(51) Clasificación Internacional de Patentes:
C07C 321/10 (2006.01) A61P 7/02 (2006.01)
C07C 321/20 (2006.01) A61P 9/00 (2006.01)
C07C 335/12 (2006.01) A61P 25/28 (2006.01)
C07C 391/00 (2006.01) A61P 29/00 (2006.01)
A61K 31/095 (2006.01) A61P 31/00 (2006.01)
A61K 31/10 (2006.01) A61P 35/00 (2006.01)
A61K 31/17 (2006.01)

(21) Número de la solicitud internacional:
PCT/ES2012/000151

(22) Fecha de presentación internacional:
1 de junio de 2012 (01.06.2012)

(25) Idioma de presentación:
español

(26) Idioma de publicación:
español

(30) Datos relativos a la prioridad:
P201100639 3 de junio de 2011 (03.06.2011) ES

(71) Solicitantes (para todos los Estados designados salvo US):
UNIVERSIDAD DE SEVILLA [ES/ES]; OTRI - Pabellón de Brasil, Paseo de las Delicias, s/n, E-41013 Sevilla (ES), AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS [ES/ES]; Vicepresidente Adjunto de Transferencia del, Vicepresidencia Adjunto de Transferencia de Conocimiento, C/Serrano, 142, E-28006 Madrid (ES).

(72) Inventores:

(75) Inventores/Solicitantes (para US solamente):

(81) Estados designados (a menos que se indique otra cosa, para toda clase de protección nacional admisible): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR,

[Continúa en la página siguiente]

(54) Title: BIOACTIVE POLYPHENOLIC COMPOUNDS CONTAINING SULPHUR OR SELENIUM AND USES THEREOF

(54) Título: COMPUESTOS BIOACTIVOS POLIFENÓLICOS CONTENIENDO AZUFRE O SELENIUM Y SUS USOS

(57) Abstract: The invention relates to compounds containing at least one polyphenol group and sulphur or selenium and to the uses thereof as antioxidants and free radical scavengers. In addition, the invention relates to pharmaceutical, nutraceutical and cosmetic compositions including same.

(57) Resumen: La invención se refiere a compuestos que contienen al menos un grupo polifenol y azufre o selénio y sus usos como antioxidantes y captadores de radicales libres. Además, se refiere a las composiciones farmacéuticas, nutracéuticas y cosméticas que los incluyen.
(84) Estados designados (a menos que se indique otra cosa, para toda clase de protección regional admisible):

Publicada:
— con informe de búsqueda internacional (Art. 21(3))
— antes de la expiración del plazo para modificar las reivindicaciones y para ser republicada si se reciben modificaciones (Regla 48.2(h))
COMPUESTOS BIOACTIVOS POLIFENÓLICOS CONTENIENDO AZUFRE O SELENIO Y SUS USOS

La presente invención se refiere a unos compuestos que contienen al menos un grupo polifenol y azufre o selenio y sus usos como potentes antioxidantes y captadores de radicales libres, y por tanto de aplicación en la industria alimentaria, industria cosmética e industria farmacéutica. Por tanto, la presente invención se enmarca en el campo químico-farmacéutico.

ESTADO DE LA TÉCNICA

Los polifenoles son una amplia familia de compuestos que se encuentran, entre otros alimentos, en la fruta, la verdura, el vino, el té, el cacao y el aceite de oliva virgen extra y que muestran una marcada actividad antioxidante. Uno de los polifenoles más abundantes y más efectivos como antioxidante y atrapador de radicales libres es el hidroxitirosol, 2-(3,4-dihidroxifenil)etanol, un polifenol que predomina en el olivo (*Olea europea*), y que muestra una contrastada actividad en la prevención y tratamiento de enfermedades cardiovasculares, como la aterosclerosis, cáncer, enfermedades neurodegenerativas, diabetes u osteoporosis.

El hidroxitirosol muestra actividad anticancerígena, previene de la degeneración macular relacionado con la edad, actúa como fotoprotector evitando el daño inducido por la radiación ultravioleta, y presenta actividad como anti-inflamatorio. También presenta actividad antimicrobiana frente a patógenos, como el *Helicobacter pylori* y el *Mycoplasma neumoide*. También posee actividad anti-VIH.

Por otro lado, el azufre es un elemento químico esencial, ya que compuestos que contienen azufre como aminoácidos, proteínas, enzimas y micronutrientes poseen importantes funciones en la bioquímica celular. Los compuestos
organosulfurados naturales se encuentran frecuentemente en vegetales, particularmente en los vegetales Allium y Cruciferous. En especial ajo, cebolla, cebolleta, cebollinos y puerro son ricos en dialil sulfuro, dialil disulfuro, dialil trisulfuro, S-alil-L-cisteina sulfóxido y ajoeno. El brócoli, la col y las coles de Bruselas son ricas en sulforafano.

En derivados organosélénicos, estudios epidemiológicos y clínicos en humanos, así como ensayos de laboratorio, apoyan el papel protector del selenio frente al desarrollo del cáncer. Los resultados han demostrado que un suplemento de selenio en la dieta inhibe la proliferación de células cancerígenas, induce la apoptosis de las células tumorales, suprime la metástasis en animales y reduce en humanos el riesgo de cáncer de próstata, de pulmón, de mama y colorrectal. Se ha demostrado que tanto la dosis, como la forma química en la que se administre el selenio, son factores críticos en la respuesta celular. Existen evidencias de que muchas de las numerosas actividades que tiene el selenio en los sistemas biológicos se deben a su capacidad de actuar como antioxidante (Naithani, R. Mini-Rev. Med. Chem. 2008, 8, 657–668). Los selenocompuestos han mostrado una mayor actividad anticancerígena en comparación con sus isómeros de azufre.
Las selenoureas son compuestos de interés tanto desde el punto de vista biológico como sintético. En relación con su actividad biológica, se ha descrito el uso de selenoureas como agentes despigmentantes, debido a su capacidad de inhibición de la tirosinasa, como atrapadores de radicales superóxido y como potenciales agentes radioprotectores. El método más utilizado para la obtención de selenoureas es la reacción de isoselenocianatos con aminas.

Determinados selenuros y diselenuros han mostrado actividad antioxidante, antinociceptiva, antiinflamatoria y antidepresiva. En concreto, el diselenuro de difenilo (PhSe-SePh) inhibe la peroxidación lipídica, actúa como antinociceptivo, antiulceroso, ansiolítico, antiinflamatorio y antidepresivo, y tiene efecto neuroprotector e hipoglucémico. Dicho compuesto y otros análogos han exhibido actividad hemolítica y genotóxica en células del plasma humano.

El campo de aplicación de este tipo de compuestos con poder antioxidante, es tan amplio que puede ser de interés la búsqueda de compuestos alternativos o que tengan propiedades mejoradas a los anteriormente citados.

DESCRIPCIÓN DE LA INVENCIÓN

La presente invención se refiere a compuestos cuya estructura resulta de la combinación de la función polifenólica (monohidroxi, dihidroxi o polihidroxi fenólicas, por ejemplo hidroxitirosilo) con grupos funcionales conteniendo azufre y/o selenio, dando lugar a estructuras tales como tiol, disulfuro, tioacetato, tioure, selenuro, diselenuro, selenonio y selenourea, para la potenciación y mejora de la actividad biológica de polifenoles. Estos compuesto mejoran de forma notable las propiedades como antioxidante y secuestrante de radicales libres en distintos sistemas y matrices, por ejemplo en medio acuoso, medio lipófilo, en emulsión y en células microsómicas.
Los compuestos de la presente invención también han mostrado actividad como inhibidores de la tirosinasa, implicada en reacciones de pardeamiento enzimático.

Los compuestos de la invención son potentes antioxidantes y captadores de radicales libres y de esta manera son útiles para su aplicación en los siguientes sectores de actividad: industria alimentaria, industria cosmética e industria farmacéutica. En concreto para la industria farmacéutica, el uso de estos compuestos irá encaminado a la obtención de nuevos fármacos o formulaciones que los contengan, y serían útiles en la prevención y tratamiento de enfermedades cardiovasculares, neurodegenerativas, y tumorales; además como antiinflamatorios, antimicrobianos y antivirales.

Dentro de la industria alimentaria pueden ser útiles para la formulación de alimentos funcionales o como aditivos para prevenir el deterioro del alimento mejorando sus propiedades físico-químicas, organolépticas o nutricionales. Y en la industria cosmética, estos compuestos podrán utilizarse como componentes de cremas solares y antienvejecimiento por su capacidad de captación de radicales libres.

Por tanto, un primer aspecto de la presente invención se refiere al uso de un compuesto de fórmula general (I) para la elaboración de una composición antioxidante o como oxidante:

![Chemical Structure](attachment:image.png)

(I)

donde: R^1 y R^2 son iguales o diferentes y se seleccionan independientemente de entre hidrógeno (H), alquilo (C$_1$-C$_4$) o acetilo (-COCH$_3$).
Preferiblemente R^1 y/o R^2 son hidrógeno, metilo o acetilo y más preferiblemente R^1 y R^2 son hidrógeno.

R^3 se selecciona de entre hidrógeno, alquilo (C_1-C$_4$), acetilo, $C(=Z)$-NH-R7, el grupo de fórmula (II) o el grupo de fórmula (III):

![Diagrama de fórmulas II y III](image)

X se selecciona de entre S, Se, NH o X'-R4; donde X' es S o Se y R^4 es el grupo de fórmula (III);

R^5 y R^6 son iguales o diferentes y se seleccionan independientemente de entre hidrógeno, alquilo (C_1-C$_4$) o acetilo. Preferiblemente R^5 y/o R^6 son hidrógeno, metilo o acetilo;

Y es S o Se;

Z es S o Se; y

R^7 se selecciona de entre alquilo (C_1-C$_{18}$), fenilo (-C$_6$H$_5$), sustituido o sin sustituir o bencilo (-CH$_2$-C$_6$H$_5$), sustituido o sin sustituir.

El término "alquilo" se refiere en la presente invención a cadenas alifáticas, lineales o ramificadas, sustituidas o no sustituidas, en el caso de R^1, R^2, R^3, R^5 y R^6 tienen de 1 a 4 átomos de carbono, preferiblemente se selecciona de entre un alquilo C$_1$-C$_2$, más preferiblemente el grupo alquilo es un metilo y en el caso de R^7 tienen de 1 a 18 átomos de carbono, preferiblemente se selecciona de entre un alquilo C$_1$-C$_9$, más preferiblemente el grupo alquilo es un butilo. Ejemplos de grupos alquilo, pero sin limitarse, son metilo, etilo, n-propilo, i-propilo, n-butilo, tert-butilo o sec-butilo. Opcionalmente el grupo alquilo puede estar sustituido.
Por “fenilo” se entiende al grupo -C₆H₅, que puede estar sustituido o sin sustituir. El grupo fenilo sustituido puede estar sustituido con al menos un sustituyente, preferiblemente está sustituido con un sustituyente y más preferiblemente el sustituyente estaría en posición para. Los sustituyentes pueden ser seleccionados de lista que comprende, pero no limita, hidrógeno, alquilo (C₁-C₄), sustituido o sin sustituir, hidroxilo, alcoxilo, amina, tiourea o selenoureia, y estos sustituyentes a su vez pueden estar opcionamente sustituidos. Preferiblemente los sustituyentes son hidrógeno, alquilo como se ha definido anteriormente y alcoxilo.

Por “bencilo” se entiende el grupo (-CH₂-C₆H₅), que puede estar sustituido o sin sustituir. El grupo fenilo sustituido puede estar sustituido con al menos un sustituyente que se puede ser seleccionados de lista que comprende, pero no limita, hidrógeno, alquilo (C₁-C₄) sustituido o sin sustituir, hidroxilo, alcoxilo, amina, tiourea o selenoureia, y estos sustituyentes a su vez pueden estar opcionamente sustituidos. Preferiblemente el grupo bencilo no está sustituido.

Por “alcoxilo” se entiendo el grupo –ORa, donde Ra es un grupo alquilo(C₁-C₄) como el descrito anteriormente. Preferiblemente el alcoxilo es metoxilo.

En una realización preferida X es S o Se, y más preferiblemente R³ es hidrógeno, acetilo.

En otra realización preferida X es S o Se y R³ es el grupo de fórmula (II), dando lugar al compuesto (Ia):

![Diagrama](la)
donde: \(R^1, R^2, R^5, R^6 \) e \(Y \) se han definido anteriormente.

En otra realización preferida \(X \) es S o Se y \(R^3 \) es el grupo de fórmula (III), dando lugar al compuesto (lb):

\[
\text{(lb)}
\]

donde: \(R^1, R^2, R^5, R^6 \) se han definido anteriormente.

En otra realización preferida, \(X \) es \(X'-R^4 \) y más preferiblemente \(R^3 \) es el grupo de fórmula (III), dando lugar al compuesto de fórmula (lc):

\[
\text{(lc)}
\]

donde: \(X', R^1, R^2, R^5, R^6 \) se han definido anteriormente, \(R^5 \) y \(R^6 \) pueden ser iguales o diferentes entre sí o entre los \(R^3 \) y \(R^4 \) a los que pertenecen. \(A' \) es un anión que preferiblemente es un halógeno y aun más preferiblemente el anión es de bromo. Aún más preferiblemente \(X' \) es Se.

En otra realización preferida \(X \) es NH, más preferiblemente \(R^3 \) es el grupo -\(C(=Z)-\text{NH-}R^7 \) dando lugar a un compuesto de fórmula (ld):

\[
\text{(ld)}
\]
donde: Z, R¹, R² y R⁷ se han definido anteriormente. Preferiblemente cuando Z es S, R⁷ se selecciona de entre butilo, fenilo, fenilo sustituido por al menos un grupo alquilo (C₁-C₄) o bencilo, más preferiblemente R⁷ se selecciona de entre butilo, fenilo, fenilo sustituido por un metilo o bencilo. Cuando Z es Se, preferiblemente R⁷ es un fenilo, sustituido o sin sustituir, más preferiblemente el grupo fenilo no está sustituido o está sustituido por un grupo alquilo (C₁-C₄) o un grupo alcoxilo, tal y como se han definido anteriormente.

En una realización preferida, el compuesto se selecciona de la lista que comprende:

4-(2-Acetiltioteil)-1,2-diacetoxibenceno (8)
4-(2-Sulfaniletilet)benceno-1,2-diol (10)
Disulfuro de bis(3,4-dihidroxifenetilo) (11)
Diselenuro de bis (3,4-dihidroxifenetilo) (13)
Bromuro de tris(3,4-dihidroxifenetilo)selenonio (17)
1-Butil-3-(3,4-dihidroxifenetilo) tiourea (24)
1-(3,4-Dihidroxifenetilo)-3-(p-tolil) tiourea (25)
1-Bencil-3-(3,4-dihidroxifenetilo)tiourea (26)
1-Fenil-3-(3,4-dihidroxifenetilo) tiourea (27)
1-(3,4-Dihidroxifenetilo)-3-fenil selenoureia (31)
1-(3,4-Dihidroxifenetilo)-3-(p-tolil) selenoureia (32)
1-(3,4-Dihidroxifenetilo)-3-(p-metoxifenil) selenoureia (33)
Diselenuro de bis(3,4-diacetoxifenetilo) (12)
Selenuro de bis (3,4-dimetoxifenetilo) (15)
Diselenuro de bis(3,4-dimetoxifenetilo) (16) o
Bromuro de tris (3,4-diacetoxyfenetilo)selenonio (18).

Los compuestos de la invención descritos anteriormente al poseer propiedades antioxidantes se puede utilizar como aditivos para alimentos, para la elaboración de una composición farmacéutica, alimenticia, nutracéutica o cosmética. Además, debido a sus propiedades estos compuestos se pueden utilizar como bloqueadores de radicales libres.

Otro aspecto de la presente invención se refiere al uso del compuesto de fórmula general (I) descrito anteriormente, para la elaboración de un medicamento.

Otro aspecto de la invención se refiere al uso del compuesto de fórmula general (I), descrito anteriormente para la elaboración de un medicamento para el tratamiento y/o la prevención de enfermedades inflamatorias, tumorales, neurodegenerativas, relacionadas con la coagulación sanguínea actuando como antiagregante plaquetarios, como por ejemplo pero sin limitarse trombosis o enfermedades cardiovasculares, como el infarto de miocardio, infecciosas, actuando como agente antimicrobianos o antivirales, o para su uso como inhibidor de tirosinasa.

Otro aspecto de la presente invención se refiere al compuesto de fórmula general (I):

![Chemical structure](image-url)
donde: \(R^1 \) y \(R^2 \) son iguales o diferentes y se seleccionan independientemente de entre hidrógeno (H), alquilo (C\(_1\)-C\(_4\)) o acetilo (-COCH\(_3\)). Preferiblemente \(R^1 \) y/o \(R^2 \) son hidrógeno, metilo o acetilo y más preferiblemente \(R^1 \) y \(R^2 \) son hidrógeno.

\(R^3 \) se selecciona de entre -C(=Z)-NH-R\(^7\), el grupo de fórmula (II) o el grupo de fórmula (III):

![Diagrama](image)

X se selecciona de entre S, Se, NH o X'-R\(^4\); donde X' es S o Se y R\(^4\) es el grupo de fórmula (III);

\(R^5 \) y \(R^6 \) son iguales o diferentes y se seleccionan independientemente de entre hidrógeno, alquilo (C\(_1\)-C\(_4\)) o acetilo. Preferiblemente \(R^5 \) y/o \(R^6 \) son hidrógeno, metilo o acetilo;

- Y es S o Se;
- Z es S o Se; y

\(R^7 \) se selecciona de entre alquilo (C\(_1\)-C\(_{18}\)), fenilo (-C\(_6\)H\(_5\)), sustituido o sin sustituir o bencilo (-CH\(_2\)-C\(_6\)H\(_5\)), sustituido o sin sustituir.

En una realización preferida el compuesto de la invención puede ser un compuesto de fórmula (Ia), (Ib), (Ic) o (Id), tal y como se ha definido anteriormente.

En otra realización preferida, el compuesto de la invención se selecciona de la lista que comprende:

Disulfuro de bis(3,4-dihidroxifenetilo) (11)
Diselenuro de bis (3,4-dihidroxifenetilo) (13)
Bromuro de tris(3,4-dihidroxifenetil)selenonio (17)
1-Butil-3-(3,4-dihidroxifenetil) tiourea (24)
1-(3,4-Dihidroxifenetil)-3-(p-tolil) tiourea (25)
1-Bencil-3-(3,4-dihidroxifenetil)tiourea (26)
1-Fenil-3-(3,4-dihidroxifenetil) tiourea (27)
1-(3,4-Dihidroxifenetil)-3-fenil selenourea (31)
1-(3,4-Dihidroxifenetil)-3-(p-tolil) selenourea (32)
1-(3,4-Dihidroxifenetil)-3-(p-metoxifenil) selenourea (33)
Diselenuro de bis(3,4-diacetoxifenetilo) (12)
Selenuro de bis (3,4-dimetoxfenetilo) (15)
Diselenuro de bis(3,4-dimetoxfenetilo) (16) o
Bromuro de tris (3,4-diacetoxifenetil)selenonio (18).

Otro aspecto de la presente invención se refiere a una composición que comprende al menos un compuesto de fórmula (I) descrito anteriormente.

En una realización preferida la composición es una composición alimentaria, nutracéutica, cosmética o farmacéutica.

En la presente invención se entiende como "nutracéutica" o "alimento funcional", a aquellos alimentos que son elaborados no sólo por sus características nutricionales sino también por poseer un efecto beneficioso sobre la salud, es decir, que pueden cumplir una función específica como puede ser el mejorar la salud y reducir el riesgo de contraer enfermedades. Para ello se les agregan componentes biológicamente activos, como minerales, vitaminas, ácidos grasos, fibra alimenticia o antioxidantes, etc., en este caso concreto un antioxidante.

Por "alimento" entendemos cualquier composición líquida, sólida o semisólida apta para el consumo humano o animal.
Cuando tenemos una composición farmacéutica, está composición además puede comprende un vehículo farmacéuticamente aceptable. Está composición también puede contener otro principio activo.

Los "vehículos farmacéuticamente aceptables" que pueden ser utilizados en dichas composiciones son los vehículos conocidos por un experto en la materia.

Como ejemplos de preparaciones farmacéuticas se incluye cualquier composición sólida (comprimidos, píldoras, cápsulas, gránulos, etc.) o líquida (geles, soluciones, suspensiones o emulsiones) apropiadas para su administración oral, nasal, tópica o parenteral, preferiblemente oral, tópica o parenteral.

La presente invención también se refiere a un método de tratamiento y/o prevención de las enfermedades descritas anteriormente en un mamífero, preferiblemente un humano, que comprende la administración de una cantidad terapéuticamente efectiva de una composición que comprende al menos un compuesto de fórmula (I) de la invención. Preferiblemente, la administración de la composición se puede realizar por vía oral, nasal, tópica o parenteral, más preferiblemente por vía oral, tópica o parenteral.

En el sentido utilizado en esta descripción, el término "cantidad terapéuticamente efectiva" se refiere a la cantidad de la composición calculada para producir el efecto deseado y, en general, vendrá determinada, entre otras causas, por las características propias de la composición, la edad, estado y antecedentes del paciente, la severidad de la enfermedad, y de la ruta y frecuencia de administración.

A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas
y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y figuras se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención.

BREVE DESCRIPCIÓN DE LAS FIGURAS

FIG. 1.- Representa el efecto inhibidor de la actividad tirosinasa del diselenuro, compuesto 13, utilizando tirosina como sustrato.

EJEMPLOS

Ejemplo 1.- Síntesis de los compuestos de la invención.

A continuación se muestran a modo de ejemplo ilustrativo y no limitativo, algunas rutas sintéticas para obtener los compuestos derivados del hidroxi-tirosol.

Ejemplos de síntesis de tioderivados del hidroxi-tirosol (1).

Se han preparado los derivados 2, 3 y 4 por reacción de hidroxi-tirosol con CCl₄ y PPh₃, CBr₄ y PPh₃, y una mezcla de I₂, PPh₃ e imidazol, respectivamente (Esquema 1). Así mismo, se han preparado sus correspondientes derivados acetilados 5, 6 y 7, por tratamiento con Ac₂O (Esquema 1).
Esquema 1

Siendo Ph fenilo, Ac acetilo e ImH imidazol.

Se llevó a cabo la introducción del átomo de azufre por tratamiento con AcSK de los haloderivados 2-7 (Esquema 2).

Esquema 2

La des-O-acilación de 4-(2-acetiltioetil)-1,2-diacetoxicenceno (8) en medio ácido condujo, según las condiciones de reacción, al etanotioato de S-2-(3,4-dihidroxicenceno)etilo (9), al 4-(2-sulfaniletil)benceno-1,2-diol (10) y al disulfuro de bis(3,4-dihidroxifeniletilo) (11) (Esquema 2).

Llevando a cabo la des-O-acilación de 8 en medio básico, se obtuvo el disulfuro 11 (Esquema 2). Dado el interés que presenta el disulfuro de hidroxiptiroso 11,
que incorpora dos fragmentos de catecol y dos átomos de azufre en su estructura y del que no existe ningún antecedente, se ha llevado a cabo su síntesis por tratamiento de 2-7 con NaSH, en solo dos pasos, con un rendimiento casi cuantitativo (Esquema 3).

![Esquema 3](image)

Se ha llevado a cabo la primera síntesis de selenuros y diselenuros derivados de hidroxitirosol utilizando selenuro y diselenuro de sodio. Se ha generado in situ el selenuro por reacción de selenio elemental con borohidruro de sodio bajo atmósfera inerte. Para la obtención del diselenuro Na$_2$Se$_2$ se hace reaccionar el Na$_2$Se con un equivalente extra de Se elemental.

Las soluciones fuertemente básicas en las que se prepara el selenuro y el diselenuro sódico se neutralizan añadiendo CO$_2$ sólido hasta formar un tampón carbónico/bicarbonato. Sobre estas soluciones se añade bajo atmósfera inerte 5, 6 o 7 formándose el diselenuro de bis(3,4-diacetoxifenil) 12 tanto a partir del diselenuro sódico como del selenuro sódico. La desacetilación del diselenuro 12 dio lugar al diselenuro de bis(3,4-diacetoxifenil) (13) (Esquema 4).

![Esquema 4](image)
La reacción de los haluros de 3,4-dimetoxifenetilo 14a-c con Se$^{2-}$ y con Se$_2$$^{2-}$ permitió obtener el selenuro 15 y el diselenuro 16 (Esquema 5).

Estos mismos procedimientos se llevaron a cabo a partir de los haluros 2-4 para obtener directamente el diselenuro, pero los rendimientos de reacción fueron bajos, además de detectarse la presencia de impurezas.

En la desprotección del diselenuro O-metilado 16 se obtuvo el diselenuro 13 (Esquema 6). Sin embargo, a partir del selenuro 15 se obtuvo el bromuro de selenonio 17 (Esquema 7).

Con objeto de obtener selenoderivados más lipófilos y estables se procedió a la acetilación del diselenuro 13 y del la sal de selenonio 17 obteniéndose 12 y 18, respectivamente (Esquema 8).
Tioureas y selenoureas derivadas de la dopamina

Se prepararon una serie de tioureas y selenoureas derivadas de la dopamina. Para la síntesis de tioureas se hizo reaccionar la dopamina hidrocloruro 19 con alquíl y aril isotiocianatos. Por ejemplo, las nuevas tioureas 24-27 se obtuvieron por reacción de los isothiocianatos 20-23 con dopamina hidrocloruro 19, utilizando trietilamina como base y metanol como disolvente (Esquema 9).

De manera similar, se describen las primeras selenoureas derivadas de la dopamina por reacción de aril isoselenocianatos con dopamina hidrocloruro. Los aril isoselenocianatos se prepararon a partir de las correspondientes formamidas según un procedimiento descrito (López O.; Maza, S.; Ulgar, V.; Maya, I.; Fernández-Bolaños, J. G. *Tetrahedron* 2009, 65, 2556-2566).

Se obtuvieron las selenoureas 31-33 por reacción de los correspondientes isoselenocianatos 28-30 con clorhidrato de dopamina con rendimientos casi cuantitativos (Esquema 10).
ENSAYOS DE ACTIVIDAD ANTIOXIDANTE IN VITRO

A continuación se representan los resultados obtenidos en las pruebas de poder reductor, actividad antirradical DPPH, actividad antirradical ABTS, inhibición de la oxidación primaria e inhibición de la oxidación secundaria para los compuestos 8-11 (Tabla 1), el diselenuro 13, el selenonio 17, las selenoureas 31-33 (Tabla 2) y las tioureas 24-27 (Tabla 3).

Poder reductor del hierro.

Actividad antirradical. Captación de radicales DPPH.

La actividad antirradical expresada como EC₅₀ frente al DPPH representa la cantidad de antioxidante necesario para disminuir la concentración de DPPH al 50%. Se utilizó el método de Sánchez- Moreno (Sánchez- Moreno, C.; Larrauri,

Actividad antirradical. Captación de radicales ABTS.

Inhibición de la oxidación primaria del ácido linoleico en emulsión.
Método del tiocianato férrico.
Se empleó el método de Mitsuda y col. (Mitsuda, H.; Yasumoto, K.; Iwami, K. *Eiyo to Shokuryo*, 1966, 19, 210–214) con algunas modificaciones, basado en la oxidación del ácido linoleico en emulsión, inducida por ABAP y por calentamiento. Durante este proceso se forman radicales peróxido que oxidan el Fe$^{2+}$ a Fe$^{3+}$, el cual forma un complejo de color rojo con el anión SCN$^{-}$, el cual se mide espectrofotométricamente. La función de los antioxidantes consiste en reducir el Fe$^{3+}$, con lo que se evita la formación de complejos coloreados.(Gülçin, I. *Life Sci.* **2006**, *78*, 803 – 811) Los valores obtenidos se representaron en función del EC$_{50}$, es decir, la concentración de oxidante a la cual la oxidación primaria desciende en un 50%, expresado en unidades mM.

Inhibición de la oxidación secundaria del ácido linoleico en emulsión.
Método del ácido tiobarbitúrico (TBA).
Se utilizó el procedimiento descrito por Moon y col.,(Moon, J.K.; Shinamoto, T. *J Agric Food Chem.* **2009**, *57*, 1655–1666) con algunas modificaciones, basado en la medida de la cantidad de malondialdehído formado por oxidación del
ácido linoleico (inducida por ABAP y calentamiento prolongado), que reacciona con ácido tiobarbitúrico (TBA) formando un complejo coloreado. Con este método se mide la concentración de las especies reactivas al ácido tiobarbitúrico (TBARS). Los resultados obtenidos se expresaron en función del EC$_{50}$ en unidades mM.

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>P_R (mM Trolox)</th>
<th>Actividad antirradical DPPH EC$_{50}$ (mM)</th>
<th>Ox. Primaria EC$_{50}$ (mM)</th>
<th>Ox. Secundaria TBARS$_{25}$ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>6,74</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>0,84</td>
<td>1,87</td>
<td>2,37</td>
<td>1,61</td>
</tr>
<tr>
<td>10</td>
<td>2,76</td>
<td>0,98</td>
<td>1,34</td>
<td>0,80</td>
</tr>
<tr>
<td>11</td>
<td>2,58</td>
<td>1,18</td>
<td>0,33</td>
<td>0,71</td>
</tr>
<tr>
<td>HT</td>
<td>1,11</td>
<td>1,43</td>
<td>4,92</td>
<td>0,94</td>
</tr>
</tbody>
</table>

En cuanto al poder reductor, el mejor resultado con diferencia se consiguió con el tiol 10, seguido del disulfuro 11 (2,76 mM y 2,58 mM, respectivamente, medido en equivalentes de Trolox), que han mostrado un incremento superior al 200% con respecto al poder reductor de 9 (0,85 mM), es decir, tres veces el del HT. El derivado 9 presenta un poder reductor similar al del HT (1,11 mM), mientras que el compuesto 8 no muestra poder reductor.

En relación con la actividad antirradicalaria el mejor resultado se consiguió con el tiol 10, seguido del disulfuro 11. La capacidad antirradicalaria de 9 no es destacable, mientras que el compuesto 8 es inactivo.
Respecto a la inhibición de la oxidación primaria, cabe destacar el elevado potencial del disulfuro 11, más de diez veces superior al del HT. También son destacables los datos obtenidos para el tiol 10 y el tiocetato 11, mejores que los del hidroxitiroisol. Aunque el derivado 8 mostró inhibición, su valor no mejora al del HT, si bien es destacable al tratarse un derivado con su grupo catecol protegido.

Y respecto a la oxidación secundaria, son los que presentan de nuevo un mayor potencial con respecto al HT (hidroxitiroisol).

De los datos de la tabla para la oxidación secundaria, se deduce el elevado poder inhibidor de los compuestos sulfurados, especialmente el tiol 10 y el disulfuro 11, con EC$_{50}$ de 0,80 y 0,71 mM, respectivamente.

Tabla 2: Valores obtenidos para las pruebas de actividad biológica in vitro del selenuro 13, el selenonio 17, y las selenoureas 48-20 31-33.

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>P_R (mM Trolox)</th>
<th>Actividad antirradical DPPH EC$_{50}$ (mM)</th>
<th>Actividad antirradical ABTS EC$_{50}$ (mM)</th>
<th>Ox. Primaria EC$_{50}$ (mM)</th>
<th>Ox. Secundaria EC$_{50}$ (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>5,61</td>
<td>0,64</td>
<td>0,031</td>
<td>0,43</td>
<td>0,26</td>
</tr>
<tr>
<td>17</td>
<td>6,02</td>
<td>0,51</td>
<td>0,021</td>
<td>0,42</td>
<td>0,17</td>
</tr>
<tr>
<td>31</td>
<td>2,78</td>
<td>0,77</td>
<td>0,055</td>
<td>1,34</td>
<td>0,40</td>
</tr>
<tr>
<td>32</td>
<td>2,03</td>
<td>0,72</td>
<td>0,059</td>
<td>1,09</td>
<td>0,38</td>
</tr>
<tr>
<td>33</td>
<td>2,29</td>
<td>0,80</td>
<td>0,028</td>
<td>1,99</td>
<td>0,22</td>
</tr>
<tr>
<td>HT</td>
<td>1,11</td>
<td>1,43</td>
<td>0,210</td>
<td>4,92</td>
<td>0,94</td>
</tr>
</tbody>
</table>

El poder reductor de las selenoureas es aproximadamente el doble que el del hidroxitiroisol. Para el selenuro 13 y el selenonio 17 se obtuvieron valores hasta más de 5 veces superiores, lo cual indica el elevado potencial reductor de los derivados del selenio.

Los valores de captación de radicales DPPH obtenidos para los selenocompuestos 13, 17 y 31-33 demuestran que todos los selenocompuestos
son buenos captadores de radicales a baja concentración, y en todos los casos esta capacidad es mayor que la del hidroxitirosol (HT). Especialmente significativo es el resultado obtenido para el selenonio 17, el cual presenta un potencial de captación de radicales libres casi tres veces mayor que el del HT.

De los datos obtenidos para la captación de radicales ABTS se deduce que al igual que en el caso del DPPH, el selenonio 17 es el que presenta menor EC₅₀, lo cual indica su elevada capacidad para secuestrar radicales libres, 10 veces mayor que el hidroxitirosol. Los compuestos testados poseen todos un poder de captación de radicales ABTS mucho mayor que el del HT. Dentro de las selenoureas, el derivado 33 es el que presenta un valor superior a sus homólogos selenoureídicos.

Los resultados obtenidos muestran la elevada capacidad e inhibición de la oxidación primaria del diselenuro 13 y del selenonio 17, más de 10 veces superior al HT. También son destacables los datos obtenidos para las selenoureas 31-33. En todos los casos los valores obtenidos superan a los del hidroxitirosol. Los selenoderivados 13 y 17 muestran un poder de reducción de la oxidación primaria superiores a las selenoureas.

De los datos de la tabla para la oxidación secundaria, se deduce el elevado poder inhibidor de los compuestos del selenio, especialmente el selenonio 17, cuyo EC₅₀ es tan sólo 0,17 mM. Las diferencias entre los valores de EC₅₀ obtenidos para los organoselenoderivados 13 y 31-33 y el hidroxitirosol muestran el magnífico poder antioxidante en cuanto a oxidación secundaria, y por tanto de inhibición de formación de especies reactivas al ácido tiobarbitúrico (TBARS) de estos compuestos.

Tabla 3: Valores obtenidos para las pruebas de actividad biológica in vitro de las tioureas 24-27.

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>PR (mM Trolox)</th>
<th>Actividad antirradical</th>
<th>Actividad antirradical</th>
<th>Ox. Primaria</th>
<th>Ox. Secundaria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DPPH</td>
<td>ABTS</td>
<td>EC₅₀</td>
<td>EC₅₀ (mM)</td>
</tr>
<tr>
<td></td>
<td>EC<sub>50</sub> (mM)</td>
<td>EC<sub>50</sub> (mM)</td>
<td>(mM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------------</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2,30</td>
<td>1,12</td>
<td>0,050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2,38</td>
<td>1,01</td>
<td>0,040</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>1,43</td>
<td>1,00</td>
<td>0,029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2,86</td>
<td>1,20</td>
<td>0,057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HT</td>
<td>1,11</td>
<td>1,43</td>
<td>0,210</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Para el poder reductor de los tioderivados, en todos los casos se obtuvieron valores superiores a los del hidroxiitirosol. La tiourea 27 muestra un poder reductor unas 25 veces superior al del HT.

Los valores de EC₅₀ (mM) obtenidos en la prueba de captación de radicales DPPH para las tioureas 24-27 indican que en todos los casos el poder antirradical es superior al del hidroxiitirosol.

Los resultados obtenidos para el EC₅₀ (mM) en la prueba de captación de radicales libres ABTS superan con creces a los del HT, entre 3 y 7 veces mejores. La tiourea 26 es la que presenta un mejor valor.

En el ensayo de inhibición de la oxidación primaria para las tioureas 24-27, éstas muestran mejores valores que en el HT, entre 2 y 5 veces mejores que el HT.

Los datos obtenidos en las pruebas de inhibición de la oxidación secundaria del ácido linoleico para las tioureas 24-27 muestran que éstas son entre 1,7 y 3 veces mejores que el HT.

ENSAYOS DE ACTIVIDAD ANTIOXIDANTE EX VIVO

Inhibición de peroxidación microsomal

Los productos a ensayar se incubaron, siguiendo el protocolo de Mitchell y col. (Mitchell, J.H.; Gardner, P.T.; McPhail, D.B.; Morrice, P.C.; Coliïns, A.R.;

Los resultados obtenidos en los ensayos de inhibición de oxidación lipídica en microsomas para el tiohidroxitiroisol **10**, comparados con el HT y el α-tocoferol, utilizando como referencias microsomas de ratas con dieta deficiente en vitamina E (-VE), y ratas con dieta adecuada en vitamina E (+VE), aparecen representados en la Tabla 4.

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Concentración (mM)</th>
<th>% de inhibición a la oxidación lipídica en células de microsomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-VE)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(+VE)</td>
<td>-</td>
<td>72,60</td>
</tr>
<tr>
<td>10</td>
<td>0,250</td>
<td>85,94</td>
</tr>
<tr>
<td>10</td>
<td>0,100</td>
<td>84,84</td>
</tr>
<tr>
<td>10</td>
<td>0,050</td>
<td>39,72</td>
</tr>
<tr>
<td>HT</td>
<td>0,250</td>
<td>-35,18</td>
</tr>
<tr>
<td>HT</td>
<td>0,100</td>
<td>-16,66</td>
</tr>
<tr>
<td>HT</td>
<td>0,050</td>
<td>25,8</td>
</tr>
</tbody>
</table>
El tioderivado 10 muestra unos valores de inhibición extraordinarios, prácticamente iguales a los del α-tocoferol, a concentraciones de 0,250 y 0,100 mM. A concentración 0,050 mM los valores de inhibición siguen siendo importantes, alcanzando casi el 40%. En todos los casos estos valores son superiores a los del HT, que a concentraciones elevadas se comporta como prooxidante, favoreciendo la oxidación en lugar de inhibirla.

Los datos obtenidos a partir de las pruebas de inhibición de la peroxidación microsomal para el disulfuro 11 en un amplio rango de concentraciones, comparado con el α-tocoferol se expresan en la Tabla 5.

Tabla 5. Inhibición de la oxidación lipídica en células de microsomas con el disulfuro 11 y α-tocoferol.

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Concentración (µM)</th>
<th>% de inhibición a la oxidación lipídica en células de microsomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-VE)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(+VE)</td>
<td>-</td>
<td>89,25</td>
</tr>
<tr>
<td>11(^a)</td>
<td>2000</td>
<td>81,23</td>
</tr>
<tr>
<td>11</td>
<td>1000</td>
<td>87,11</td>
</tr>
<tr>
<td>11</td>
<td>500</td>
<td>86,95</td>
</tr>
<tr>
<td>11</td>
<td>250</td>
<td>86,18</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>84,8</td>
</tr>
<tr>
<td>11</td>
<td>50</td>
<td>78,54</td>
</tr>
<tr>
<td>11</td>
<td>40</td>
<td>81,42</td>
</tr>
<tr>
<td>11</td>
<td>20</td>
<td>70,08</td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>24,3</td>
</tr>
<tr>
<td>11(^)</td>
<td>0,5</td>
<td>-4,82</td>
</tr>
<tr>
<td>α-Tocoferol(^a)</td>
<td>40</td>
<td>35,97</td>
</tr>
<tr>
<td>α-Tocoferol</td>
<td>20</td>
<td>31,85</td>
</tr>
<tr>
<td>α-Tocoferol</td>
<td>5</td>
<td>6,73</td>
</tr>
<tr>
<td>α-Tocoferol</td>
<td>0,5</td>
<td>3,91</td>
</tr>
</tbody>
</table>

\(^a\) 10 disuelto en EtOH/MeOH 1:1. \(^b\) HT y α-tocoferol disueltos en EtOH.
11 y α-tocoferol disueltos en EtOH

Los resultados fueron excelentes, ya que para bajas concentraciones el efecto del compuesto es incluso mejor que el del α-tocoferol. Para el rango de concentraciones entre 1000 y 100 μM, los microsomas tratados con el tiohidroxitirosol muestran valores análogos a los microsomas +VE.

Los resultados obtenidos para el diselenuro 13 en concentraciones 0,250 mM, 0,100 mM y 0,050 mM, y el selenonio 17 en concentraciones finales de 152 mg/l, 60,8 mg/l y 30,4 mg/l se muestran en las Tabla 6.

Tabla 6. Inhibición de la oxidación lipídica en células de microsomas con el diselenuro 13 y el selenonio 17.

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Concentración</th>
<th>% de inhibición a la oxidación lipídica en células de microsomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-VE)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(+VE)</td>
<td>-</td>
<td>76,36</td>
</tr>
<tr>
<td>13</td>
<td>0,250 mM</td>
<td>90,95</td>
</tr>
<tr>
<td>13</td>
<td>0,10 mM</td>
<td>85,69</td>
</tr>
<tr>
<td>13</td>
<td>0,050 mM</td>
<td>84,56</td>
</tr>
<tr>
<td>17</td>
<td>0,250 mM</td>
<td>43,67</td>
</tr>
<tr>
<td>17</td>
<td>0,100 mM</td>
<td>-5,54</td>
</tr>
<tr>
<td>17</td>
<td>0,050 mM</td>
<td>-75,93</td>
</tr>
<tr>
<td>α-Tocoferol²</td>
<td>0,25 mM</td>
<td>92,31</td>
</tr>
<tr>
<td>α-Tocoferol²</td>
<td>0,100 mM</td>
<td>89,63</td>
</tr>
<tr>
<td>α-Tocoferol²</td>
<td>0,050 mM</td>
<td>90,37</td>
</tr>
<tr>
<td>Disolvente</td>
<td>-</td>
<td>-11,75</td>
</tr>
</tbody>
</table>

²13, 17 y α-tocoferol disueltos en EtOH

El selenonio 17 presenta una inhibición significativa a concentración 0,266 0,250 mM, y cuando es menor se convierte en prooxidante, es decir, favorece la oxidación en lugar de inhibirla. Sin embargo, el diselenuro 13 es un potentísimo inhibidor de la oxidación en microsomas a cualquiera de las concentraciones de ensayo, presentando valores análogos a los que proporcionan el α-tocoferol o los microsomas +VE, provenientes de ratas que no han sido sometidas a estrés oxidativo debido a una deficiencia de vitamina E.
Los valores obtenidos para las selenoureas 31-33 aparecen representados en la Tabla 7.

Tabla 7. Inhibición de la oxidación lipídica en células de microsomas con las selenoureas 31-33.

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Concentración (mM)</th>
<th>% de inhibición a la oxidación lipídica en células de microsomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-VE)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(+VE)</td>
<td>-</td>
<td>78,66</td>
</tr>
<tr>
<td>31</td>
<td>0,25</td>
<td>88,58</td>
</tr>
<tr>
<td>31</td>
<td>0,1</td>
<td>77,85</td>
</tr>
<tr>
<td>31</td>
<td>0,05</td>
<td>66,76</td>
</tr>
<tr>
<td>32</td>
<td>0,25</td>
<td>88,42</td>
</tr>
<tr>
<td>32</td>
<td>0,1</td>
<td>87,55</td>
</tr>
<tr>
<td>32</td>
<td>0,05</td>
<td>78,98</td>
</tr>
<tr>
<td>33</td>
<td>0,25</td>
<td>89,11</td>
</tr>
<tr>
<td>33</td>
<td>0,1</td>
<td>73,57</td>
</tr>
<tr>
<td>33</td>
<td>0,05</td>
<td>64,24</td>
</tr>
<tr>
<td>α-Tocoferolá</td>
<td>0,25</td>
<td>91,94</td>
</tr>
<tr>
<td>α-Tocoferol</td>
<td>0,1</td>
<td>93,52</td>
</tr>
<tr>
<td>α-Tocoferol</td>
<td>0,05</td>
<td>93,05</td>
</tr>
<tr>
<td>Disolventeá</td>
<td>-</td>
<td>33,11</td>
</tr>
</tbody>
</table>

d31-33 y α-tocoferol disueltos en EtOH.

Todas las selenoureas muestran una inhibición prácticamente total a una concentración 0,250 mM, casi idéntica a la que proporciona el tocoferol. A concentración 0,100 mM el efecto inhibidor, aunque menor, continúa siendo alto para las selenoureas 31 y 33, y total para 32. Para disoluciones de selenoureas 0,050 mM en microsomas, se sigue observando una importante inhibición, algo mayor nuevamente para el selenoderivado 32.

En las pruebas realizadas con los microsomas hepáticos tratados con las tioureas 24-27, se utilizaron concentraciones finales de los mismos de 0,250, 0,100 y 0,050 mM. También se emplearon los controles con +VE, y α-tocoferol. Los resultados obtenidos se expresan en la Tabla 9.
Tabla 9. Inhibición de la oxidación de microsomas con las tioureas 24-27.

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Concentración (mM)</th>
<th>% de inhibición a la oxidación lipídica en células de microsomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (-VE)</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(+VE)</td>
<td>-</td>
<td>87,94</td>
</tr>
<tr>
<td>24</td>
<td>0,25</td>
<td>59,77</td>
</tr>
<tr>
<td>24</td>
<td>0,1</td>
<td>56,77</td>
</tr>
<tr>
<td>25</td>
<td>0,05</td>
<td>46,73</td>
</tr>
<tr>
<td>25</td>
<td>0,25</td>
<td>34,97</td>
</tr>
<tr>
<td>25</td>
<td>0,1</td>
<td>18,79</td>
</tr>
<tr>
<td>26</td>
<td>0,05</td>
<td>26,57</td>
</tr>
<tr>
<td>26</td>
<td>0,25</td>
<td>65,59</td>
</tr>
<tr>
<td>26</td>
<td>0,1</td>
<td>64,88</td>
</tr>
<tr>
<td>27</td>
<td>0,05</td>
<td>61,89</td>
</tr>
<tr>
<td>27</td>
<td>0,25</td>
<td>44,54</td>
</tr>
<tr>
<td>27</td>
<td>0,1</td>
<td>44,37</td>
</tr>
<tr>
<td>α-Tocoferol</td>
<td>0,25</td>
<td>34,68</td>
</tr>
<tr>
<td>α-Tocoferol</td>
<td>0,1</td>
<td>96,22</td>
</tr>
<tr>
<td>α-Tocoferol</td>
<td>0,05</td>
<td>96,47</td>
</tr>
<tr>
<td>Disolvente</td>
<td>-</td>
<td>95,79</td>
</tr>
<tr>
<td>24-27 y α-tocoferol</td>
<td></td>
<td>17,51</td>
</tr>
</tbody>
</table>

Las cuatro tioureas ensayadas se comportan como buenos inhibidores de la oxidación microsomal a las concentraciones ensayadas, siendo el potencial inhibidor 26>24>27>25, es decir, mayor con las tioureas preparadas a partir de aminas alifáticas que a partir de aminas aromáticas.

Inhibición de la actividad tirosinasa
Se estudiaron las características inhibidoras de los derivados organoselénicos 13 y 17 sobre la tirosinasa de hongo y se compararon con las del hidroxitirosol. Este enzima cataliza las primeras dos reacciones de la síntesis de la melanina, la hidroxilación de la L-tirosina para dar 3,4-dihidroxifenilalanina (L-DOPA) y la oxidación de la L-DOPA a dopaquinona. Esta quinona es altamente reactiva y puede polimerizar espontáneamente a melanina.
Los efectos de los compuestos 13 y 17 sobre las actividades de monofenolasa, utilizando L-tirosina como sustrato y difenolasa sobre L-DOPA, se siguieron mediante la inhibición de la formación del dopacromo mediante medidas espectrofotométricas. Se comprueba que los compuestos ensayados incluido el hidroxiatirosol ralentiza la formación de dopacromo cuando L-tirosina se utiliza como sustrato, comportándose por tanto como inhibidor de la actividad monofenolasa de la tirosinasa del hongo.

Cuando se estudia la actividad difenolasa, usando L-DOPA como sustrato en presencia de los compuestos también se confirma que todos producen una reducción de actividad difenolasa, siendo quizás el efecto sobre la actividad monofenolasa más importante que sobre la difenolasa.

En la Figura 1 se representa el efecto inhibidor del diselenuro 13 utilizando tirosina como sustrato. Con los datos de la gráfica puede verse el efecto inhibidor del diselenuro 13 a diferentes concentraciones en el rango 8-55 μM, cuando el estudio se realiza durante tiempo prolongado.

SINTESIS DE LOS COMPUESTOS

4-(2-Cloroetil)benceno-1,2-diol (2)

A una disolución de hidroxiatirosol (100 mg, 0.65 mmol) en CH₃CN seco (5 ml) se añadió PPh₃ (238.3 mg, 0.91 mmol) y CCl₄ (171 μl, 1.77 mmol) y se agitó a t.a. durante 10 horas. A continuación, se evaporó el disolvente, el residuo se disolvió en CH₂Cl₂ (8 ml) y se lavó con agua (15 ml). La fase acuosa se lavó con CH₂Cl₂ (3 x 7 ml) y el conjunto de las fracciones orgánicas se secó con MgSO₄ anhidro, se filtró y se concentró a sequedad, resultando un sirupo de color rojo vino que se purificó mediante cromatografía en columna (AcOEt-
hexano 1:5). Se obtuvo un sólido incoloro que corresponde al derivado clorado 2.

Rendimiento: 67 mg, 60%; \(R_F \) 0.39 (hexano–AcOEt 2:1); p.f.: 102-104 °C.

IR

\[\nu_{\text{max}} \] 3448, 3321, 2953, 2924, 2865, 1617, 1531, 1451, 1378, 1280, 1273 \text{ cm}^{-1}.

\(^1\text{H}-\text{RMN}\)

(300 MHz, CD\(_3\)OD): \(\delta \) (ppm) 6.69 (d, 1H, \(J_{5,6} = 8.0 \text{ Hz} \), H-6), 6.66 (d, 1H, \(J_{3,5} = 2.0 \text{ Hz} \), H-3), 6.54 (dd, 1H, H-5), 3.64 (t, 2H, \(J_{1,2} = 7.5 \text{ Hz} \), CH\(_2\)Cl), 2.87 (t, 2H, CH\(_2\)Ar).

\(^{13}\text{C}-\text{RMN}\)

(75.5 MHz, CD\(_3\)OD): \(\delta \) (ppm) 146.2, 145.1 (C-1, C-2), 131.3 (C-4), 121.2 (C-5), 116.9 (C-3), 116.4 (C-6), 46.1 (CH\(_2\)Cl), 39.8 (CH\(_2\)Ar).

EIMS

\(m/z \) 172 ([M-H]\(^+\), 54%).

HREIMS

\(m/z \) calculado para [M]+ C\(_8\)H\(_9\)ClO\(_2\): 172.0291. Encontrado: 172.0296.

4-(2-Bromoetil)benceno-1,2-diol (3)

Una disolución enfriada a 0 °C de hidroxiotirosol (500 mg, 3.246 mmol), tetrabromuro de carbono (6.491 mmol, 1.958 g, 2 equiv.), trifenilfosfina (9.737 mmol, 2.688 g, 3 equiv.) y ascorbato sódico (3.246 mmol, 642.8 mg, 1 equiv.) en DMF (10 ml), bajo atmósfera de argón, se agitó una hora a 0 °C, y seguidamente otras 7 horas a t.a.. Se concentró a sequedad, y el residuo se purificó mediante cromatografía en columna (AcOEt-hexano 1:20 → AcOEt-hexano 1:5), obteniéndose el bromuro como un sólido.

Rendimiento 5.64 mg, 80 %; \(R_F \) 0.28 AcOEt/Hex (1:2); p.f.: 76-78 °C.

IR

(KBr): \(\nu_{\text{max}} \) 3439, 3323, 2926, 1617, 1531, 1449, 1375, 1269, 1210, 1122, 944, 863, 820, 790, 760 cm\(^{-1}\).

\(^1\text{H}-\text{RMN}\)

(300 MHz, CDCl\(_3\)): \(\delta \) 6.81 (d, \(J_{5,6} \) 8.0 Hz, 1H, H-6), 6.73 (d, \(J_{3,5} \) 1.8 Hz, 1H, H-3), 6.65 (dd, \(J_{5,6} \) 8.0 Hz, \(J_{3,5} \) 1.8 Hz, 1H, H-5), 5.20 (s.a.,
2H, OH), 3.51 (t, J\textsubscript{1,2} 7.6 Hz, 2H, CH\textsubscript{2}Br), 3.04 (t, J\textsubscript{1,2} 7.6 Hz, 2H, CH\textsubscript{2}Ar), ppm.

13C-RMN (75.5 MHz, CDCl\textsubscript{3}): 143.6 (C-2), 142.3 (C-1), 132.1 (C-4), 121.2 (C-5), 115.8 (C-6), 115.5 (C-3), 38.7 (CH\textsubscript{2}Br), 33.2 (CH\textsubscript{2}Ar) ppm.

EIMS \(m/z \) 346 ([M]+, 27%), 137 ([M-Br]+, 23%).

HREIMS \(m/z \) calculado para C\textsubscript{8}H\textsubscript{9}79BrO\textsubscript{2} ([M+]+): 215.9786. Encontrado: 215.9793.

4-(2-Yodoetil)benceno-1,2-diol (4)

A una disolución de hidroxi tirosol (300 mg, 1.95 mmol) en THF seco (5 ml) y atmósfera inerte, se añadió PPh\textsubscript{3} (510 mg, 1.95 mmol), imidazol (265 mg, 3.89 mmol), I\textsubscript{2} (741 mg, 2.92 mmol) y tamiz molecular 4Å y se calentó a reflujo durante 3 horas. A continuación, se filtró la mezcla de reacción, se evaporó el disolvente, el residuo resultante se disolvió en AcOEt (20 ml) y se añadió una disolución saturada de NaHCO\textsubscript{3} (5 ml) y una disolución saturada de Na\textsubscript{2}S\textsubscript{2}O\textsubscript{3} (5 ml), agitándose durante unos minutos hasta desaparición del color amarillento. La fase orgánica se separó de la acuosa y esta última se extrajo con AcOEt (3 x 15 ml). El volumen total de fase orgánica se secó con MgSO\textsubscript{4} anhidro, se filtró y se concentró a sequedad. El residuo se purificó mediante cromatografía en columna (AcOEt–hexano 1:5–1:3) y se obtuvo un sólido incoloro que corresponde al derivado yodado 4.

Rendimiento: 356 mg, 69%; \(R_f \) 0.42 (hexano–AcOEt 2:1); p.f.: 110-112 °C.

IR \(\nu_{\text{max}} \) 3486, 3332, 3033, 2949, 1732, 1601, 1515, 1454, 1346, 1275 cm-1.

1H-RMN (300 MHz, CD\textsubscript{3}OD): \(\delta \) (ppm) 6.69 (d, 1H, \(J_{5,6} = 8.0 \) Hz, H-6), 6.64 (d, 1H, \(J_{3,5} = 2.0 \) Hz, H-3), 6.52 (dd, 1H, H-5), 3.30 (t, 2H, \(J_{1,2} = 7.7 \) Hz, CH\textsubscript{2}I), 2.97 (t, 2H, CH\textsubscript{2}Ar).
13C-RMN (75.5 MHz, CD$_3$OD): δ (ppm) 146.2, 145.0 (C-1, C-2), 133.9 (C-4), 120.7 (C-5), 116.4 (C-3, C-6), 41.0 (CH$_2$Ar), 39.8 (CH$_2$I).

EIMS
m/z 264 ([M]$^+$, 32%).

HREIMS
m/z calculado para [M]$^+$ C$_8$H$_9$IO$_2$: 263.9647. Encontrado: 263.9648.

1,2-Diacetoxi-4-(2-cloroetil)benceno (5)

Una disolución de 2 (55 mg, 0.32 mmol) en Ac$_2$O–Py 1:1 (2.0 ml) se mantuvo a 5 ºC durante 24 h. A continuación, se eliminó el disolvente a presión reducida, coevaporando con tolueno y EtOH. El residuo se purificó mediante cromatografía en columna (AcOEt–hexano 1:5), aislando 4 en forma de sirupo incoloro.

Rendimiento: 65 mg, 79%; R_F 0.46 (hexano–AcOEt 2:1).

IR
ν$_{max}$ 3369, 3220, 2962, 2919, 2380, 2346, 1764, 1502, 1428, 1371, 1259, 1201, 1177, 1104, 1007 cm$^{-1}$.

1H-RMN
(300 MHz, CDCl$_3$): δ (ppm) 7.13 (d, 1H, $J_{5,6} = 8.2$ Hz, H-6), 7.09 (dd, 1H, $J_{3,5} = 2.1$ Hz, H-5), 7.06 (d, 1H, H-3), 3.69 (t, 2H, $J_{1',2'} = 7.4$ Hz, CH$_2$Cl), 3.05 (t, 2H, CH$_2$Ar), 2.28, 2.27 (2s, 6H, 2CH$_3$CO).

13C-RMN
(75.5 MHz, CDCl$_3$): δ (ppm) 168.4, 168.3 (2CH$_3$CO), 142.1, 141.1 (C-1, C-2), 137.0 (C-4), 127.1 (C-5), 123.9 (C-3), 123.5 (C-6), 44.5 (CH$_2$Cl), 38.5 (CH$_2$Ar), 20.7 (2CH$_3$CO).

EIMS
m/z 256 ([M]$^+$, 5%).

HREIMS
m/z calculado para [M]$^+$ C$_{12}$H$_{13}$ClO$_4$: 256.0502. Encontrado: 256.0504.

1,2-Diacetoxi-4-(2-bromoetil)benceno (6)
A una disolución del 4-(2-bromoetil)benceno-1,2-diol 2 (250 mg, 0.856 mmol) en piridina (2 ml) a 0 °C, se fue añadiendo gota a gota anhídrido acético (2 ml). Se agitó a 0 °C durante una hora, y se dejó en congelador toda la noche. Se concentró a sequedad a presión reducida. Se disolvió en agua destilada (40 ml) y se extrajo con 3 x 40 ml de diclorometano. La fracción orgánica se secó sobre MgSO₄ y se concentró a sequedad. El residuo se purificó mediante cromatografía en columna (AcOEt-hexano 1:20 → AcOEt-hexano 1:5), obteniéndose un aceite amarillento.

Rendimiento 237.1 mg, 92 %. Rₚ: 0.42 AcOEt/Hex (1:2).

IR \(\nu_{\text{max}}: 2925, 2848, 1766, 1591, 1507, 1427, 1368, 1256, 1203, 1175, 1107, 1010, 801 \text{ cm}^{-1} \).

\(^1\text{H-RMN}\) (300 MHz, CDCl₃): \(\delta 7.14 \) (d, \(J_{5,6} 8.1 \text{ Hz} \), 1H, H-5), 7.10 (d, \(J_{3,5} 1.7 \text{ Hz} \), 1H, H-3), 7.06 (dd, \(J_{3,5} 1.7 \text{ Hz} \), \(J_{5,6} 8.1 \text{ Hz} \), 1H, H-5), 3.54 (t, \(J_{1',2'} 7.6 \text{ Hz} \), 2H, CH₂Br), 3.15 (t, \(J_{1',2'} 7.6 \text{ Hz} \), 2H, CH₂Ar), 2.28 (2 s, 2 x 3H, OAc) ppm.

\(^{13}\text{C-RMN}\) (75.5 MHz, CDCl₃): 168.2 y 168.1 (2 C=O, OAc) 142.0 (C-2), 140.9 (C-1), 137.6 (C-4), 126.7 (C-5), 123.6 y 123.4 (C-3 y C-6), 38.6 (CH₂Br), 32.0, (CH₂Ar) 20.6 (2 CH₃, OAc) ppm.

FABMS \(m/z 301 ([\text{M+H}]^+, 45\%) \), 221 ([\text{M-Br}]^+, 20\%).

1,2-Diacetoxi-4-(2-yodoetil)benceno (7)

Una disolución de 5 (300 mg, 1.14 mmol) en Ac₂O-Py 1:1 (5.0 ml) se mantuvo a 5 °C durante 24 h. A continuación, se eliminó el disolvente a presión reducida, coevaporando con tolueno y EtOH. El residuo se purificó mediante
cromatografía en columna (AcOEt–hexano 1:4), aislándose 7 en forma de sirupo amarillento.

Rendimiento: 267 mg, 75%; R_F 0.51 (hexano–AcOEt 2:1).

IR

ν_{max} 3369, 3229, 2962, 2938, 2350, 1759, 1589, 1502, 1429, 1366, 1255, 1192, 1113, 1012 cm$^{-1}$.

1H-RMN

(300 MHz, CDC$_3$): δ (ppm) 7.13 (d, 1H, $J_{5,6} = 8.2$ Hz, H-6), 7.07 (dd, 1H, $J_{3,5} = 2.0$ Hz, H-5), 7.03 (d, 1H, H-3), 3.34 (m, 2H, $J_{1',2'} = 7.7$ Hz, CH$_2$I), 3.17 (m, 2H, CH$_2$Ar), 2.28, 2.28 (2s, 6H, 2CH$_3$CO).

13C-RMN

(75.5 MHz, CDC$_3$): δ (ppm) 168.3, 168.3 (2CH$_3$CO), 142.1, 141.0 (C-1, C-2), 139.4 (C-4), 126.5 (C-5), 123.6 (C-6), 123.4 (C-3), 39.8 (CH$_2$Ar), 20.7 (2CH$_3$CO), 4.3 (CH$_2$I).

EIMS

m/z 348 ([M]$^+$, 9%).

HREIMS

m/z calculado para [M]$^+$ C$_{12}$H$_{13}$IO$_4$: 347.9859. Encontrado: 347.9865.

4-(2-Acetiltioetil)-1,2-diacetoxibenceno (8)

A una disolución de 7 (1 equiv.) en butanona se añadió tioacetato potásico (1.4 equiv.) y se calentó a refujo durante 2 h. A continuación, se eliminó el disolvente a presión reducida, el residuo se disolvió en AcOEt y se lavó con agua. La fase acuosa se extrajo con AcOEt y el conjunto de los extractos orgánicos se secó con MgSO$_4$ anhidro, se filtró y se concentró a sequedad. El crudo se purificó mediante cromatografía en columna (AcOEt–hexano 1:6), aislándose 6 en forma de sólido de color pardo rojizo.

Rendimiento: 111 mg, 76%; R_F 0.36 (hexano–AcOEt 2:1), p.f.: 39-41 ºC.

IR

ν_{max} 3374, 3316, 3239, 2977, 2919, 1774, 1682, 1502, 1424, 1366, 1264, 1192, 1133, 1104, 1012, 896, 623 cm$^{-1}$.
35

1H-RMN (300 MHz, CDCl$_3$): δ (ppm) 7.11-7.05 (m, 3H, H-3, H-5, H-6), 3.09 (m, 2H, CH$_2$S), 2.85 (m, 2H, CH$_2$Ar), 2.33 (s, 3H, CH$_3$COS), 2.28, 2.27 (2s, 6H, 2CH$_3$CO).

13C-RMN (75.5 MHz, CDCl$_3$): δ (ppm) 195.6 (SCOCH$_3$), 168.4, 168.3 (2CH$_3$CO), 142.0, 140.7 (C-1, C-2), 138.9 (C-4), 126.8 (C-5), 123.6 (C-6), 123.4 (C-3), 35.4 (CH$_2$S), 30.7 (CH$_2$Ar), 20.7 (2CH$_3$CO).

EIMS m/z 296 ([M]$^+$, 1%).

HREIMS m/z calculado para [M]$^+$ C$_{12}$H$_{13}$O$_4$: 296.0718. Encontrado: 296.0714.

Etanotioato de S-2-(3,4-dihidroxifenil)etilo (9)

![Chemical structure](image)

A una disolución de 8 (100 mg, 0.34 mmol) en MeOH (2.0 ml) se añadió HCl 2N (1.0 ml) y, en atmósfera de argón, se agitó a t.a. durante 12 h en la oscuridad. A continuación, se neutralizó con una disolución saturada de NaHCO$_3$ hasta pH 5 y se eliminó el disolvente a presión reducida. El residuo resultante se purificó mediante cromatografía en columna (AcOEt–hexano 1:5→1:3), aislándose 7 en forma de sirupo de color pardo rojizo.

Rendimiento: 58 mg, 86%; R_F 0.35 (hexano–AcOEt 2:1).

IR ν_{max} 3335, 2924, 2850, 2375, 2346, 1715, 1652, 1604, 1517, 1444, 1366, 1279, 1250, 1192, 1114, 1051 cm$^{-1}$.

1H-RMN (300 MHz, CDCl$_3$): δ (ppm) 6.79 (d, 1H, $J_{5,6} = 8.1$ Hz, H-5'), 6.74 (d, 1H, $J_{2,6} = 1.9$ Hz, H-2'), 6.62 (dd, 1H, H-6'), 5.70 (s.a., 2H, 2OH), 3.06 (m, 2H, CH$_2$S), 2.71 (m, 2H, CH$_2$Ar), 2.34 (s, 3H, CH$_3$CO).

13C-RMN (75.5 MHz, CDCl$_3$): δ (ppm) 197.3 (SCOCH$_3$), 143.7, 142.4 (C-3', C-4'), 133.0 (C-1'), 121.1 (C-6'), 123.6 (C-2'), 123.4 (C-5'), 35.0 (CH$_2$S), 30.8 (CH$_2$Ar), 30.8 (CH$_3$CO).

EIMS m/z 212 ([M]$^+$, 6%).
HREIMS \(m/z \) calculado para \([M]^+\) C_{10}H_{12}O_{3}S: 212.0507. Encontrado: 212.0506.

4-(2-Sulfaniletil)benceno-1,2-diol (10)

A una disolución del compuesto 8 (100 mg, 0.34 mmol) en MeOH (2.0 ml) se añadió HCl 2N (1.0 ml) y, en atmósfera de argón y en la oscuridad, se agitó calentando a 40 °C durante 34 h. A continuación, se neutralizó con una disolución saturada de NaHCO₃ hasta pH 5 y se eliminó el disolvente a presión reducida. El residuo resultante se purificó mediante cromatografía en columna (AcOEt–hexano 1:5), aislándose el compuesto 10 en forma de sólido amarillento.

Rendimiento: 57 mg, 100%; \(R_f \) 0.30 (hexano–AcOEt 2:1), p.f.: 77-78 °C.

IR \(\nu_{\text{max}} \) 3466, 3347, 3132, 3030, 2962, 2928, 2904, 2850, 2568, 2360, 1658, 1609, 1517, 1438, 1352, 1273, 1250, 1187, 1134, 1104, 958 cm⁻¹.

\(^1^H\)-RNM (300 MHz, (CD₃)₂CO): \(\delta \) (ppm) 6.74 (d, 1H, J_{5,6} = 8.0 Hz, H-6), 6.71 (d, 1H, J_{3,5} = 2.0 Hz, H-3), 6.55 (dd, 1H, H-5), 3.06 (2s.a., 2H, 2OH), 2.72 (m, 4H, CH₂S, CH₂Ar), 1.64 (t, 1H, J_{7,SH} = 7.2 Hz, SH).

\(^1^3^C\)-RNM (75.5 MHz, (CD₃)₂CO): \(\delta \) (ppm) 145.8, 144.4 (C-1, C-2), 132.8 (C-4), 120.7 (C-5), 116.5 (C-6), 116.0 (C-3), 40.5 (CH₂S), 26.7 (CH₂Ar).

EIMS \(m/z \) 170 ([M]^+, 37%).

HREIMS \(m/z \) calculado para \([M]^+\) C₈H₁₀O₂S: 170.0402. Encontrado: 170.0396.

Disulfuro de bis(3,4-dihidroxifenetilo) (11)
A una suspensión de NaHS (170 mg, 3.03 mmol) en DMF y en atmósfera de argón, se añadió una disolución de 3 (200 mg, 0.76 mmol) en DMF y se calentó a 55 °C en la oscuridad durante 5 h. Posteriormente, se concentró a sequedad y el residuo se purificó mediante cromatografía en columna (CH₂Cl₂–MeOH 20:1), aislándose 9 en forma de sirupo de color pardo-rojizo.

Rendimiento: 128 mg, 90%; Rf 0.37 (CH₂Cl₂–MeOH 10:1).

IR νmax 3335, 2924, 2850, 2375, 2346, 1715, 1653, 1605, 1517, 1444, 1366, 1279, 1250, 1192, 1114, 1051 cm⁻¹.

¹H-RMN (300 MHz, (CD₃OD): δ (ppm) 6.68 (d, 2H, J₅,₆ = 8.0 Hz, H-6), 6.64 (d, 2H, J₃,₅ = 2.0 Hz, H-3), 6.51 (dd, 2H, H-5), 4.93 (s.a., 4H, 4OH), 2.84 (m, 8H, 2CH₂S, 2CH₂Ar).

¹³C-RMN (75.5 MHz, (CD₃OD): δ (ppm) 146.2, 144.7 (C-1, C-2), 133.2 (C-4), 120.9 (C-5), 116.7 (C-6), 116.4 (C-3), 41.6 (CH₂S), 36.1 (CH₂Ar).

EIMS m/z 338 ([M]⁺, 16%).

Diselenuro de bis(3,4-diacetoxifenetilo) (12)

A una disolución de selenio negro (150 mg, 1.901 mmol) en etanol (11 ml), bajo atmósfera de argón, se fue añadiendo borohidruro sódico, en pequeñas porciones, hasta que el color de la disolución cambió a blanco y además persistió. El exceso de basicidad se neutralizó con CO₂ sólido, y a continuación se adicionó 4-(2-bromoetil)benceno-1,2-diacejeto 6 (520.2 mg, 1.728mmol) disuelto en tetrahidrofurano (11 ml) y se agitó en oscuridad a temperatura
ambiente bajo atmósfera de argón durante 2.5 horas. Se concentró a sequedad. Se disolvió en agua destilada (75 ml) y diclorometano (75 ml). Se separó la capa orgánica y la acuosa se extrajo con 2x75 ml de diclorometano. La fracción orgánica se lavó con 2x75 ml de cloruro sódico saturado, se secó sobre MgSO₄ y se concentró a sequedad. El residuo se purificó mediante cromatografía en columna (AcOEt-hexano 1:20—AcOEt-hexano 1:3), obteniéndose un sólido amarillo.
Rendimiento 265 mg, 51 %; Rf: 0.22 AcOEt-Hex (1:2); p.f.: 98-100 °C.

IR

\[v_{\text{max}}: \ 1768, 2914, 2851, 1502, 1427, 1368, 1258, 1192, 1124, 10107, 894, 825, 669 \ \text{cm}^{-1}. \]

¹H-RMN

(300 MHz, CDCl₃): \[\delta 7.11 (d, J_{5,6} 8.1 \ \text{Hz}, \ 2H, \ H-5), \ 7.09 (d, J_{2,6} 1.6 \ \text{Hz}, \ 2H, \ H-2), \ 7.05 (dd, J_{5,6} 8.1 \ \text{Hz}, \ J_{2,6} 1.7 \ \text{Hz}, \ 2H, \ H-6), \ 3.12 (m, \ 4H, \ CH₂Se), \ 3.03 (t, \ 4H, \ CH₂Ar), \ 2.28 (2 s, \ 2x3H, \ OAc) \ \text{ppm.} \]

¹³C-RMN

(75.5 MHz, CDCl₃): 168.3 y 168.2 (2 C=O, OAc) 142.0 (C-3), 140.5 (C-4), 139.6 (C-1), 126.6 (C-6), 123.3 (C-2 y C-5), 36.9 (CH₂Se), 29.9, (CH₂Ar), 20.6 (4 CH₃, OAc) ppm.

FABMS

\[m/z \ 521 ([M - H]^+ \ 12\%), \ 545 ([M+Na]^+, 5\%). \]

HRFABMS

Diselenuro de bis (3,4-dihidroxifenetilo) (13)

```
<table>
<thead>
<tr>
<th>HO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HO</td>
</tr>
<tr>
<td>Se•Se—</td>
</tr>
<tr>
<td>(HO)₂ — (HO)₂</td>
</tr>
</tbody>
</table>
```

Procedimiento A:

A una disolución de diselenuro de bis (3,4-diacetoxifenetilo) 12 (150 mg, 0.25 mmol) en diclorometano-metanol 1:1 (7 ml) se añadió una cantidad catalítica de K₂CO₃, y la mezcla se agitó a temperatura ambiente, en oscuridad y en atmósfera de argón durante 1h. Se neutralizó el medio de reacción con ácido acético diluido hasta pH 6 y se concentró a sequedad. Rendimiento 55 mg, 51 %.
Procedimiento B:

A una disolución enfriada a -78 °C de diselenuro de bis(3,4-dimetoxifenetilo) 16 (250 mg, 0.512 mmol), en diclorometano seco (8.5 ml), en atmósfera de argón y con tamiz molecular de 4 A, se añadió tribromuro de boro (2.046 mmol, 193 µL) y la mezcla se agitó en oscuridad a -78 °C durante 30 minutos, y una hora a temperatura ambiente. Se adicionó entonces 1 ml de agua y se agitó 15 minutos más. Se concentró a sequedad. El residuo obtenido se disolvió en metanol y se filtró sobre celita, evaporando posteriormente el disolvente en el rotavapor. Rendimiento 122 mg, 55 %.

El residuo obtenido por cualquiera de los dos métodos se purificó mediante cromatografía en columna (CH₂Cl₂→CH₂Cl₂-MeOH 25:1), obteniéndose un sólido amarillento. Rₓ 0.39. CH₂Cl₂-MeOH (10:1). p.f.: 104-108 °C.

IR

\[\nu_{\text{max}}: 1281, 3451, 3249, 2918, 1605, 1524, 1439, 1374, 1253, 1179, 1119, 927, 864, 812, 786, 656 \text{ cm}^{-1}. \]

\(^1\text{H}-\text{RMN}\)

(300 MHz, MeOH-\(d_4\)): \(\delta \) 6.68 (d, \(J_{5,6} \) 8.0 Hz, 2H, H-6), 6.64 (d, \(J_{3,5} \) 2.0 Hz, 2H, H-3), 6.51 (dd, \(J_{3,5} \) 2.0 Hz, \(J_{5,6} \) 8.0 Hz, 2H, H-5), 3.09 (m, 4H, CH₂Se), 2.87 (m, 4H, CH₂Ar), ppm.

\(^{13}\text{C}-\text{RMN}\)

(75.5 MHz, MeOH-\(d_4\)): 146.3 (C-2), 144.8 (C-1), 134.0 (C-4), 120.6 (C-5), 111.6 y 111.4 (C-6, C-3), 38.0 (CH₂Se), 32.3, (CH₂Ar) ppm.

CIMS

\(m/z \) 435 ([M + H]**, 2%, 217 ([M/2]**, 30%).

HRCIMS

Calc. para C₈H₆O₂S₈Se ([M/2]**): 216.9776. Encontrado: 216.9768.

Selenuro de bis (3,4-dimetoxifenetilo) (15)

A una disolución de selenio negro (150 mg, 1.90 mmol), en etanol (12 ml) se añadió borohiduro sódico poco a poco hasta que persistió la tonalidad incolora. Se adicionó bromuro de 3,4-dimetoxifenetilo 14 (1,726 mmol, 436,4 mg) y la reacción se agitó en oscuridad a temperatura ambiente en atmósfera de argón
durante 3 horas. Se concentró a sequedad, se disolvió en agua (75 ml) y
diclorometano (75 ml). Se separó la capa orgánica, y la acuosa se extrajo con
2x75 ml de CH₂Cl₂. La fracción orgánica se lavó con 75 ml de cloruro sódico
saturado, se secó con sulfato magnésico y se concentró a sequedad. El residuo
se purificó mediante cromatografía en columna (AcOEt-hexano 1:20 → AcOEt-
hexano 1:3), obteniéndose un sólido amarillento.
Rendimiento 339 mg, 98 %. Rₚ 0.22 AcOEt-Hex (1:3). p.f.: 69-72 °C.

IR
νmax: 1024, 2926, 2838, 1587, 1510, 1441, 1240, 1138, 1024, 857,
807, 765 cm⁻¹.

¹H-RMN
(300 MHz, CDCl₃): δ 6.80 (d, J₆,₈ 8.1 Hz, 2H, H-5), 6.73 (m, 4H, H-2
y H-6), 3.87 y 3.85 (2 s, 4x3H, OMe), 2.90 (m, 4H, CH₂Se), 2.78 (m,
4H, CH₂Ar), ppm.

¹³C-RMN
(75.5 MHz, CDCl₃): 148.9 (C-3), 147.6 (C-4), 133.9 (C-1), 120.2 (C-
6), 111.7 y 111.3 (C-5 y C-2), 55.9 (OMe), 36.8 (CH₂Se), 25.4,
(CH₂Ar) ppm.

EIMS
m/z 409 ([M - H]⁺, 10%), 433 ([M+Na]⁺, 30%).
HREIMS

Diselenuro de bis(3,4-dimetoxifenetilo) (16)

A una suspensión enfriada a 0 °C de selenio negro (300 mg, 3.800 mmol) y
NaOH (8.360 mmol, 334.4 mg) en tetrahidrofurano-agua 100:1 (13.5 ml), bajo
atmósfera de argón, se fue añadiendo borohidruro sódico (8.360 mmol, 316.2
mg) en pequeñas porciones. Finalizada la adición se agitó a 0 °C durante 30
minutos, y otros 30 minutos a temperatura ambiente. Se agregó selenio negro
(3.800 mmol, 300 mg), y se continuó la agitación en oscuridad durante 3 horas.
Se añadió el bromuro de 3,4-dimetoxifenetilo 14 (1.902 mmol, 480.1 mg)
disuelto en tetrahidrofurano (9 ml) y se agitó a temperatura ambiente en
oscuridad y atmósfera inerte 2 horas más. Se concentró a sequedad, se
disolvió en agua (75 ml) y diclorometano (75 ml). Se separó la capa orgánica, y la acuosa se extrajo con 2x75 ml de CH₂Cl₂. La fracción orgánica se lavó con 75 ml de cloruro sódico saturado, se secó con sulfato magnésico y se concentró a sequedad. El residuo se purificó mediante cromatografía en columna (AcOEt-hexano 1:20→AcOEt-hexano 1:3), obteniéndose un sólido amarillento.
Rendimiento 437 mg, 94 %. R_e: 0.22 AcOEt-hexano (1:3). p.f.: 74-76 °C.

IR \(\nu_{\text{max}}: 1025, 2938, 2838, 1587, 1515, 1451, 1418, 1233, 1140, 852, 814, 766 \text{ cm}^{-1}. \)

1¹H-RMN (300 MHz, CDCl₃): \(\delta \) 6.80 (d, \(J_{5,6} \) 7.9 Hz, 2H, H-5), 6.74 (m, 4H, H-2 y H6), 3.87 y 3.85 (2s, 4x3H, OMe), 3.15 (m, 4H, CH₂Se), 2.99 (m, 4H, CH₂Ar), ppm.

1³C-RMN (75.5 MHz, CDCl₃): 148.9 (C-3), 147.6 (C-4), 133.4 (C-1), 120.4 (C-6), 111.8 y 111.3 (C-2 y C-5), 55.9 (OMe), 37.2 (CH₂Se), 31.1, (CH₂Ar) ppm.

FABMS \(m/z \) 491 ([M+H]⁺%, 5%), 513 ([M+Na]⁺%, 18%).

Bromuro de tris(3,4-dihidroxifenetil)selenonio (17)

![Diagrama del bromuro de tris(3,4-dihidroxifenetil)selenonio](image)

A una disolución enfriada a -78 °C de selenuro de bis (3,4-dimetoxifenetilo) 15 (250 mg, 0.623 mmol) en diclorometano seco (8.5 ml), en atmósfera de argón y con tamiz molecular de 4 A, se añadió tribromuro de boro (2.489 mmol, 235 µL) y la mezcla se agitó en oscuridad a -78 °C durante 30 minutos, y una hora a
temperatura ambiente. Se adicionó entonces 1 ml de agua y se agitó 15 minutos más. Se concentró a sequedad. El residuo obtenido se purificó mediante cromatografía en columna (CH₂Cl₂→CH₂Cl₂-MeOH 25:1).
Rendimiento 238 mg, 67 %. \(R_F: 0.39 \) CH₂Cl₂-MeOH (10:1).

IR
\(\nu_{\text{max}}: 1182, 3325, 2928, 2825, 1701, 1604, 1507, 1438, 1347, 1278, 1104, 1012, 783 \text{ cm}^{-1}. \)

\(^1\)H-RMN
(300 MHz, MeOD): \(\delta \) 6.67 (d, \(J_{5,6} 8.0 \text{ Hz}, 2H, H-6 y H-6' \)), 6.63 (d, \(J_{5,5} 2.0 \text{ Hz}, 2H, H-3, H-3' \)), 6.50 (dd, \(J_{3,5} 2.0 \text{ Hz}, J_{5,6} 8.0 \text{ Hz}, 2H, H5 y H-5' \)), 2.76 (m, 4H, CH₂Se), 2.68 (m, 4H, CH₂Ar), ppm.

\(^1^3\)C-RMN
(75.5 MHz, MeOD): 146.1 (C-2 y C-2'), 144.6 (C-1 y C-1'), 134.6 (C-4 y C-4'), 120.7 (C-5 y C-5'), 116.6 y 116.3 (C-6, C6', C-3 y C-3'), 37.9 (CH₂Se), 26.1, (CH₂-Ar) ppm.

CIMS
\(m/z \) 491 ([M⁺], 10%).

HRFABMS
Calc. para C\(_{24}\)H\(_{27}\)O\(_6\)Se \([\text{M}^+\text{]}\): 491.0967. Encontrado: 491.0973.

Bromuro de tris (3,4-diacetoxifenetil)selenonio (18)

![Diagrama del compuesto](image)

A una disolución de bromuro de tris(3,4-diacetoxifenetil)selenonio 17 (50 mg, 0.0877 mmol) y en piridina (1 ml), enfriada a 0 °C se añadió anhídrido acético (1 ml) y la mezcla se agitó en oscuridad a durante 15 minutos. Se mantuvo en el congelador durante toda la noche. Se añadió 1 ml de H\(_2\)O y se concentró a sequedad. Se purificó por cromatografía en columna (Hexano→AcOEt/Hexano 1:3), obteniéndose 18 como un aceite viscoso amarillento.
Rendimiento 55 mg, 76 %. \(R_F: 0.50 \) AcOEt-hexano (1:1).
Procedimiento general para la obtención de tioureas derivadas del hidroxitírosol.

A una disolución de clorhidrato de dopamina (300 mg, 1.582 mmol) y del isotiocianato correspondiente (1.898 mmol, 1.2 equivalentes) y en metanol (20 ml) se añadió trietilamina (1.582 mmol, 220 μL) y la mezcla se agitó a temperatura ambiente y bajo atmósfera de argón durante una hora. Se concentró a sequedad, y el bruto de reacción se purificó por cromatografía en columna.

1-Butil-3-(3,4-dihidroxifenetil) tiourea (24)

Se obtuvo a partir del butilisotiocianato. Se purificó por cromatografía en columna (CH₂Cl₂→CH₂Cl₂/MeOH 25:1), obteniéndose 24 como un sólido blanco.

Rendimiento 177 mg, 42 %. Rₚ: 0.16 CH₂Cl₂-MeOH (20:1). p.f.: 95-96 ºC.

IR \(\nu_{\text{max}}: 1514, 3220, 3055, 2959, 2923, 2866, 1607, 1571, 1514, 1455, \)
1347, 1278, 1199, 966, 781 cm$^{-1}$.

1H-RMN

(300 MHz, MeOH-d_4): δ 6.68 (m, 2H, H-2 y H-5), 6.54 (dd, J$_{2,6}$ 2.0 Hz, J$_{5,6}$ 8.0 Hz, 1H, H-6), 3.62 (m, 2H, ArCH$_2$CH$_2$NH), 3.38 (m, 2H, CH$_3$(CH$_2$)$_2$CH$_2$), 2.71 (t, J$_{CH_2CH_2}$ 7.2 Hz, 2H, CH$_2$Ar), 1.51 (m, 2H, CH$_3$CH$_2$CH$_2$), 1.34 (m, 2H, CH$_3$-CH$_2$), 0.94 (t, 3H, J$_{CH_3CH_2}$ 7.3 Hz, CH$_3$) ppm.

13C-RMN

(75.5 MHz, MeOH-d_4): 182.8 (C=S), 146.3 (C-3), 144.8 (C-4), 132.0 (C-1), 121.1 (C-6), 116.9 y 116.4 (C-2 y C-5), 46.9 (ArCH$_2$CH$_2$NH), 44.9 (NHCH$_2$-Alifático), 35.7 (CH$_2$Ar), 32.9 (CH$_2$-CH$_2$-CH$_3$), 21.1 (CH$_2$-CH$_3$) ppm.

CIMS

m/z 269 ([M+H]$^+$, 100%), 211 ([M-Bu]$^+$, 3%).

HRCIMS

Calc. para C$_{13}$H$_{21}$N$_2$O$_2$S ([M+Na]$^+$): 269.1324. Encontrado: 269.1324

1-(3,4-Dihidroxifenil)-3-(p-tolil) tioure (25)

Se obtuvo a partir del p-tolilisociocianato. Se purificó por cromatografía en columna (CH$_2$Cl$_2$→CH$_2$Cl$_2$-MeOH 25:1), obteniéndose 25 como un sólido blanco.

Rendimiento 354 mg, 74 %. R$_F$: 0.25 CH$_2$Cl$_2$-MeOH (20:1). p.f.: 151-153 °C.

IR

(KBr): ν_{max}: 1509, 3351, 3190, 2971, 2922, 2870, 1598, 1542, 1448, 1349, 1276, 1188, 781 cm$^{-1}$.

1H-RMN

(300 MHz, MeOH-d_4): δ 7.13 (m, 2H, H-3'y H-5'), 6.99 (m, 2H, H-2'y H-6'), 6.67 (d, J$_{5,6}$ 8.0 Hz, 1H, H-5), 6.65 (d, J$_{2,6}$ 2.0 Hz, 1H, H-2), 6.50 (d, J$_{2,5}$ 2.0 Hz, J$_{5,6}$ 8.0 Hz, 1H, H-6), 3.72 (t, J$_{CH_2CH_2}$ 7.0 Hz, 2H,
CH$_2$NH), 2.74 (t, J_{CH_2,CH_2} 7.0 Hz, 2H, CH$_2$Ar), 2.31 (s, 3H, CH$_3$) ppm.

13C-RMN (75.5 MHz, MeOD): 181.7 (C=Se), 146.4 (C-3), 144.9 (C-4), 137.3 (C-1'), 136.2 (C-4'), 131.8 (C-1), 131.0 (C-3' y C-5'), 126.0 (C-2' y C-6'), 121.1 (C-6), 116.9 y 116.5 (C-2 y C-5), 47.2 (CH$_2$NH), 35.2 (CH$_3$Ar) 21.0 (CH$_3$), ppm.

CIMS m/z 303 [M+H]$^+$, 18%.

HRCIMS Calc. para C$_{16}$H$_{19}$N$_2$O$_2$S ([M+H]$^+$): 303.1167. Encontrado: 303.1156

1-Benzil-3-(3,4-dihidroxifenetil)tiourea (26)

Se obtuvo a partir del bencilisotiocianato. Se purificó por cromatografía en columna (CH$_2$Cl$_2$→CH$_2$Cl$_2$-MeOH 25:1), obteniéndose 26 como un sólido blanco.

Rendimiento 297 mg, 62%. R_F: 0.25 CH$_2$Cl$_2$-MeOH (20:1). p.f.: 136-138 °C.

IR ν_{max}: 1510, 3319, 3267, 2929, 2860, 1599, 1572, 1510, 1450, 1337, 1281, 1107, 1013, 804 cm$^{-1}$.

1H-RMN (300 MHz, MeOH-d_4): δ 7.28 (m, 5H, Ph), 6.68 (m, 2H, H-2 y H-5), 6.52 (dd, $J_{2,6}$ 1.8 Hz, $J_{5,6}$ 8.0 Hz, 1H, H-6), 4.66 (sa, 2H, ArCH$_2$NH) 3.66 (sa, 2H, CH$_2$NH), 2.71 (t, J_{CH_2,CH_2} 7.2 Hz, 2H, CH$_2$Ar), ppm.

13C-RMN (75.5 MHz, MeOH-d_4): 183.4 (C=S), 146.3 (C-3), 144.8 (C-4) 139.9 (C-1'), 131.9 (C-1), 129.5 y 128.4 (C-2', C-3', C-5' y C-6'), 128.2 (C-4'), 121.1 (C-6), 116.9 y 116.4 (C-2 y C-5), 48.2 (ArCH$_2$NH), 46.9
46

(CH₂NH), 35.7 (CH₂Ar) ppm.

CIMS

m/z 303 ([M+H]⁺, 27%)

HRCIMS

1-Fenil-3-(3,4-dihidroxifenetil) tiourea (27)

![Chemical Structure](image)

Se obtuvo a partir del fenilisotiocianato. Se purificó por cromatografía en columna (CH₂Cl₂ → CH₂Cl₂-MeOH 40:1), obteniéndose 27 como un sólido blanco.

Rendimiento 420 mg, 92 %. Rₚ: 0.30 CH₂Cl₂-MeOH (20:1). p.f.: 98-100 °C.

IR

ν_max: 1517, 3340, 3220, 2938, 1706, 1599, 1493, 1444, 1351, 1279, 1177, 1109, 1022, 809 cm⁻¹.

¹H-RMN

(300 MHz, MeOD): δ 7.31 (m, 2H, H-3' y H-5'), 7.16 (m, 3H, H-2', H-4' y H-6'), 6.68 (m, 2H, H-2 y H-5), 6.53 (dd, J₂₈ 2.0 Hz, J₅₆ 8.0 Hz, 1H, H-6), 3.74 (t, JCH₂CH₂ 7.0 Hz, 2H, CH₂NH), 2.76 (t, JCH₂CH₂ 7.0 Hz, 2H, CH₂Ar), ppm.

¹³C-RMN

(75.5 MHz, MeOD): 181.8 (C=Se), 146.4 (C-3), 144.9 (C-4), 139.2 (C-1'), 131.9 (C-1), 130.4 (C-3' y C-5'), 126.9 (C-2' y C-6'), 125.7 (C-4'), 121.1 (C-6), 117.0 y 116.5 (C-2 y C-5), 47.3 (CH₂NH), 35.2 (CH₂Ar) ppm.

CIMS

m/z 289 ([M+H]⁺, 14%), 271 ([M - OH]⁺, 2%).

HRCIMS

Procedimiento general para la obtención de selenoureas derivadas del hidroxitirosol.

A una disolución de clorhidrato de dopamina (300 mg, 1,582 mmol) y del isoselenocianato correspondiente (1,898 mmol, 1,2 equivalentes) y en metanol (20 ml) se añadió trietilamina (1,582 mmol, 220 µl) y la mezcla se agitó en oscuridad a temperatura ambiente y bajo atmósfera de argón durante una hora. Se concentró a sequedad, y el bruto de reacción se purificó por cromatografía en columna.

1-(3,4-Dihidroxifenetil)-3-fenil selenourea (31)

Se obtuvo a partir de fenilisoselenocianato. Se purificó por cromatografía en columna (CH₂Cl₂→CH₂Cl₂-MeOH 40:1), obteniéndose 31 como un sólido amarillento.

Rendimiento 493 mg, 93%. Rₚ: 0.32 CH₂Cl₂-MeOH (20:1). p.f.: 106-108 ºC.

IR (KBr): νₓ max: 1549, 3215, 2362, 1597, 1510, 1447, 1348, 1281, 1187, 1113, 810 cm⁻¹.

¹H-RMN (300 MHz, MeOH-d₄): δ 7.35 (m, 2H, H-3' y H-5'), 7.23 (m,1H, H-4'), 7.08 (m, 2H, 7.6 Hz H-2'y H-6'), 6.68 (m, 2H, H-2 y H-5), 6.53 (d, J₅,₆ 7.8 Hz, 1H, H-6), 3.81 (t, JCH₂,CH₂ 7.2 Hz, 2H, CH₂NH), 2.78 (t, JCH₂,CH₂ 7.2 Hz, 2H, CH₂Ar), ppm.

¹³C-RMN (75.5 MHz, MeOH-d₄): 178.8 (C-Se), 146.4 (C-3), 144.9 (C-4 y C-1'), 131.6 (C-1), 130.8 (C-3' y C-5'), 127.1 (C-4'), 126.1 (C-2' y C-6'), 121.1 (C-6), 117.0 y 116.5 (C-2 y C-5), 49.9 (CH₂NH), 35.2 (CH₂Ar) ppm.

FABMS m/z 337 ([M+H]⁺, 22%), 359 ([M+Na]⁺, 25%).

1-(3,4-Dihidroxifenetil)-3-(p-tolil) selenourea (32)

Se obtuvo a partir de p-tolilisoselenocianato. Se purificó por cromatografía en columna (CH$_2$Cl$_2$→CH$_2$Cl$_2$-MeOH 30:1), obteniéndose 32 como un sólido amarillento.

Rendimiento 530 mg, 96 %. R_f: 0.28 CH$_2$Cl$_2$-MeOH (20:1). p.f.: 142-148 ºC.

IR (KBr): ν_{max}: 1509, 3446, 3307, 2950, 1599, 1510, 1460, 1281, 1184, 1106, 1021, 810 cm$^{-1}$.

1H-RMN (300 MHz, MeOH-d$_4$): δ 7.15 (m, 2H, H-3' y H-5'), 6.94 (m, H-2' y H-6'), 6.67 (m, 2H, H-2 y H-5), 6.51 (d, $J_{5,6}$ 7.9 Hz, 1H, H-6), 3.79 (t, J_{CH2CH2} 7.0 Hz, 2H, CH$_2$NH), 2.76 (t, J_{CH2CH2} 7.0 Hz, 2H, CH$_2$Ar), 2.31 (s, 3H, CH$_3$) ppm.

13C-RMN (75.5 MHz, MeOH-d$_4$): 178.5 (C=Se), 146.4 (C-3), 144.9 (C-4), 138.1 (C-1'), 135.6 (C-3' y C-5'), 131.6 (C-1 y C-4'), 126.2 (C-2' y C-6'), 121.5 (C-6), 117.0 y 116.5 (C-2 y C-5), 56.0 (Me), 49.9 (CH$_2$NH), 35.2 (CH$_2$Ar) ppm.

FABMS m/z 351 ([M+H]$^+$, 43%), 373 ([M+Na]$^+$, 39%).

HRFABMS Calc. para C$_{16}$H$_{18}$N$_2$O$_2^{80}$SeNa ([M+Na]$^+$): 373.0421. Encontrado: 359.0431

1-(3,4-Dihidroxifenetil)-3-(p-metoxifenil) selenourea (33)

Se obtuvo a partir de p-metoxifenilisoselenocianato. Se purificó por cromatografía en columna (CH$_2$Cl$_2$→CH$_2$Cl$_2$-MeOH 20:1), obteniéndose 33 como un sólido amarillento.

Rendimiento 561 mg, 97 %. R_f: 0.42 CH$_2$Cl$_2$-MeOH (10:1). p.f.: 144-146 ºC.
IR
(KBr): ν_{max}: 1508, 3309, 3061, 2843, 1590, 1547, 1466, 1342, 1275, 1238, 1170, 1104, 1024, 828 cm$^{-1}$

1H-RMN
(300 MHz, MeOH-d$_4$): δ 6.98 (m, 2H, H-3'y H-5'), 6.88 (m, H-2'y H-6'), 6.67 (m, 2H, H-2 y H-5), 6.50 (d, $J_{5,6}$ 7.9 Hz, 1H, H-6), 3.77 (m, 5H, CH$_2$NH y OMe), 2.75 (t, $J_{CH2,CH2}$ 7.1 Hz, 2H, CH$_2$Ar) ppm.

13C-RMN
(75.5 MHz, MeOH-d$_4$): 178.7 (C=Se), 146.4 (C-3), 144.9 (C-4), 160.1 (C-4'), 131.6 (C-1), 130.7 (C-1'), 128.6 (C-2' y C-6'), 121.1 (C-6), 117.0 y 116.5 (C-2 y C-5), 116.0 (C-3' y C-5'), 56.0 (OMe), 49.9 (CH$_3$NH), 35.3 (CH$_2$Ar) ppm.

FABMS
m/z 367 ([M+H]$^+$, 20%), 389 ([M+Na]$^+$, 39%)

HRFABMS
Calc. para C$_{16}$H$_{18}$N$_2$O$_5$SeNa ([M+Na]$^+$): 389.0394. Encontrado: 389.0380
REIVINDICACIONES

1.- Uso de un compuesto de fórmula general (I):

\[
\text{R} \quad \text{R}^2
\]

\[
\text{X} \quad \text{R}^3
\]

donde: \(R^1 \) y \(R^2 \) son iguales o diferentes y se seleccionan independientemente de entre hidrógeno (H), alquilo (C\textsubscript{1}-C\textsubscript{4}) o acetilo (-COCH\textsubscript{3}).

\(R^3 \) se selecciona de entre hidrógeno, alquilo (C\textsubscript{1}-C\textsubscript{4}), acetilo, C(=Z)-NH-R', el grupo de fórmula (II) o el grupo de fórmula (III):

\[
\text{(II)} \quad \text{(III)}
\]

\(X \) se selecciona de entre S, Se, NH o X'-R'; donde X' es S o Se y R' es el grupo de fórmula (III);

\(R^5 \) y \(R^6 \) son iguales o diferentes y se seleccionan independientemente de entre hidrógeno, alquilo (C\textsubscript{1}-C\textsubscript{4}) o acetilo;

\(Y \) es S o Se;

\(Z \) es S o Se; y

\(R' \) se selecciona de entre alquilo (C\textsubscript{1}-C\textsubscript{18}), fenilo, sustituido o sin sustituir o bencilo, sustituido o sin sustituir,

para la elaboración de una composición antioxidante.
2.- Uso según la reivindicación anterior, donde R^1 y/o R^2 son hidrógeno, metilo o acetilo.

3.- Uso según la reivindicación anterior, donde R^1 y R^2 son hidrógeno.

4.- Uso del compuesto según cualquiera de las reivindicaciones 1 a 3, donde X es S o Se.

5.- Uso según cualquiera de las reivindicaciones 1 a 4, donde R^3 es hidrógeno o acetilo.

6.- Uso según cualquiera de las reivindicaciones 1 a 4, donde R^3 es el grupo de fórmula (II).

7.- Uso según la reivindicación anterior, donde Y es S o Se y los radicales R^5 y/o R^6 son hidrógeno, metilo o acetilo.

8.- Uso según cualquiera de las reivindicaciones 1 a 4, donde R^3 es el grupo de fórmula (III).

9.- Uso según la reivindicación anterior, donde R^5 y/o R^6 son hidrógeno, metilo o acetilo.

10.- Uso según cualquiera de las reivindicaciones 1 a 3, donde X es $X' - R^4$.

11.- Uso según la reivindicación anterior, donde X' es Se y R^3 es el grupo de fórmula (III).

12.- Uso según la reivindicación 11, donde R^5 y/o R^6 son hidrógeno, metilo o acetilo.
13.- Uso según cualquiera de las reivindicaciones 10 a 12, donde la sal formada es un halogenuro.

14.- Uso según la reivindicación anterior, donde la sal es de bromuro.

15.- Uso según cualquiera de las reivindicaciones 1 a 3, donde X es NH.

16.- Uso según la reivindicación anterior, donde R³ es el grupo -C(=Z)-NH-R₇.

17.- Uso según la reivindicación anterior, donde Z es S.

18.- Uso según cualquiera de las reivindicaciones 16 o 17, donde R⁷ se selecciona de entre butilo, fenilo, fenilo sustituido por al menos un grupo alquilo (C₁-C₄) o bencilo.

19.- Uso según la reivindicación anterior, donde R⁷ se selecciona de entre butilo, fenilo, fenilo sustituido por un metilo o bencilo.

20.- Uso según la reivindicación 16, donde Z es Se.

21.- Uso según la reivindicación anterior, donde R⁷ es un fenilo, sustituido o sin sustituir.

22.- Uso según la reivindicación anterior, donde el grupo fenilo no está sustituido o está sustituido por un grupo alquilo (C₁-C₄) o un grupo alcoxilo.

23.- Uso según la reivindicación 1, donde el compuesto se selecciona de la lista que comprende:
4-(2-Acetiltioetil)-1,2-diacetoxibenceno (8)
4-(2-Sulfaniletil)benceno-1,2-diol (10)
Disulfuro de bis(3,4-dihidroxifenetilo) (11)
Diselenuro de bis (3,4-dihidroxifenetilo) (13)
Bromuro de tris(3,4-dihidroxifenetil)selenonio (17)
1-Butil-3-(3,4-dihidroxifenetil) tiourea (24)
1-(3,4-Dihidroxifenetil)-3-(p-tolil) tiourea (25)
1-Bencil-3-(3,4-dihidroxifenetil) tiourea (26)
1-Fenil-3-(3,4-dihidroxifenetil) tiourea (27)
1-(3,4-Dihidroxifenetil)-3-fenil selenourea (31)
1-(3,4-Dihidroxifenetil)-3-(p-tolil) selenourea (32)
1-(3,4-Dihidroxifenetil)-3-(p-metoxifenil) selenourea (33)
Diselenuro de bis(3,4-diacetoxifenetilo) (12)
Selenuro de bis (3,4-dimetoxifenetilo) (15)
Diselenuro de bis (3,4-dimetoxifenetilo) (16) o
Bromuro de tris (3,4-diacetoxifenetilo)selenonio (18).

24.- Uso del compuesto de fórmula general (I) según cualquiera de las reivindicaciones anteriores, para la elaboración de un medicamento.

25.- Uso del compuesto de fórmula general (I), según cualquiera de las reivindicaciones anteriores para la elaboración de un medicamento para el tratamiento y/o la prevención de enfermedades inflamatorias, tumorales, neurodegenerativas, trombosis, cardiovasculares o infecciosas.

26.- Compuesto de fórmula general (I):

\[
\begin{array}{c}
\text{R}^1 \\
\text{R}^2 \\
\text{X} \\
\text{R}^3 \\
\end{array}
\]

donde: \(R^1 \) y \(R^2 \) son iguales o diferentes y se seleccionan independientemente de entre hidrógeno (H), alquilo (C\(_1\)-C\(_4\)) o acetilo \((-\text{COOH})\).
R³ se selecciona de entre -C(=Z)-NH-R⁷, el grupo de fórmula (II) o el grupo de fórmula (III):

![Chemical Structures]

X se selecciona de entre S, Se, NH o X'-R⁴; donde X' es S o Se y R⁴ es el grupo de fórmula (III);

R⁵ y R⁶ son iguales o diferentes y se seleccionan independientemente de entre hidrógeno, alquilo (C₁-C₄) o acetilo;
Y es S o Se;
Z es S o Se; y
R⁷ se selecciona de entre alquilo (C₁-C₁₈), fenilo, sustituido o sin sustituir o bencilo, sustituido o sin sustituir.

27.- Compuesto según la reivindicación anterior, donde R¹ y/o R² son hidrógeno, metilo o acetilo.

28.- Compuesto según la reivindicación anterior, donde R¹ y R² son hidrógeno.

29.- Compuesto según cualquiera de las reivindicaciones 26 a 28, donde X es S o Se.

30.- Compuesto según cualquiera de las reivindicaciones 26 a 29, donde R³ es el grupo de fórmula (II).

31.- Compuesto según la reivindicación anterior, donde Y es S o Se y los radicales R⁵ y/o R⁶ son hidrógeno, metilo o acetilo.
32.- Compuesto según cualquiera de las reivindicaciones 26 a 29, donde R³ es el grupo de fórmula (III).

33.- Compuesto según la reivindicación anterior, donde R⁵ y/o R⁶ son hidrógeno, metilo o acetilo.

34.- Compuesto según cualquiera de las reivindicaciones 26 a 28, donde X es X'-R⁴.

35.- Compuesto según la reivindicación anterior, donde X' es Se y R³ es el grupo de fórmula (III).

36.- Compuesto según la reivindicación anterior, donde R⁵ y/o R⁶ son hidrógeno, metilo o acetilo.

37.- Compuesto según cualquiera de las reivindicaciones 34 a 36, donde la sal formada es un halogenuro.

38.- Compuesto según la reivindicación anterior, donde la sal es de bromuro.

39.- Compuesto según cualquiera de las reivindicaciones 26 a 28, donde X es NH.

40.- Compuesto según la reivindicación anterior, donde R³ es el grupo -C(=Z)-NH-R⁷.

41.- Compuesto según la reivindicación anterior, donde Z es S.
42.- Compuesto según cualquiera de las reivindicaciones 40 o 41, donde R^7 se selecciona de entre butilo, fenilo, fenilo sustituido por al menos un grupo alquilo (C_1-C_4) o bencilo.

43.- Compuesto según la reivindicación anterior, donde R^7 se selecciona de entre butilo, fenilo, fenilo sustituido por un metilo o bencilo.

44.- Compuesto según la reivindicación 40, donde Z es Se.

45.-Compuesto según la reivindicación anterior, donde R^7 es un fenilo, sustituido o sin sustituir.

46.- Compuesto según la reivindicación anterior, donde el grupo fenilo no está sustituido o está sustituido por un grupo alquilo (C_1-C_4) o un grupo alcoxilo.

47.- Compuesto según la reivindicación 26, donde el compuesto se selecciona de la lista que comprende:
Disulfuro de bis(3,4-dihidroxifenetilo) (11)
Diselenuro de bis (3,4-dihidroxifenetilo) (13)
Bromuro de tris(3,4-dihidroxifenetilo)selenonio (17)
1-Butil-3-(3,4-dihidroxifenetilo) tiourea (24)
1-(3,4-Dihidroxifenetilo)-3-(p-tolil) tiourea (25)
1-Bencil-3-(3,4-dihidroxifenetilo)tiourea (26)
1-Fenil-3-(3,4-dihidroxifenetilo) tiourea (27)
1-(3,4-Dihidroxifenetilo)-3-fenil selenourea (31)
1-(3,4-Dihidroxifenetilo)-3-(p-tolil) selenourea (32)
1-(3,4-Dihidroxifenetilo)-3-(p-metoxifenil) selenourea (33)
Diselenuro de bis(3,4-diacetoxifenetilo) (12)
Selenuro de bis (3,4-dimetoxifenetilo) (15)
Diselenuro de bis(3,4-dimetoxifenetilo) (16) o
Bromuro de tris (3,4-diacetoxifenetilo)selenonio (18)
48.- Composición que comprende al menos un compuesto de fórmula (I) descrito según cualquiera de las reivindicaciones 26 a 44.

49.- Composición según la reivindicación anterior, donde dicha composición es alimentaria, nutracéutica, cosmética o farmacéutica.

50.- Composición según la reivindicación 49 que además comprende un vehículo farmacéuticamente aceptable.

51.- Composición según cualquiera de las reivindicaciones 49 o 50, donde además comprende otro principio activo.

52.- Composición según cualquiera de las reivindicaciones anteriores, donde dicha composición se encuentra en una forma adecuada para su administración tópica, oral o parenteral.

53.- Composición según cualquiera de las reivindicaciones 48 a 51, donde dichas composición están en forma de emulsión, complejo o capsulada.
FIGURAS

Inhibición de la tirosinasa

FIG. 1
INTERNATIONAL SEARCH REPORT

International application No.
PCT/ES2012/000151

A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07C, A61K, A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
EPODOC, WPL, REGISTRY, CAPLUS, MEDLINE, BIOSIS, XPESP, NPL, EMBASE, CHEMSPIDER, PUBMED

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Further documents are listed in the continuation of Box C. ❉ See patent family annex.

* Special categories of cited documents:
"A" document defining the general state of the art which is not considered to be of particular relevance.
"E" earlier document but published on or after the international filing date.
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified).
"O" document referring to an oral disclosure use, exhibition, or other means.
"P" document published prior to the international filing date but later than the priority date claimed.
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention.
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone.
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other documents.
"&" document member of the same patent family.

Date of the actual completion of the international search
05/10/2012

Date of mailing of the international search report
15/10/2012

Name and mailing address of the ISA/

OFFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Facsimile No.: 91 349 53 04

Authorized officer
G. Esteban García
Telephone No. 91 3495425

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of documents, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patent document cited in the search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO0216318 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2417507 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU8023001 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU8022901 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20020030009 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20020039226 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR100564902 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1303483 AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1418191 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN100439332 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP13111478 AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003153596 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003212140 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7067555 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2004506714 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2004506713 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20040044431 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR100526897 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20040048393 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ523882 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MXPA03001535 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20050090357 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR100672183 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20050090356 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR100709014 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT328868 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2001280229 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE60120421 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2266227 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US8071650 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT393141 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE60133743 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2007346735 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN101421257 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP2091929 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2009538270 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU2008141686 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU1502802 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20031730 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EE200300150 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU20032507 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK4682003 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1366440 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP20010983556</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ200310909 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG107717 A</td>
</tr>
<tr>
<td>Patent family member(s)</td>
<td>Publication date</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>BR0114987 A</td>
<td>03.02.2004</td>
<td></td>
</tr>
<tr>
<td>ZA200302395 A</td>
<td>29.03.2004</td>
<td></td>
</tr>
<tr>
<td>JP2004512603 A</td>
<td>22.04.2004</td>
<td></td>
</tr>
<tr>
<td>CN14935051 A</td>
<td>28.04.2004</td>
<td></td>
</tr>
<tr>
<td>CN1264110 C</td>
<td>12.07.2006</td>
<td></td>
</tr>
<tr>
<td>US2004083060 A</td>
<td>29.04.2004</td>
<td></td>
</tr>
<tr>
<td>MXPA03003422 A</td>
<td>04.05.2004</td>
<td></td>
</tr>
<tr>
<td>PL364772 A</td>
<td>13.12.2004</td>
<td></td>
</tr>
<tr>
<td>EA005286 B</td>
<td>30.12.2004</td>
<td></td>
</tr>
<tr>
<td>HRP20030240 A</td>
<td>28.02.2005</td>
<td></td>
</tr>
<tr>
<td>HK1061911 A</td>
<td>13.10.2006</td>
<td></td>
</tr>
<tr>
<td>JP2007137887 A</td>
<td>07.06.2007</td>
<td></td>
</tr>
<tr>
<td>UA79231 C</td>
<td>11.06.2007</td>
<td></td>
</tr>
<tr>
<td>AU2002215028 B</td>
<td>15.11.2007</td>
<td></td>
</tr>
</tbody>
</table>
CLASSIFICATION OF SUBJECT MATTER

C07C321/10 (2006.01)
C07C321/20 (2006.01)
C07C335/12 (2006.01)
C07C391/00 (2006.01)
A61K31/095 (2006.01)
A61K31/10 (2006.01)
A61K31/17 (2006.01)
A61P7/02 (2006.01)
A61P9/00 (2006.01)
A61P23/28 (2006.01)
A61P29/00 (2006.01)
A61P31/00 (2006.01)
A61P35/00 (2006.01)
INFORME DE BÚSQUEDA INTERNACIONAL

Solicitud internacional nº
PCT/ES2012/000151

A. CLASIFICACIÓN DEL OBJETO DE LA SOLICITUD
Ver Hoja Adicional

De acuerdo con la Clasificación Internacional de Patentes (CIP) o según la clasificación nacional y CIP.

B. SECTORES COMPRENDIDOS POR LA BÚSQUEDA

Documentación mínima buscada (sistema de clasificación seguido de los símbolos de clasificación)
C07C, A61K, A61P

Otra documentación consultada, además de la documentación mínima, en la medida en que tales documentos formen parte de los sectores comprendidos por la búsqueda

Bases de datos electrónicas consultadas durante la búsqueda internacional (nombre de la base de datos y, si es posible, términos de búsqueda utilizados)
EPODOC, WPI, REGISTRY, CAPLUS, MEDLINE, BIOSIS, XPESP, NPL, EMBASE, CHEMSPIDER, PUBMED

C. DOCUMENTOS CONSIDERADOS RELEVANTES

<table>
<thead>
<tr>
<th>Categoría*</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las reinvindicaciones nº</th>
</tr>
</thead>
</table>

* En la continuación del recuadro C se relacionan otros documentos

Los documentos de familias de patentes se indican en el anexo

* Categorías especiales de documentos citados:
 "A" documento que define el estado general de la técnica no considerado como particularmente relevante.
 "E" solicitud de patente o patente anterior pero publicada en la fecha de presentación internacional o en fecha posterior.
 "L" documento que puede plantear dudas sobre una reinvindicación de prioridad o que se cita para determinar la fecha de publicación de otra cita o por una razón especial (como la indicada).
 "O" documento que se refiere a una divulgación oral, a una utilización, a una exposición o a cualquier otro medio.
 "P" documento publicado antes de la fecha de presentación internacional pero con posterioridad a la fecha de prioridad reinvindicada.
 "T" documento ulterior publicado con posterioridad a la fecha de presentación internacional o de prioridad que no pertenece al estado de la técnica pertinente pero que se cita por permitir la comprensión del principio o teoría que constituye la base de la invención.
 "X" documento particularmente relevante; la invención reinvindicada no puede considerarse nueva o que implique una actividad inventiva por referencia al documento aisladamente considerado, documento particularmente relevante; la invención reinvindicada no puede considerarse nueva o que implique una actividad inventiva cuando el documento se asocia a otro u otro documentos de la misma naturaleza, cuya combinación resulta evidente para un experto en la materia.
 "Y" documento que forma parte de la misma familia de patentes.

Fecha en que se ha concluido efectivamente la búsqueda internacional: 05/10/2012
Fecha de expedición del informe de búsqueda internacional: 15 de octubre de 2012 (15/10/2012)

Nombre y dirección postal de la Administración encargada de la búsqueda internacional
OFICINA ESPAÑOLA DE PATENTES Y MARCAS
Paseo de la Castellana, 75 - 28071 Madrid (España)
Nº de fax: 91 349 53 04
Formulario PCT/ISA/210 (segunda hoja) (Julio 2009)

Funcionario autorizado
G. Esteban García
Nº de teléfono 91 3495425
<table>
<thead>
<tr>
<th>Categoría</th>
<th>Documentos citados, con indicación, si procede, de las partes relevantes</th>
<th>Relevante para las revindicaciones nº</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documento de patente citado en el informe de búsqueda</td>
<td>Fecha de Publicación</td>
<td>Miembro(s) de la familia de patentes</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO0216318 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA2417507 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU8023001 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU8022901 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR2002003009 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20020039226 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR100564902 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1303483 AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1418191 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN100439332 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1311478 AB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003153596 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US2003212140 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US7067553 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2004506714 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2004506713 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20040044431 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR100526897 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR2004048393 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ523882 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MXP03001535 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20050090357 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR100672183 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR20050090356 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR100709014 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT328868 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2001280229 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE60120421 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES2266227 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US8071650 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT393141 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE60133743 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU2006346735 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN101421257 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP2091929 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2009538270 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU2008141686 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU1502802 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO20031730 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EE200300150 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU0302507 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SK4682003 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP1366440 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP20010983556</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ20031090 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BG107717 A</td>
</tr>
<tr>
<td>Documento de patente citado en el informe de búsqueda</td>
<td>Fecha de Publicación</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>BR0114987 A</td>
<td>03.02.2004</td>
<td></td>
</tr>
<tr>
<td>ZA200302395 A</td>
<td>29.03.2004</td>
<td></td>
</tr>
<tr>
<td>JP2004512603 A</td>
<td>22.04.2004</td>
<td></td>
</tr>
<tr>
<td>CN1493051 A</td>
<td>28.04.2004</td>
<td></td>
</tr>
<tr>
<td>CN1264110 C</td>
<td>12.07.2006</td>
<td></td>
</tr>
<tr>
<td>US2004083060 A</td>
<td>29.04.2004</td>
<td></td>
</tr>
<tr>
<td>MXPA03003422 A</td>
<td>04.05.2004</td>
<td></td>
</tr>
<tr>
<td>PL364772 A</td>
<td>13.12.2004</td>
<td></td>
</tr>
<tr>
<td>EA005286 B</td>
<td>30.12.2004</td>
<td></td>
</tr>
<tr>
<td>HRP20030240 A</td>
<td>28.02.2005</td>
<td></td>
</tr>
<tr>
<td>HK1061911 A</td>
<td>13.10.2006</td>
<td></td>
</tr>
<tr>
<td>JP2007137887 A</td>
<td>07.06.2007</td>
<td></td>
</tr>
<tr>
<td>UA79231 C</td>
<td>11.06.2007</td>
<td></td>
</tr>
<tr>
<td>AU2002215028 B</td>
<td>15.11.2007</td>
<td></td>
</tr>
</tbody>
</table>
CLASIFICACIONES DE INVENCIÓN

C07C32/10 (2006.01)
C07C32/20 (2006.01)
C07C33/12 (2006.01)
C07C39/100 (2006.01)
A61K31/005 (2006.01)
A61K31/10 (2006.01)
A61K31/17 (2006.01)
A61P7/02 (2006.01)
A61P9/00 (2006.01)
A61P25/28 (2006.01)
A61P29/00 (2006.01)
A61P31/00 (2006.01)
A61P35/00 (2006.01)