased intracellular accumulation of 

PpIX susceptible to act as an endogenous PS (Kloek and Beijersbergen van, 

1996, Kennedy et al., 1990, Casas and Batlle, 2002). 
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Experimental evidence obtained in the last years suggests that 

eukaryotic cells produce small amounts of ROS as part of different signal 

transduction pathways involved in cell survival and proliferation (Bartosz, 2009, 

Droge, 2002, Thannickal and Fanburg, 2000, Kamata and Hirata, 1999). 

Although the basic molecular mechanisms underlying these effects are largely 

unknown, it is assumed that most physiological effects of ROS are exerted 

through their interaction with critical intracellular thiols in cysteine residues of 

different proteins (Winterbourn and Hampton, 2008, Kamata and Hirata, 1999, 

Thannickal and Fanburg, 2000). Of particular importance are protein 

phospatases belonging to the cysteine-dependent phosphatase family, 

including classical protein tyrosine phosphatases (PTPs) and the lipid 

phosphatase PTEN, which have a critical cysteine residue in the catalytic site 

that is reversibly modified by fluctuating ROS concentrations. Thus, 

phosphatase function can be regulated by a delicate redox balance between 

ROS and the intracellular thiol pool (Chiarugi and Cirri, 2003, Ostman and 

Bohmer, 2001, Winterbourn and Hampton, 2008). This fact has been 

demonstrated for PTP inhibition induced by ROS during cellular signalling from 

receptor tyrosine kinases (Lee and Esselman, 2002, Chiarugi and Cirri, 2003). 

In this context, recent results indicate that Src family kinases are also redox-

regulated proteins (Giannoni et al., 2010). Src kinases function can be regulated 

by ROS either indirectly, through inhibition of specific PTPs, or directly, through 

redox-dependent modification of several cysteine residues that can 

constitutively activate protein kinase function (Giannoni et al., 2010).  It is well 

known that Src family kinases are key homeostatic modulators in different 

tissues and physiological situations through the regulation of numerous cellular 
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functions, including cell growth and survival, cell shape, adhesion and motility 

(Yeatman, 2004). The relevance of Src family kinases for the cellular physiology 

highlights the potential applicability of a regulatory mechanism acting on these 

proteins by a controlled modulation of intracellular ROS concentrations. 

Here we have used immortalized human keratinocytes to explore the 

ability of PDT with MAL to stimulate cell growth in vitro in a finely tuned way. 

Our results show for the first time that PDT with MAL can efficiently induce cell 

proliferation through a tightly controlled and reproducible process that requires 

Src kinase activity and cyclin D1 expression and that it is not associated to 

genetic or cytotoxic damage.  
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MATERIALS AND METHODS

Cell culture and photodynamic treatments  

HaCaT immortalized human keratinocytes were grown in Dulbecco´s 

Modified Eagle´s Medium (DMEM, Gibco) supplemented with bovine foetal 

serum (FBS 10%, Gibco), and 0.5% antibiotics (penicilline G [10000 U/ml] and 

streptomycin sulphate [10000 µg/ml] (Gibco) at 37ºC in a 5% CO2 atmosphere.  

Photodynamic treatments (PDT) were routinely performed on 

exponentially growing cells at 60%-70% confluence. Stock solutions of methyl 

5-aminolevulinate hydrochloride 98% (MAL; Sigma) 10-2 M were prepared in 

distilled water. Cells were incubated for 5 hours with different working solutions 

of MAL (0.1 mM, 0.5 mM and 1 mM) and then irradiated for 10 minutes with a 

red light emitting diode (24 x 16 = 384 LEDs; WP7143 SURC/E) source with an 

emission peak at 634 nm and ± 20 nm bandwidth. The irradiance at the cell 

culture position was 6.2 mW/cm2. Total light dose to the cultures was 3.72 

J/cm2. After treatments, fresh DMEM was added to the cells. 

Quantification of protoporphyrin IX biosynthesis and intracellular ROS 

production 

Cells growing at 50%-60% confluence were incubated for 5 hours with 

different MAL concentrations, collected and fixed with 3.7% aqueous 

formaldehyde solution for 15 minutes at room temperature (RT). Once washed 

and resuspended in PBS, cells were assayed for PpIX fluorescence in a flow 

cytometer (Cytomics FC500, Beckman Coulter) exciting at 620 nm and 

recording at 670 nm. 20.000 cells were measured for each condition (Uehlinger 

et al., 2000). Also, living cells on glass coverslips (Menzel-Gläser) were 
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incubated with different MAL concentrations and evaluated for PpIX emission 

(�exc= 546 nm) using a fluorescence microscope (Olympus BX-UCB). 

Quantification of ROS production was performed as described 

(Daghastanli et al., 2008). After 5 hours of MAL treatment, 2,7-dichloro-

dihydrofluorescein diacetate (DHF-DA; Fluka) was added to cell cultures to a 

final concentration of 10-5 M and incubated 1 hour. Cells were then subjected to 

irradiation as described, trypsinized and fixed with a 3.7% formaldehyde 

solution in PBS for 15-20 minutes at RT. ROS levels were evaluated by flow 

cytometry, exciting the oxidized dichloro-fluorescein (DCF) product with the 488 

nm Ar+ laser line and measuring emission between 500 and 600 nm. 20.000 

cells were measured for each condition. Experiments were done in parallel on 

cell cultures treated with different MAL concentrations, then with 10-5 M DHF-

DA, and observed in a fluorescence microscope for ROS detection through 

DCF emission (�exc= 436 nm).   

Cell growth quantification  

Cells grown in 24-well plastic plates were incubated with MAL and 

irradiated as indicated above. Cell cultures were subjected to MTT viability 

assays at different times (24, 48, 72 or 96 hours) after PDT. Briefly, cells were 

incubated for 2 hours with MTT (50 µg/ml) in DMEM, DMSO was added to 

solubilize the produced formazan and the optical density at 542 nm was 

measured with a SpectraFluor (Tecan).  

For mitotic index analysis, cell cultures subjected to PDT were fixed with 

cold methanol (-20º C), stained for 5 minutes in a  2 µg/ml solution of Hoechst 

33258 (H-33258, Sigma), washed in water, air dried and mounted in DePeX 

(Serva). Samples were evaluated under fluorescence microscopy using UV 
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excitation (365 nm). Mitotic index (MI) was determined as the % number of cells 

in division. About 1000 cells were counted for each point for MI. 

For cell cycle analyses cells were subjected to PDT as described above. 

After 24 hours, cells were trypsinized and fixed in 70% ethanol for 30 minutes at 

-20º C, washed in PBS and stained with a cell cycle assay kit (Immunostep), 

which incorporates RNAse and propidium iodide (PI). The samples were 

evaluated in the flow cytometer by exciting at 488 nm, comparing with 

appropriate control cells.  

For quantification of cyclin D1 protein levels, exponentially growing cells 

were subjected to PDT. Non-irradiated cells were used as control conditions. 

After the PDT, cells were further grown for different times, collected and fixed 

with 3.7 % formaldehyde solution for 15 minutes at RT. Cells were treated for 

30 minutes with a 0.1% Triton X-100, washed, collected and incubated for 1 

hour with an antibody against cyclin D1 (mouse monoclonal anti-cyclin D1, 

NovoCastra) at 37º C. Cells were washed in PBS, collected and incubated for 

45 minutes with a secondary antibody (goat anti-mouse IgG-FITC conjugate, 

Sigma) at 37º C. Cells were washed and resuspended in PBS and cyclin D1 

expression level was measured by flow cytometry using a 488 nm excitation 

line. 20.000 cells were counted in each experiment.  

Genotoxic damage quantification  

 For the evaluation of genotoxic damage, cells were grown on coverslips, 

subjected to different photodynamic treatments, and fixed with 3.7% 

formaldehyde in PBS. The TUNEL assay (Gavrieli et al., 1992) was used to 

determine the appearance of strand breaks in the DNA molecule after PDT with 

MAL. Cell samples were processed following the instructions of the 
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manufacturer (Roche). The formation of phosphorylated histone H2AX (pH2AX) 

foci on the chromatin fibre in response to genotoxic injury (Yuan et al., 2010) 

was determined by immunofluorescence or immunoblot analysis using a  

specific mouse monoclonal anti-phosphoH2AX and H3 antibodies (Abcam) 

following described procedures (Espada et al., 2009). The % of positive cells for 

either TUNEL or pH2AX assays after PDT with different MAL concentrations 

was quantified for a sample size of 100-200 cells in two different experiments. 

Inhibition of Src kinase and NOX activities and depletion of intracellular 

ROS accumulation 

The specific Src kinase inhibitor 4-amino-5-(4-chlorophenyl)-7-(t-

butyl)pyrazolo[3,4-d]pyrimidine (PP2; Sigma) (Zhang et al., 2008) was used at 5 

�M in DMEM; the NOX inhibitor diphenyleneiodonium chloride (DPI; Sigma) 

(Ranjan et al., 2006) was used at 1 �M in DMEM. Cells were incubated with 

both compounds for 5 hours and subjected to PDT with MAL. Stock solutions of 

both compounds were made in DMSO. Cell cultures treated with DMSO were 

used as control samples.  

To remove intracellular ROS produced during PDT, cells were treated 

with the antioxidant singlet oxygen scavenger 1,4-diazabicyclo[2.2.2]octane 

(DABCO; Sigma) at 10-3 M for 1 hour before PDT.  

Statistical  analysis  

The numerical treatment of results was done with the SPSS 15.0 software 

package (SPSS Inc., IBM, Chicago, IL, USA). Both t-Student and Analysis of 

Variance (ANOVA) tests were employed to evaluate statistical significance of 

results. 
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RESULTS 

Moderate PpIX-dependent intracellular ROS photogeneration efficiently 

stimulates cell proliferation 

We have previously established two PDT protocols for skin keratinocytes 

designed to obtain different and defined cellular responses: a lethal condition (1 

mM photosensitizer)  that promotes a fast and severe cell death response by 

necrosis and a sublethal condition (0.5 mM photosensitizer) that promotes a 

delayed cell death response after activation of an E-cadherin dependent 

apoptotic program (Espada et al., 2009, Galaz et al., 2005). Here we have 

tested a milder condition, 0.1 mM MAL, to evaluate potential photoactivating 

effects of PDT on cell proliferation.  

First we analyzed the production rate of the endogenous photosensitizer 

PpIX after MAL treatments at different concentrations and the photoproduction 

rates of ROS after PDT using MAL at the indicated concentrations. When PpIX 

production was measured, cell cultures were exposed to MAL but were not 

subsequently irradiated with red light, preventing both photodynamic damage 

and PpIX photobleaching. The characteristic red fluorescent emission under 

546 nm light irradiation was used to quantify PpIX production. For ROS 

production quantification, cells were exposed to MAL and then irradiated with 

red light to induce the photodynamic action and subsequent photodamage.  The 

oxidized DCF fluorescent probe was used to trace ROS formation. Intracellular 

ROS localization and PpIX rate of synthesis were evaluated in fixed samples by 

flow cytometry, as well as by fluorescence microscopy in living cells after 

different MAL treatments.  
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As expected, we found a correlative MAL-dose dependent production of 

PpIX and ROS in HaCaT cells after PDT. A strong induction of both compounds 

was observed after 0.5 and 1 mM MAL treatments (Fig. 1A). Interestingly, a 

moderate but statistically significant increase of endogenous ROS levels was 

also observed after 0.1 mM treatments (Fig. 1A). In agreement with these 

observations, we observed that, as compared to non-treated cells, a low and 

diffuse cytoplasmic PpIX red signal was detected in HaCaT cells after MAL 0.1 

mM conditions which strongly increased in the cytoplasm and accumulated in 

the cell membrane in cells after MAL 0.5 or 1 mM conditions (Fig. 1B and data 

not shown). Equivalent results were found for DCF-dependent localization of 

ROS production, higher MAL concentrations promoting a higher DCF signal 

(Fig. 1B). It is to note that, as expected, cells used for ROS quantification 

showed morphological alterations associated with severe (1mM MAL) PDT 

photodamage. Phase-contrast microscopy analysis revealed that cell 

morphology was virtually unaffected in 0.1 mM MAL treated cells while it was 

severely disturbed after 0.5 or 1 mM MAL treatments, showing prominent 

morphological characteristics of cell death induction (Fig. 1B). These 

observations indicate that low MAL concentrations (0.1 mM) promote a low 

accumulation of PpIX that is sufficient to induce a moderate ROS synthesis 

after PDT in the absence of cell death.  

We next evaluated the biological potential of the moderate ROS increase 

induced by PDT with MAL 0.1 mM treatment to modulate cell proliferation in 

HaCaT cells. We found that this low increase of intracellular ROS levels 

promoted by 0.1 mM MAL phototreatments was sufficient to induce a significant 

and reproducible increment of the mitotic index in HaCaT cells (Fig. 1C) 
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associated to an acute increase of the S-phase cell population 24 hours after 

the treatment (Fig. 1D). No mitogenic effects were observed when cells were 

treated with MAL in the absence of red light or with red light in the absence of 

MAL (Fig. 1C, D). Notably, we have also found that the mitogenic effect of PDT 

with MAL on HaCaT cells was strongly enhanced by a two-step sequential 

photodynamic treatment (Fig. 2). Thus, a second 0.1 mM MAL treatment 48 

hours after the first one resulted in a statistically significant increase at 72 hours 

of a roughly 10% in the number of viable cells as compared to samples 

stimulated by a single treatment (Fig. 2).  It is to note that in this experiment the 

mitotic index ratio decreased between 24 and 48 hours while the number of 

viable cells increased (Fig. 2). However, although the mitotic index ratio 

decreased between 24h and 48 hours, it actually did not returned to 0 values. 

Instead, it steadily returned to a background level in which the mitotic ratio of 

treated samples is the same as that of non-stimulated, normal proliferating 

controls.  This implies that, between 24 and 48h, PDT treated samples still 

present higher mitotic ratios than controls. In these conditions, given a 

previously higher number of viable cells and a higher mitotic ratio as compared 

to controls, a steady increase in the number of viable cells in treated samples 

was observed (Fig. 2). In this context, our results indicate that a second PDT 

treatment at 48 hours can hold back the declining trend of the mitotic ratio, 

promoting a new increase at 72 hours, which result in a concomitant and 

additional increase in the number of viable cells (Fig. 2). As a whole, these 

results demonstrate that a combination of red light and increased levels of PpIX, 

resulting in a moderate production of intracellular ROS, can be used to 

stimulate cell growth.  
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PpIX-dependent photodynamic stimulation of cell proliferation does not 

promote genotoxic or cytotoxic damage 

 Treatment of cultured cells with an exogenous ROS source, such as 

H2O2, can promote a moderate increase of cell proliferation but also extensive 

and/or irreversible cell damage (Pryor et al., 2006). To discard deleterious 

effects induced by PDT with 0.1 mM MAL, we investigated potential genotoxic 

or cytotoxic damage using different approaches.  

We first evaluate the incidence of PDT with MAL on cell viability using the 

MTT assay. We found no significant effects of PDT with 0.1 mM MAL on cell 

survival at either the standard 10 minutes red light irradiation time or at longer 

irradiation times up to 30 minutes (Fig. 3A). By contrast, PDT with 0.5 or 1 mM 

MAL resulted in a significant cytotoxic effect with 10 minutes irradiation time, 

greatly increased with longer irradiation times (Fig. 3A). This result is in close 

agreement with our observations regarding the effects on cell morphology of 

PDT with different MAL concentrations (Fig. 1B). 

We next analyzed potential genotoxic effects of PDT with 0.1 mM MAL 

by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) 

assay to detect DNA breaks (Gavrieli et al., 1992) or by detection of extended 

phosphorylated histone H2AX (pH2AX) foci formation on the chromatin fibre 

associated to severe DNA damage (Yuan et al., 2010). Interestingly, a strong 

increase of pH2AX nuclei was observed by immunofluorescence and 

immunoblot analysis in apoptotic 0.5 mM MAL treated cells, but not in viable 0.1 

mM MAL treated cells or necrotic 1 mM treated cells (Fig. 3B, C, D). This result 

demonstrate that the pH2AX signal of genomic damage was triggered by 0.5 

mM sub-lethal treatments but not by stimulating 0.1 mM conditions and 
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indicated that the necrotic nuclei caused by 1 mM treatments were also unable 

to trigger a pH2AX-dependent response to genomic damage. Likewise, our 

results showed that, as expected, PDT with 0.5 or 1 mM MAL induced a strong 

DNA fragmentation revealed by TUNEL assay (Fig. 3B, D). In sharp contrast, 

no such damaging effects were observed after PDT with 0.1 mM MAL (Fig. 3B, 

D). As a whole, these results indicate that PDT with 0.1 mM MAL is a cellular-

safe process to stimulate cell proliferation in the absence of cytotoxic or 

genotoxic side effects. 

PpIX-dependent photodynamic stimulation of cell proliferation requires 

ROS production and it is associated with an increase in cyclin D1 

expression 

To elucidate the molecular basis underlying the stimulation of cell 

proliferation by PDT with MAL, we first analyze the requirement of ROS in this 

process. To this end, cells subjected to PDT with 0.1 mM MAL were treated 

during light irradiation with the antioxidant DABCO, a known 1O2 scavenger that 

efficiently blocks intracellular effects of ROS increase. We found that DABCO 

completely inhibited the stimulatory effect of PDT with MAL on cell proliferation 

without noticeable effects on cell viability (Fig. 4A). This result demonstrates 

that photostimulation of cell proliferation with MAL mainly relies on a moderate 

increase of intracellular ROS. 

 We hypothesized that the increase of the mitotic index and the induction 

of cell proliferation after PDT with MAL was necessarily associated to a 

concomitant expression of cell cycle regulatory proteins. To corroborate this 

idea we carried out a time course analysis of cyclin protein expression after cell 

photoactivation with MAL. In particular, we found a strong and transient 
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increase of cyclin D1 protein levels between 3 to 8 hours after PDT with MAL in 

HaCaT cells (Figure 4B). The expression of cyclin D1 induced after PDT with 

MAL was completely inhibited by intracellular ROS scavenging with DABCO. 

These results indicate that cell proliferation induced by PDT with MAL is 

associated to a transient increase in cyclin D1 expression which depends on 

ROS production. 

PpIX-dependent photodynamic stimulation of cell proliferation and 

transient cyclin D1 expression depends on Src kinase activity

It is well known that Src kinases can regulate cell cycle progression 

through activation of cyclin D1 expression (Sinibaldi et al., 2000, Leslie et al., 

2006). It has also become clear in the last years that Src kinases are regulated 

by intracellular ROS (Giannoni et al., 2010). In this context, we reasoned that 

the activity of Src kinase was probably implicated in the stimulation of cell 

proliferation and in the concomitant transient activation of cyclin D1 after PDT 

with 0.1 mM MAL. To evaluate this hypothesis, we performed a series of 

photoactivation experiments using our established MAL-dependent conditions 

to stimulate cell proliferation in the presence or absence of the specific Src 

kinase inhibitor PP2. Our results clearly showed that, as compared to control 

samples, Src kinase activity inhibition had no effect on cell viability but 

significantly blocked the induction of cell proliferation promoted by PDT with 0.1 

mM MAL (Fig. 5A). In the same way, we also observed that Src kinase inhibition 

completely aborted the transient cyclin D1 expression that we had observed to 

be associated to PDT with 0.1 mM MAL (Fig. 5B). Taken as a whole, these 

results suggest that cell proliferation stimulation after PDT with 0.1 mM MAL on 
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HaCaT cells is a direct result of a transient expression of cyclin D1 induced by 

Src kinase activity. 

The mitochondria are important foci of intracellular ROS production. 

However, mitochondrial ROS production has mainly to do either with inefficient 

electron leakage to molecular oxygen during aerobic respiration, or with specific 

signaling for the initiation and promotion of apoptotic processes.  It is now 

widely accepted that NOX activity is the main source of physiological ROS 

involved in cell signaling through interaction with specific components of cell 

signaling pathways (Nohl et al., 2005, Raddatz et al., 2011, Brown and 

Borutaite, 2011) . In this context, we also wanted to evaluate the effect of NOX 

enzymatic inhibition on the stimulatory effect of PDT with 0.1 mM MAL. To this 

end, we used the NOX inhibitor DPI in PDT with 0.1 mM MAL experiments. Our 

results showed that, as compared to control samples, inhibition of NOX activity 

did not affected neither cell proliferation or viability, nor cyclin D1 expression 

induced by PDT with 0.1 mM MAL (Fig. 5A, B), indicating that the production of 

endogenous ROS in this process is independent of NOX activity. 
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DISCUSSION 

The possibility to stimulate cell proliferation using light and an 

endogenous photoactive compound is a provocative approach that can have a 

broad range of applications from biotechnology to regenerative medicine. In this 

study we report the stimulation of cell proliferation in immortalized human 

keratinocytes after a mild photodynamic treatment which is strongly enhanced 

by a sequential two-step protocol. We have demonstrated that the induction of 

cell proliferation by PDT with MAL is mediated by singlet oxygen production 

induced by PpIX photodynamic activation; this cell stimulation is associated to a 

transient upregulation of cyclin D1 expression and depends on Src kinase 

activity.  

The Cyclin family of cell cycle regulator proteins has been identified as 

an important target in the redox-dependent regulation of cell cycle progression. 

In particular, it is known that exogenous ROS can regulate cyclin D1 levels 

through the modulation of classical tyrosine phosphatase activity (Ranjan et al., 

2006, Martinez Munoz et al., 2001, Burch and Heintz, 2005) and can also 

modify the proteasome-dependent metabolic degradation balance of cyclin D1 

through a redox-dependent pathway (Martinez Munoz et al., 2001). In the same 

way, it has been reported that overexpression of catalase decreases the 

transition from G1 to S in a cyclin D1-mediated mechanism (Onumah et al., 

2009). In agreement with these observations, the results presented here 

indicate that a moderate endogenous ROS production can rapidly promote a 

transient increase in cyclin D1 expression. As a whole, these observations point 

to the evidence of an extended redox mechanism for the synchronized 

generation of ROS during cell cycle in mammalian cells that is implicated in the 
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regulation of cyclin D1 expression (Menon and Goswami, 2007, Burch and 

Heintz, 2005, Takahashi et al., 2004).  

It has been shown that exposure of different mammalian cell types to an 

exogenous source of ROS results in the phosphorylation and activation of large 

number of signalling molecules implicated in cell cycle regulation, including 

receptor tyrosine kinases, PKC, PKB, Src kinase PLC1� and MAPKs (Boonstra 

and Post, 2004). In the same way, different studies indicate that different 

ligands, including TNF�, TGF�1, interleukin1, PDGF and EGF can promote a 

receptor activation-dependent increase of ROS (Boonstra and Post, 2004). In 

this context, our results using a PDT approach can be considered as an 

additional proof of concept for the more general idea that a moderate and 

transient endogenous ROS production can stimulate cell proliferation (Menon 

and Goswami, 2007, Takahashi et al., 2004, Boonstra and Post, 2004). 

At present, it is accepted that the main source of intracellular ROS for cell 

signalling is the result of the activity of the NADPH-oxidase (NOX) protein family 

(Bedard and Krause, 2007, Chan et al., 2009). Here we have shown that 

stimulation of cell proliferation by PDT with MAL requires ROS production but it 

is independent of NOX activity. Since the main ROS source during PDT with 

MAL is PpIX, this is an expected result and reinforces the view that regulating 

the biosynthetic production of PpIX by dosing the given amount of MAL is a 

valuable tool to modulate the production of endogenous ROS to obtain different 

cellular responses. On the other side, our results have also shown that 

stimulation by PDT with MAL entirely depends on Src kinase activity. Taking 

into account that Src kinase can be constitutively activated by intracellular ROS 

(Giannoni et al., 2010) and that cyclin D1 is a target of Src kinase activity (Leslie 
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et al., 2006, Yeatman, 2004, Sinibaldi et al., 2000), our results reinforce the 

emerging concept of the regulation of intracellular ROS balance as an important 

cell signalling mechanism. 

In conclusion, the results reported here demonstrate for the first time that 

red light in combination with an appropriate photosensitizer can be used to 

manipulate the cell cycle activity at a specific point by the punctual 

photogeneration of signaling ROS. As a rule, eukaryotic cells present the least 

reduced cytoplasmic environment during the first half of the G1 phase of the cell 

cycle (Winterbourn and Hampton, 2008). During this period there exists an 

optimum ROS stimulating window, during which the cell can efficiently respond 

to peaks of transient endogenous ROS production. Once the cell is committed 

to enter the cell cycle, mainly through cyclin D1 upregulation, the cytoplasm 

adopts a reducing trend in its redox status that makes it refractory to any further 

ROS signaling until the cell completes the M phase (Menon and Goswami, 

2007).  In this context, it can be hypothesized that photostimulation of cell 

proliferation after mild MAL treatments specifically affects cells that are in the 

early and middle G1 phase. This experimental approach opens the possibility to 

photostimulate tissues to improve its homeostatic response in processes such 

as wound healing and organ repair.  
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FIGURE LEGENDS

Figure 1. A protoporphyrin IX-dependent moderate increase of 

intracellular ROS stimulates cell proliferation in HaCaT cells. A) 

Quantification by flow cytometry of protoporphyrin IX (PpIX) accumulation and 

ROS production after PDT with MAL at different concentrations. The 

characteristic red emission under 488 nm exciting light was used to measure 

PpIX production. 2,7-dichloro-dihydrofluorescein diacetate probe was used to 

measure ROS formation. The data are the average values of three independent 

experiments and the mean ± SD values are represented. B) Representative 

fluorescent microscopy images showing PpIX production after MAL at different 

concentrations or ROS production after PDT with MAL at different 

concentrations. Phase contrast microscopy was used to evaluate cell 

morphology. Bar: 20 �m. C) Measurement of the mitotic index in cells treated 

with 0.1 mM MAL and irradiated with red light, cells treated with MAL but not 

irradiated, and cells that were neither treated with MAL nor irradiated (Control). 

Results were obtained 24 hours after treatments. The data are the average 

values of three independent experiments and the mean ± SD values are 

represented. D) Cell cycle analysis (24 hours) by flow cytometry of cells treated 

with 0.1 mM MAL and corresponding controls. The arrowhead indicates a 

strong increase of the S-phase population in 0.1mM MAL + light treated cells. 

Results are representative of three independent experiments.  

Figure 2. A sequential two-step photodynamic treatment with MAL 

significantly enhances the stimulation of cell proliferation. Quantification of 

the number of viable cells (A) and the mitotic index (B) in cells treated with a 

single round of PDT with 0.1 mM MAL at time 0 hours as compared to cells 

subjected to a second round at time 48 hours. Results are represented as the 

ratio of the % of positive (viable or mitotic) cells measured in 0.1 mM MAL + 

light (irradiated) samples with respect to 0.1 mM MAL (non irradiated) samples. 

Grey arrows indicate the time point of phototreatments. The data are the 

average values of three independent experiments and the mean ± SD values 

are represented. 
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Figure 3. Stimulation of cell proliferation after photodynamic treatment 

with MAL it is not associated to cytotoxic or genotoxic damage. A) 

Quantification of cell viability 24 hours after photodynamic treatment with 

different MAL concentrations and at different red light irradiation times. (B) 

Determination by fluorescence microscopy of histone pH2AX (upper panels) or 

TUNEL (lower panels) positive cells after photodynamic treatments with 

different MAL concentrations. Bars: 10 �m. (C) Evaluation of protein expression 

levels by immunoblot of phosphorylated histone H2AX (pH2AX) and histone H3. 

Results are representative of two different experiments. (D) Quantification of the 

% of pH2AX or TUNEL positive cells after photodynamic treatments with 

different MAL concentrations. 100-200 cells for each condition were evaluated 

in two independent experiments and the mean ± SD was represented. 

Figure 4. Stimulation of cell growth after photodynamic treatment with 

MAL depends on endogenous ROS production and it is associated to a 

transient increase in cyclin D1 expression.  A) Quantification of mitotic index 

and cell viability after 24 hours in cells treated with 0.1 mM MAL and irradiated 

with red light as compared to non-irradiated cells treated with 0.1 mM MAL in 

the presence or absence of the singlet oxygen scavenger DABCO. The data are 

the average values of three independent experiments and the mean ± SD 

values are represented. B) Time-course quantification by flow cytometry of 

cyclin D1 expression levels associated to photodynamic treatment with MAL in 

the presence or absence of DABCO. Results are represented as the ratio of 

cyclin D1 expression measured in 0.1 mM MAL + light (irradiated) samples with 

respect to 0.1 mM MAL (non irradiated) samples. The data are the average 

values of three independent experiments and the mean ± SD values are 

represented. 

Figure 5. Stimulation of cell growth after photodynamic treatment with 

MAL depends on Src kinase activity.  A) Quantification of mitotic index and 

cell viability after 24 hours in cells subjected to photodynamic treatment with 

MAL in the presence or absence of the NOX inhibitor DPI or the specific Src 

kinase inhibitor PP2. Results are represented as the ratio of the % of positive 

(mitotic or viable) cells measured in 0.1 mM MAL + light (irradiated) samples 
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with respect to 0.1 mM MAL (non irradiated) samples. The data are the average 

values of three independent experiments and the mean ± SD values are 

represented. B) Time-course quantification by flow cytometry of cyclin D1 

expression levels associated to photodynamic treatment with MAL in the 

presence or absence of DPI or PP2. Results are represented as the ratio of 

cyclin D1 expression measured in 0.1 mM MAL + light (irradiated) samples with 

respect to 0.1 mM MAL (non irradiated) samples. The data are the average 

values of three independent experiments and the mean ± SD values are 

represented. 
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Figure 3. Blázquez-Castro et al. 2011
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Figure 5. Blázquez-Castro et al. 2011
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