TRADUCCIÓN DE PATENTE EUROPEA

Número de solicitud europea: 04709639.1
Fecha de presentación: 10.02.2004
Número de publicación de la solicitud: 1609758
Fecha de publicación de la solicitud: 28.12.2005

Título: Material cristalino poroso (zeolita ITQ-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos

Prioridad:
14.02.2003 ES 200300445

Fecha de publicación de la mención BOP:
04.12.2012

Fecha de la publicación del folleto de la patente:
04.12.2012

Titular/es:
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (50.0%)
SERRANO, 117
28006 MADRID, ES
UNIVERSIDAD POLITÉCNICA DE VALENCIA
(50.0%)

Inventor/es:
CORMA CANOS, AVELINO;
CASTANEDA SÁNCHEZ, R.;
FORNES SEGÜI, V. y
REY GARCIA, FERN.

Agente/Representante:
UNGRÍA LÓPEZ, Javier

Aviso: En el plazo de nueve meses a contar desde la fecha de publicación en el Boletín europeo de patentes, de la mención de concesión de la patente europea, cualquier persona podrá oponerse ante la Oficina Europea de Patentes a la patente concedida. La oposición deberá formularse por escrito y estar motivada; sólo se considerará como formulada una vez que se haya realizado el pago de la tasa de oposición (art. 99.1 del Convenio sobre concesión de Patentes Europeas).
DESCRIPCIÓN

Material cristalino poroso (zeolita ITQ-24), su procedimiento de preparación y su uso en la conversión catalítica de compuestos orgánicos

Campo de la técnica

La invención se refiere a materiales zeolíticos cristalinos y a su uso en la conversión catalítica de compuestos orgánicos.

Antecedentes

Las zeolitas son materiales cristalinos porosos que han encontrado importantes aplicaciones como catalizadores, adsorbentes e intercambiadores iónicos. Muchos de estos materiales zeolíticos tienen estructuras bien definidas que forman canales y cavidades en su interior de tamaño y forma uniforme que permiten la adsorción de determinadas moléculas, mientras que impiden el paso al interior del cristal de otras moléculas de tamaño demasiado grande para difundir a través de los poros. Esta característica confiere a estos materiales propiedades de tamiz molecular. Estos tamaños moleculares pueden incluir en la red Si y otros elementos de los grupos IIa, IVa del sistema periódico y/o metales de transición, como por ejemplo Ti, V, etc., todos ellos tetraédricamente coordinados, estando los tetraedros unidos por sus vértices a través de oxígenos formando una red tridimensional. En el caso de presentar elementos correspondientes al grupo IIIa tetraédricamente coordinados en posiciones de red, la carga negativa generada está compensada por la presencia de cationes, como por ejemplo alcalinos o alcalinotérreos, que se sitúan en los canales y/o cavidades de estos materiales. Un tipo de catión puede ser intercambiado total o parcialmente por otro tipo de catión mediante técnicas de intercambio iónico, pudiendo variar así las propiedades de un silicato dado seleccionando los cationes deseados. En el caso en que estos cationes son protones, los materiales resultantes poseen una elevada acidez que les confiere interesantes propiedades catalíticas.

El empleo de cationes orgánicos como agentes directores de estructura ha sido hasta el momento un método muy eficaz en la obtención de nuevas estructuras zeolíticas. Recientemente, se ha evidenciado que la incorporación de heteróátomos distintos del silicio pueden ejercer un importante papel como directores de estructura, ya que promueven la formación de ciertas subunidades de construcción secundarias. Así por ejemplo, la incorporación de Ge promueve la formación de dobles anillos de cuatro miembros en las zeolitas finales, mientras que la incorporación de Be o Zn promueve la aparición de anillos de tres miembros en los materiales finales.

Como consecuencia del trabajo realizado en el campo de la síntesis de zeolitas hasta el momento se han descrito más de 140 estructuras zeolíticas en las que varía la forma, tamaño y conectividad de sus canales y/o cavidades confiriéndoles distintas propiedades de adsorción/difusión, y por tanto, presentando distinto comportamiento catalítico. Resulta por tanto evidente que la obtención de nuevas zeolitas es un campo importante de desarrollo, ya que la posibilidad de disponer de un elevado número de zeolitas permite seleccionar la estructura más adecuada al proceso que se pretende catalizar.

Se sabe a partir del documento US 6.471.940 A cómo usar el patrón orgánico dibromuro o dihidróxido de N,N'-bis-trietil-1,6-hexanodil-diamonio para fabricar tamares moleculares de silicato poroso, cristalinos con la estructura SSZ-31.

Se sabe a partir del documento US 5.219.813 A cómo usar el patrón orgánico bis(trialquil bromuro de amonio) de hexametileno, en el que el alquilo es etilo y/o propio, para fabricar tamares moleculares de silicato poroso, cristalinos.

Descripción de la invención

La presente invención se refiere a un material cristalino poroso y sintético caracterizado por que está formado por átomos en coordinación tetraédrica unidos entre sí a través de oxígenos, que presenta una celda unidad que contiene 56 átomos en coordinación tetraédrica, que se denomina ITQ-24, cuya fórmula química en estado calcinado y anhidro viene dada por

\[M_{10}XO_2 : nYO_2 \]

en la que:

- X es al menos un elemento trivalente,
- Y es al menos un elemento tetravalente,

el valor de n está comprendido entre 0 y 0,2, y M es al menos un catión de compensación de carga, en estado de oxidación p.

que posee un difractograma de rayos x en estado calcinado y anhidro cuyas reflexiones más representativas aparecen a los espaciados dados en la tabla 1:

| Tabla 1 |
|-----------------|-----------------|
| 2θ | d (±0,5 Å) | 100 l0/lmax |
| 7,1400 | 12,4012 | d |
| 7,8650 | 11,2596 | mf |
| 11,0150 | 8,0457 | d |
| 20,2900 | 4,3840 | md |
| 21,4200 | 4,1552 | md |
| 22,0450 | 4,0388 | md |
| 22,7350 | 3,9178 | md |
| 22,9300 | 3,8849 | md |

donde los espaciados interplanares, d, se calcularon en Ángstrom y la intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y donde (mf) = 80-100 significa muy fuerte, (f) = 60-80 fuerte, (m) = 40-60 media, (d) = 20-40 débil, y (md) = 0-20 muy débil.

Los ejemplos de elementos trivalentes en la fórmula dada anteriormente para ITQ-24 son Al, B, Fe, In, Ga, Cr y mezclas de los mismos.

Los ejemplos de elementos tetravalentes en la fórmula dada anteriormente para ITQ-24 son Si, Ti, Sn; Ge y mezclas de los mismos.

Los ejemplos de cationes de compensación en la fórmula dada anteriormente para ITQ-24 son un protón, precursos de H+ tales como NH4+, por ejemplo, iones metálicos tales como metales alcalinos o alcalinotérreos, cationes de tierras raras, y metales del grupo VIII, y también del grupo IIA, IIIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VIIB de la tabla periódica de los elementos, o mezclas de los mismos.

A partir de los valores dados, puede deducirse que el material cristalino ITQ-24 puede sintetizarse en ausencia de elementos trivalentes y/o cationes de compensación añadidos.

En una realización preferida de ITQ-24, X se selecciona entre B, Al y combinaciones de los mismos, e Y es Si, Ge, Ti y combinaciones de los mismos.

El material cristalino, poroso y sintético, ITQ-24, según se prepara antes de calcinar, posee un difractograma de rayos x cuyas reflexiones más representativas aparecen a los espaciados dados en la tabla 2:

<p>	Tabla 2
2θ	d (±0,5 Å)
7,1000	12,4709
7,9400	11,1534
10,5950	8,3637
11,0150	8,0457
19,4800	4,5644
19,5700	4,5436
<table>
<thead>
<tr>
<th>2θ</th>
<th>d (±0,5 Å)</th>
<th>100 I/Imax</th>
</tr>
</thead>
<tbody>
<tr>
<td>20,6050</td>
<td>4,3177</td>
<td>m</td>
</tr>
<tr>
<td>21,5450</td>
<td>4,1314</td>
<td>md</td>
</tr>
<tr>
<td>22,1750</td>
<td>4,0154</td>
<td>m</td>
</tr>
<tr>
<td>22,6550</td>
<td>3,9314</td>
<td>d</td>
</tr>
<tr>
<td>22,8650</td>
<td>3,8958</td>
<td>m</td>
</tr>
<tr>
<td>22,9550</td>
<td>3,8807</td>
<td>m</td>
</tr>
<tr>
<td>26,9400</td>
<td>3,3150</td>
<td>d</td>
</tr>
<tr>
<td>27,0100</td>
<td>3,3066</td>
<td>d</td>
</tr>
<tr>
<td>29,2100</td>
<td>3,0624</td>
<td>d</td>
</tr>
</tbody>
</table>

donde la intensidad relativa es como se ha indicado anteriormente.

Estos difractogramas se obtuvieron con un difractómetro Philips X-Pert equipado con un monocromador de gráfítio y una ranura de divergencia automática usando radiación Kα de cobre. Los datos de difracción se registraron mediante las etapas de 2θ de 0,01° donde θ es el ángulo de Bragg y con un tiempo de conteo de 10 segundos por etapa.

Hay que tener en cuenta que los datos de difracción para esta muestra presentados como líneas individuales pueden consistir en múltiples solapantes o superposiciones de reflexiones que, en ciertas condiciones, tales como diferencias en los cambios cristaligráficos, pueden aparecer como líneas resueltas o parcialmente resueltas. En general, los cambios cristaligráficos pueden incluir pequeñas variaciones en los parámetros de las celdas unidad y/o cambios en la simetría del cristal, sin que tenga lugar ningún cambio en la conectividad entre los átomos de la estructura. Estas modificaciones, que también incluyen cambios en las intensidades relativas, pueden debese también a diferencias en el tipo y cantidad de cationes de compensación, la composición de la red y la forma de la misma, la orientación preferida o el tipo de tratamiento térmico o hidrotérmico experimentado.

El material cristalino y poroso denominado ITQ-24 a que se refiere esta invención es una fase cristalina única que posee un sistema tridirecciónal de canales que se intersectan entre sí. En concreto, la zeolita ITQ-24 posee un primer sistema de canales que está definido por anillos de 12 miembros de átomos tetraédricamente coordinados con una apertura de canal de 7,7 x 5,6 Å, un segundo sistema de canales sinusoidales también definidos por aperturas de canales formadas por 12 átomos coordinados tetraédricamente con una apertura de canal de 7,2 x 6,2 Å, y finalmente un tercer sistema de canales con un apertura de canal de 10 átomos coordinados tetraédricamente con una apertura de canal de 5,75 x 4,8 Å. Estos tres sistemas están interconectados entre sí.

La estructura de la zeolita ITQ-24 puede ser definida por su celda unidad, que es la unidad estructural más pequeña que presenta todos los elementos de simetría del material. En la tabla 3 se muestra la lista de posiciones de todos átomos tetraedrados contenidos en la celda unidad para una realización particular de ITQ-24. Cada átomo tetraedrado se encuentra unido a sus cuatro vecinos a través de oxígenos puente. Ya que la posición de los átomos tetraedrados puede variar ligeramente dependiendo de la presencia de materia orgánica o agua en sus poros, de la composición química del material o cualquier otra modificación, cada coordenada de posición dada en la tabla 3 puede modificarse en ±0,5 Å sin que se produzca un cambio en la conectividad de los átomos que forman la estructura de la zeolita ITQ-24.

<table>
<thead>
<tr>
<th>Tabla 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sitio</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T1</td>
</tr>
<tr>
<td>T2</td>
</tr>
<tr>
<td>T3</td>
</tr>
<tr>
<td>T4</td>
</tr>
<tr>
<td>T5</td>
</tr>
<tr>
<td>Sitio</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>T6</td>
</tr>
<tr>
<td>T7</td>
</tr>
<tr>
<td>T8</td>
</tr>
<tr>
<td>T9</td>
</tr>
<tr>
<td>T10</td>
</tr>
<tr>
<td>T11</td>
</tr>
<tr>
<td>T12</td>
</tr>
<tr>
<td>T13</td>
</tr>
<tr>
<td>T14</td>
</tr>
<tr>
<td>T15</td>
</tr>
<tr>
<td>T16</td>
</tr>
<tr>
<td>T17</td>
</tr>
<tr>
<td>T18</td>
</tr>
<tr>
<td>T19</td>
</tr>
<tr>
<td>T20</td>
</tr>
<tr>
<td>T21</td>
</tr>
<tr>
<td>T22</td>
</tr>
<tr>
<td>T23</td>
</tr>
<tr>
<td>T24</td>
</tr>
<tr>
<td>T25</td>
</tr>
<tr>
<td>T26</td>
</tr>
<tr>
<td>T27</td>
</tr>
<tr>
<td>T28</td>
</tr>
<tr>
<td>T29</td>
</tr>
<tr>
<td>T30</td>
</tr>
<tr>
<td>T31</td>
</tr>
<tr>
<td>T32</td>
</tr>
<tr>
<td>T33</td>
</tr>
<tr>
<td>T34</td>
</tr>
<tr>
<td>T35</td>
</tr>
<tr>
<td>T36</td>
</tr>
<tr>
<td>T37</td>
</tr>
<tr>
<td>T38</td>
</tr>
<tr>
<td>T39</td>
</tr>
<tr>
<td>T40</td>
</tr>
<tr>
<td>T41</td>
</tr>
<tr>
<td>T42</td>
</tr>
<tr>
<td>T43</td>
</tr>
<tr>
<td>T44</td>
</tr>
<tr>
<td>T45</td>
</tr>
<tr>
<td>T46</td>
</tr>
<tr>
<td>T47</td>
</tr>
<tr>
<td>T48</td>
</tr>
<tr>
<td>T49</td>
</tr>
<tr>
<td>T50</td>
</tr>
<tr>
<td>T51</td>
</tr>
<tr>
<td>T52</td>
</tr>
<tr>
<td>T53</td>
</tr>
<tr>
<td>T54</td>
</tr>
<tr>
<td>T55</td>
</tr>
<tr>
<td>T56</td>
</tr>
</tbody>
</table>
Un segundo objeto de la presente invención es un procedimiento para sintetizar el material cristalino ITQ-24, que comprende al menos:

una primera etapa en la que se hace reaccionar una mezcla de síntesis que comprende al menos:

- H_2O,
- una fuente de al menos un elemento tetravalente Y,
- un agente director de estructura (R), siendo dicho agente director de estructura una sal del dicación hexametilren bis(trimetil-amonio), y
- una fuente de iones hidróxido con un catión M^+,

una segunda etapa que comprende mantener la mezcla de síntesis a una temperatura entre 80 y 200 °C hasta que se formen cristales de dicho material cristalino; y

una tercera etapa que comprende recuperar dicho material cristalino.

En ciertos casos, la fuente de ion hidróxido con un catión M^+ puede ser el propio agente director de estructura.

El procedimiento puede comprender además

una cuarta etapa en la que se elimina materia orgánica oculta en el interior del material cristalino mediante un tratamiento seleccionado entre tratamientos de extracción, tratamientos térmicos a temperaturas superiores a 250 °C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas, y combinaciones de los mismos.

Según una realización preferida del procedimiento, la mezcla de síntesis puede comprender adicionalmente una fuente del elemento trivalente X.

Según una realización preferida de la invención, la fuente del elemento tetravalente Y es un óxido, la fuente del elemento trivalente X es un óxido, y la mezcla de síntesis tiene una composición, en términos de relaciones molares de óxidos, de

$$
\begin{align*}
\text{YO}_2/\text{X}_2\text{O}_3 & \geq 5 \\
\text{H}_2\text{O}/\text{YO}_2 & = \text{entre } 1 \text{ y } 50 \\
\text{R}/\text{YO}_2 & = \text{entre } 0,05 \text{ y } 3,0 \\
\text{OH}/\text{YO}_2 & = \text{entre } 0,05 \text{ y } 6,0 \\
\text{M}^+\text{O}/\text{X}_2\text{O}_3 & = \text{entre } 0 \text{ y } 1,0
\end{align*}
$$

donde j es el estado de oxidación del catión M^+ y puede ser uno o dos.

Según una realización más preferida del procedimiento, la fuente del elemento tetravalente Y es un óxido, la fuente del elemento trivalente X es un óxido, y la mezcla de síntesis tiene una composición, en términos de relaciones molares, de:

$$
\begin{align*}
\text{YO}_2/\text{X}_2\text{O}_3 & > 7 \\
\text{H}_2\text{O}/\text{YO}_2 & = \text{entre } 2 \text{ y } 20 \\
\text{R}/\text{YO}_2 & = \text{entre } 0,05 \text{ y } 1,0 \\
\text{OH}/\text{YO}_2 & = \text{entre } 0,1 \text{ y } 2,0 \\
\text{M}^+\text{O}/\text{X}_2\text{O}_3 & = \text{entre } 0 \text{ y } 1,0
\end{align*}
$$

donde j es el estado de oxidación del catión M^+ y puede ser uno o dos.

Según el proceso de la presente invención, la fuente de hidróxido con un catión M^+ puede seleccionarse entre una fuente de al menos un catión de compensación M, el anión del agente director de estructura y una mezcla de los dos.

Un ejemplo preferido de agente director de estructura es una sal del dihidróxido de hexametilren-bis(trimetilamonio).

Una fuente preferida del elemento tetravalente Y es un óxido.

Una fuente preferida del elemento trivalente X es un óxido.

Una fuente preferida del catión de compensación M es un hidróxido o un óxido.

Según una realización particular del proceso, los iones floruro se añaden a la mezcla de síntesis en una relación molar F/YO_2 igual a o menor de 0,02. Por ejemplo, en una realización particular, puede añadirse floruro de amonio en una relación molar F/SiO_2 menor de 0,01, en el caso en el que Y es Si.

65
La zeolita ITQ-24 puede prepararse esencialmente como una fase pura o con cantidades muy pequeñas de impurezas que incluso pueden ser indetectables por difracción por rayos X.

En el proceso de síntesis de ITQ-24, pueden usarse iones hidróxido como agentes de movilización de los óxidos de elementos trivalentes y tetravalentes, que se introducen en el medio de síntesis como el hidróxido de un catión orgánico, un catión inorgánico o mezclas de los mismos, pudiendo quedar oculto en el interior de la estructura de la especie orgánica, que puede eliminarse por medios convencionales. De esta manera, el componente orgánico puede eliminarse, por ejemplo, por extracción, o por tratamiento térmico calentándolo a una temperatura por encima de 250 °C durante un período de tiempo entre 2 minutos y 25 horas.

Los cationes de compensación en el material en su forma no calcinada, o después del tratamiento térmico, si están presentes, pueden intercambiarse por otros cationes tales como iones metálicos, H⁺ y precursores de H⁺ tales como NH₄⁺. Entre los cationes que pueden introducirse por intercambio de iones, aquellos que pueden realizar un papel positivo en la actividad del material como un catalizador son preferidos, y más específicamente, cationes tales como H⁺, cationes de tierras raras y metales del grupo VIII, así como del grupo IIA, IIIA, IVA, Va, IB, IIB, IIIB, IVB, VB, VIIB de la tabla periódica de los elementos son preferidos.

La cristalización de ITQ-24 puede realizarse estáticamente o con agitación, en autoclaves a una temperatura entre 80 y 200 °C, durante un tiempo suficiente para conseguir la cristalización, por ejemplo entre 12 horas y 60 días.

Debe tenerse presente que los componentes de la mezcla de síntesis pueden proceder de diferentes fuentes, y pueden variar dependiendo de los tiempos y condiciones de cristalización. Con el objetivo de facilitar la síntesis, pueden añadirse cristales de ITQ-24 como semillas a la mezcla de síntesis, en cantidades de hasta el 15% en peso con respecto a los componentes totales que constituyen la fuente de los elementos X, Y y M. Estos pueden añadirse a la mezcla de síntesis por adelantado, durante la primera etapa del proceso, o durante la cristalización de ITQ-24, en otras palabras, durante la segunda etapa del proceso.

Para facilitar la síntesis, pueden añadirse también iones fluoruro, en forma de, por ejemplo, fluoruro de amonio, en relaciones F⁻/SiO₂ menores de 0,01.

Al completarse la etapa de cristalización, los cristales de ITQ-24 se separan de las aguas madre y se recuperan.

Un tercer objeto de la presente invención se refiere a un método para convertir una alimentación formada a partir de al menos un compuesto orgánico que consiste en poner la alimentación en contacto con una cantidad catalíticamente activa del material cristalino conocido como ITQ-24.

Un objeto adicional de la presente invención es un método para convertir una alimentación formada a partir de al menos un compuesto orgánico que consiste en poner la alimentación en contacto con una cantidad catalíticamente activa del material cristalino obtenido de acuerdo con el proceso descrito anteriormente.

Con el objetivo de preparar los catalizadores, el material cristalino de la presente invención puede combinarse también íntimamente con componentes hidrogenantes-desoxigenantes tales como platino, paladio, níquel, renio, cobalto, tungsteno, molibdeno, cromo, vanadio, manganoso, hierro y mezclas de los mismos. La introducción de estos elementos puede realizarse en la etapa de cristalización, por intercambio (si fuera apropiado), y/o por impregnación o mezcla física. Estos elementos pueden introducirse en su forma catiónica y/o partir de sales u otros compuestos que, por descomposición, generan el compuesto u óxido metálico en su forma catálitica adecuada.

La zeolita ITQ-24 producida mediante esta invención, cuando contiene elementos trivalentes en su composición, y una vez peletizada, puede usarse como un componente de catálisis en procesos de craqueo catalítico ácido, tales como, por ejemplo, procesos de craqueo catalítico de hidrocarburos, hidro-craqueo catalítico de hidrocarburos, reformado de hidrocarburos, alquilación de aromáticos con olefinas y en procesos de esterificación, acilación, reacción de anilina con formaldehído en su forma ácida y/o intercambiada con los cationes adecuados.

Asimismo, la zeolita ITQ-24 cuando contiene elementos tetravalentes como Ti y/o Sn en su composición puede ser empleada como catalizadores heterogéneos en procesos de oxidación de olefinas con peróxidos orgánicos o inorgánicos y en reacciones del tipo Bayer-Villiger o Meerwin-Pondorf entre otros.
Breve descripción de las figuras

La Figura 1 muestra la proyección de un primer sistema de canales definidos por anillos de 12 miembros de átomos coordinados tetraédricamente con una apertura de canal de 7,7 x 5,6 Å.

La Figura 2 muestra un segundo sistema de canales sinusoidales definidos también por aperturas de canal formadas por 12 átomos coordinados tetraédricamente con una apertura de canal de 7,2 x 6,2 Å.

La Figura 3 muestra un tercer sistema de canales con una apertura de canal de 10 átomos coordinados tetraédricamente con una apertura de canal de 5,75 x 4,8 Å.

La Figura 4 muestra la celda unidad de ITQ-24.

La Figura 5 muestra la estructura del dicatión hexametilen-bis(trimetilamonio).

Ejemplos

Ejemplo 1.- Preparación de bromuro de hexametilen-bis(trimetilamonio)

37,38 g de 1,6-dibromohexano, (pureza = 96%), 62,35 g de solución de trimetilamina (31-35% en peso en etanol) son adicionados a un matraz de 500 ml, inmediatamente se añade el etanol necesario para obtener una adecuada mezcla de los distintos productos añadidos mientras se homogenizan mediante agitación magnética. La mezcla resultante se mantiene a temperatura ambiente con agitación constante durante 48 horas. Posteriormente se recupera el sólido formado mediante filtración y se lava exhaustivamente con acetato de etilo y dietil éter. El sólido blanco obtenido se seca a temperatura ambiente durante 12 horas.

Ejemplo 2.- Preparación de dihidróxido de hexametilen-bis(trimetilamonio)

El dihidróxido de hexametonio se prepara por intercambio aniónico directo, utilizando una resina, Amberlite IRN-78 (Supeco), como fuente de aniones hidróxidos, habiendo lavado la resina previamente con agua destilada hasta pH=7. El proceso consiste en disolver 9 g de dibromuro de hexametonio obtenido según el ejemplo 1 en 250 g de agua Milli Q (Millipore). La solución resultante se hace pasar a través de una columna de resina Amberlite IRN-78 lavada ajustándose la velocidad de flujo para alcanzar un nivel de intercambio superior al 95%. La solución resultante de dihidróxido de hexametilen-bis(trimetilamonio) se recoge en un vaso de precipitados. Esta solución se concentra a 50 °C y vacío hasta alcanzar una concentración de dihidróxido de hexametilen-bis(trimetilamonio) de aproximadamente 0,5 mol/kg.

Ejemplo 3.- Síntesis del material ITQ-24 con aluminio

Se disuelven 1,46 g de GeO2 en 42,0 g de disolución de dihidróxido de hexametilen-bis(trimetilamonio) con una concentración de 0,499 moles/kg. En la disolución obtenida se hidrillan 14,54 g de tetraetilortosilicato y 0,856 g de triisopropóxido de aluminio, y se mantiene en agitación dejando evaporar todo el etanol e isopropóxido formado en la hidrólisis y hasta que la mezcla de reacción alcanza una composición final:

5 SiO₂ : 1 GeO₂ : 1,50 R(OH)₂ : 30 H₂O : 0,15 Al₂O₃

donde R(OH)₂ es dihidróxido de hexametilen-bis(trimetilamonio).

El gel se calienta a 175 °C en agitación durante 15 días en autoclaves de acero con un revestimiento interno de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es ITQ-24 y cuyo listado de picos de difracción se incluye en la tabla 4.

Tabla 4

<table>
<thead>
<tr>
<th>2θ</th>
<th>d Å</th>
<th>100 I₀/₀₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>7,1000</td>
<td>12,4709</td>
<td>9</td>
</tr>
<tr>
<td>7,9400</td>
<td>11,1534</td>
<td>100</td>
</tr>
<tr>
<td>10,5950</td>
<td>8,3637</td>
<td>17</td>
</tr>
<tr>
<td>11,0150</td>
<td>8,0457</td>
<td>41</td>
</tr>
<tr>
<td>16,4350</td>
<td>5,4026</td>
<td>6</td>
</tr>
<tr>
<td>19,4800</td>
<td>4,5844</td>
<td>13</td>
</tr>
<tr>
<td>19,5700</td>
<td>4,5436</td>
<td>16</td>
</tr>
<tr>
<td>2θ</td>
<td>d Å</td>
<td>100 l0/l_{max}</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>20.1450</td>
<td>4.4152</td>
<td>7</td>
</tr>
<tr>
<td>20.6050</td>
<td>4.3177</td>
<td>54</td>
</tr>
<tr>
<td>21.5450</td>
<td>4.1314</td>
<td>17</td>
</tr>
<tr>
<td>22.1750</td>
<td>4.0154</td>
<td>50</td>
</tr>
<tr>
<td>22.6550</td>
<td>3.9314</td>
<td>24</td>
</tr>
<tr>
<td>22.8650</td>
<td>3.8958</td>
<td>56</td>
</tr>
<tr>
<td>22.9550</td>
<td>3.8807</td>
<td>49</td>
</tr>
<tr>
<td>25.1600</td>
<td>3.5454</td>
<td>6</td>
</tr>
<tr>
<td>25.3350</td>
<td>3.5213</td>
<td>10</td>
</tr>
<tr>
<td>26.3500</td>
<td>3.3879</td>
<td>6</td>
</tr>
<tr>
<td>26.9400</td>
<td>3.3150</td>
<td>22</td>
</tr>
<tr>
<td>27.0100</td>
<td>3.3066</td>
<td>19</td>
</tr>
<tr>
<td>28.4350</td>
<td>3.1441</td>
<td>7</td>
</tr>
<tr>
<td>28.8050</td>
<td>3.1045</td>
<td>7</td>
</tr>
<tr>
<td>29.2100</td>
<td>3.0624</td>
<td>22</td>
</tr>
<tr>
<td>30.4950</td>
<td>2.9362</td>
<td>8</td>
</tr>
<tr>
<td>32.0750</td>
<td>2.7951</td>
<td>8</td>
</tr>
<tr>
<td>32.2100</td>
<td>2.7837</td>
<td>6</td>
</tr>
<tr>
<td>32.7300</td>
<td>2.7407</td>
<td>6</td>
</tr>
<tr>
<td>33.2450</td>
<td>2.6994</td>
<td>8</td>
</tr>
<tr>
<td>35.6600</td>
<td>2.5219</td>
<td>6</td>
</tr>
<tr>
<td>37.3550</td>
<td>2.4113</td>
<td>11</td>
</tr>
</tbody>
</table>

El material se calcina siguiendo la rampa de calentamiento que se describe a continuación. La temperatura se aumenta desde 25 °C hasta 300 °C con una velocidad de 1 °C/min, manteniendo esta temperatura durante 3 horas, y subiendo finalmente la temperatura hasta 580 °C a una velocidad de 1 °C/min; la temperatura se mantiene durante tres horas adicionales.

La muestra calcinada presenta un diagrama de difracción característico de ITQ-24 cuyo listado de picos se muestra en la tabla 5.

<table>
<thead>
<tr>
<th>2θ</th>
<th>d (±0.5 Å)</th>
<th>100 l0/l_{max}</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1400</td>
<td>12.4012</td>
<td>15</td>
</tr>
<tr>
<td>7.8650</td>
<td>11.2596</td>
<td>100</td>
</tr>
<tr>
<td>8.4300</td>
<td>10.5062</td>
<td>6</td>
</tr>
<tr>
<td>10.5800</td>
<td>8.3755</td>
<td>3</td>
</tr>
</tbody>
</table>
Ejemplo 4.- Síntesis del material ITQ-24 con aluminio

Se disuelven 1,115 g de GeO₂ en 125 g de disolución de dihidróxido de hexametilen-bis(trimetilamonio) con una concentración de 0,128 moles/kg. En la disolución obtenida se hidroizan 11,10 g de tetraetiotortosilicato y 0,435 g de trisopropóxido de aluminio, y se mantiene en agitación dejando evaporar todo el etanol e isopropanol formado en la hidrólisis y hasta que la mezcla de reacción alcanza una composición final:

\[
5 \text{SiO}_2 : 1 \text{GeO}_2 : 1,50 \text{R(OH)}_2 : 30 \text{H}_2\text{O} : 0,10 \text{Al}_2\text{O}_3
\]

donde R(OH)₂ es dihidróxido de hexametilen-bis(trimetilamonio).

El gel se calienta a 175 °C en agitación durante 15 días en autoclaves de acero con un revestimiento interno de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es ITQ-24,

El material se calcina siguiendo la rampa de calentamiento que se describe a continuación. La temperatura se aumenta desde 25 °C hasta 300 °C con una velocidad de 1 °C/min, manteniendo esta temperatura durante 3 horas, y subiendo finalmente la temperatura hasta 580 °C a una velocidad de 1 °C/min; la temperatura se mantiene durante tres horas adicionales.

La muestra calcinada presenta un diagrama de difracción característico de ITQ-24.

Ejemplo 5.- Síntesis del material ITQ-24 con boro

Se disuelven 1,13 g de GeO₂ en 42,0 g de disolución de dihidróxido de hexametilen-bis(trimetilamonio) con una concentración de 0,1505 moles/kg. En la disolución obtenida se hidroizan 11,28 g de tetraetiotortosilicato y 0,160 g de ácido bórico, y se mantiene en agitación dejando evaporar todo el etanol formado en la hidrólisis y hasta que la mezcla de reacción alcanza una composición final:

\[
5 \text{SiO}_2 : 1 \text{GeO}_2 : 1,50 \text{R(OH)}_2 : 30 \text{H}_2\text{O} : 0,12 \text{B}_2\text{O}_3
\]

donde R(OH)₂ es dihidróxido de hexametilen-bis(trimetilamonio).

El gel se calienta a 175 °C en agitación durante 15 días en autoclaves de acero con un revestimiento interno de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es ITQ-24.

El material se calcina siguiendo la rampa de calentamiento que se describe a continuación. La temperatura se aumenta desde 25 °C hasta 300 °C con una velocidad de 3 °C/min, manteniendo esta temperatura durante 3 horas, y subiendo finalmente la temperatura hasta 580 °C a una velocidad de 3 °C/min; la temperatura se mantiene durante tres horas adicionales.

La muestra calcinada presenta un diagrama de difracción característico de ITQ-24.

Ejemplo 6.- Síntesis del material ITQ-24 que contiene titanio
Se disuelven 1,177 g de GeO₂ en 56,0 g de disolución de dihidróxido de hexametilén-bis(trimetilamionio) con una concentración de 0,301 moles/kg. En la disolución obtenida se hidrolizan 11,72 g de tetraetilortosilicato, 0,154 g de tetraetoxido de titanio y 0,167 g de ácido bórico, y se mantiene en agitación dejando evaporar todo el etanol formado en la hidrólisis y hasta que la mezcla de reacción alcanza una composición final:

\[5 \text{SiO}_2 : 1 \text{GeO}_2 : 1,50 \text{R(OH)}_2 : 30 \text{H}_2\text{O} : 0,12 \text{B}_2\text{O}_3 : 0,06 \text{TiO}_2\]

donde R(OH)₂ es dihidróxido de hexametilén-bis(trimetilamionio).

El gel se calienta a 175 °C en agitación durante 30 días en autoclaves de acero con un revestimiento interno de teflón. El sólido obtenido tras filtrar, lavar con agua destilada y secar a 100 °C es ITQ-24.

El material se calcina siguiendo la rampa de calentamiento que se describe a continuación. La temperatura se aumenta desde 25 °C hasta 300 °C con a una velocidad de 1 °C/min, manteniendo esta temperatura durante 3 horas, y subiendo finalmente la temperatura hasta 580 °C a una velocidad de 1 °C/min; la temperatura se mantiene durante tres horas adicionales.

La muestra calcinada presenta un diagrama de difracción característico de ITQ-24.

Ejemplo 7.- Tratamiento post-síntesis de una zeolita ITQ-24 que contiene Ti en su composición

Un gramo de zeolita preparada como se ha descrito en el ejemplo 6 se suspende en 30 ml de una solución 2 M de ácido nítrico a 90 °C durante 16 horas. El sólido se recupera por filtración y se lava con agua destilada hasta alcanzar neutralidad y ausencia de iones cloruro en el agua de lavado, y se seca a 80 °C durante 12 horas. El sólido resultante muestra picos de difracción característicos de la zeolita ITQ-24 y el contenido en B está por debajo del nivel de detección de las técnicas de análisis habituales. También, este sólido presenta una banda en el espectro ultravioleta-visible a aproximadamente 210 nm, que se asigna a la presencia del Ti incorporado en la red de la zeolita.
REIVINDICACIONES

1. Un material cristalino, poroso y sintético caracterizado por que está formado por átomos en coordinación tetraédrica unidos entre sí a través de oxígenos, que presenta un celda unidad que contiene 56 átomos en coordinación tetraédrica, que se denomina ITQ-24, cuya fórmula química en estado calcinado y anhídro viene dada por

\[nM_{\text{cíc}}XO_2 : nYO_2 \]

en la que:

- X es al menos un elemento trivalentes,
- Y es al menos un elemento tetravalente,
- el valor de n está comprendido entre 0 y 0,2, y M es al menos un catión de compensación de carga, en estado de oxidación p,

que posee un difractograma de rayos X en estado calcinado y anhídro cuyas reflexiones más representativas aparecen a los espaciados dados en la tabla 1:

<table>
<thead>
<tr>
<th>Tabla 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>2θ</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>7,1400</td>
</tr>
<tr>
<td>7,8650</td>
</tr>
<tr>
<td>11,0150</td>
</tr>
<tr>
<td>20,2900</td>
</tr>
<tr>
<td>21,4200</td>
</tr>
<tr>
<td>22,0450</td>
</tr>
<tr>
<td>22,7350</td>
</tr>
<tr>
<td>22,9300</td>
</tr>
</tbody>
</table>

donde la intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y donde (mf) = 80-100 significa muy fuerte, (f) = 60-80 fuerte, (m) = 40-60 media, (d) = 20-40 débil, y (md) = 0-20 muy débil.

2. Un material cristalino, poroso y sintético, según la reivindicación 1, caracterizado por que según se prepara antes de calcinar, posee un difractograma de rayos X cuyas reflexiones más representativas aparecen a los espaciados dados en la tabla 2:

<table>
<thead>
<tr>
<th>Tabla 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2θ</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>7,1000</td>
</tr>
<tr>
<td>7,9400</td>
</tr>
<tr>
<td>10,5950</td>
</tr>
<tr>
<td>11,0150</td>
</tr>
<tr>
<td>19,4800</td>
</tr>
<tr>
<td>19,5700</td>
</tr>
<tr>
<td>20,6050</td>
</tr>
<tr>
<td>21,5450</td>
</tr>
<tr>
<td>2θ</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>22,1750</td>
</tr>
<tr>
<td>22,6550</td>
</tr>
<tr>
<td>22,8650</td>
</tr>
<tr>
<td>22,9550</td>
</tr>
<tr>
<td>26,9400</td>
</tr>
<tr>
<td>27,0100</td>
</tr>
<tr>
<td>29,2100</td>
</tr>
</tbody>
</table>

donde la intensidad relativa de las líneas se calcula como el porcentaje respecto del pico más intenso, y donde (mf) = 80-100 significa muy fuerte, (f) = 60-80 fuerte, (m) = 40-60 medio, (d) = 20-40 débil, y (md) = 0-20 muy débil.

3. Un material cristalino, poroso y sintético, según la reivindicación 1, **caracterizado por que** Y es un elemento tetravalente seleccionado entre Si, Ge, Ti, Sn y mezclas de los mismos.

4. Un material cristalino, poroso y sintético, según la reivindicación 1, **caracterizado por que** X es un elemento trivalentemente seleccionado entre Al, B, Fe, In, Ga, Cr y mezclas de los mismos.

5. Un material cristalino, poroso y sintético, según la reivindicación 1, **caracterizado por que** X está seleccionado entre B, Al y combinaciones de los mismos, e Y está seleccionado entre Si, Ti y combinaciones de los mismos.

6. Un material cristalino, poroso y sintético, según la reivindicación 1, **caracterizado por que** posee unas coordenadas atómicas que se muestran a continuación

Tabla 3

<table>
<thead>
<tr>
<th>Sitio</th>
<th>Coordenadas atómicas (θ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>T1</td>
<td>1,61</td>
</tr>
<tr>
<td>T2</td>
<td>12,24</td>
</tr>
<tr>
<td>T3</td>
<td>19,65</td>
</tr>
<tr>
<td>T4</td>
<td>9,02</td>
</tr>
<tr>
<td>T5</td>
<td>1,61</td>
</tr>
<tr>
<td>T6</td>
<td>12,24</td>
</tr>
<tr>
<td>T7</td>
<td>19,65</td>
</tr>
<tr>
<td>T8</td>
<td>9,02</td>
</tr>
<tr>
<td>T9</td>
<td>19,65</td>
</tr>
<tr>
<td>T10</td>
<td>9,02</td>
</tr>
<tr>
<td>T11</td>
<td>1,61</td>
</tr>
<tr>
<td>T12</td>
<td>12,24</td>
</tr>
<tr>
<td>T13</td>
<td>19,65</td>
</tr>
<tr>
<td>T14</td>
<td>9,02</td>
</tr>
<tr>
<td>T15</td>
<td>1,61</td>
</tr>
<tr>
<td>T16</td>
<td>12,24</td>
</tr>
<tr>
<td>T17</td>
<td>3,19</td>
</tr>
<tr>
<td>T18</td>
<td>13,82</td>
</tr>
<tr>
<td>T19</td>
<td>18,06</td>
</tr>
<tr>
<td>T20</td>
<td>7,43</td>
</tr>
<tr>
<td>T21</td>
<td>3,19</td>
</tr>
<tr>
<td>T22</td>
<td>13,82</td>
</tr>
<tr>
<td>T23</td>
<td>18,06</td>
</tr>
<tr>
<td>T24</td>
<td>7,43</td>
</tr>
<tr>
<td>Sitio</td>
<td>Coordenadas atómicas (θ)</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td>T25</td>
<td>18,06</td>
</tr>
<tr>
<td>T26</td>
<td>7,43</td>
</tr>
<tr>
<td>T27</td>
<td>3,19</td>
</tr>
<tr>
<td>T28</td>
<td>13,82</td>
</tr>
<tr>
<td>T29</td>
<td>18,06</td>
</tr>
<tr>
<td>T30</td>
<td>7,43</td>
</tr>
<tr>
<td>T31</td>
<td>3,19</td>
</tr>
<tr>
<td>T32</td>
<td>13,82</td>
</tr>
<tr>
<td>T33</td>
<td>16,63</td>
</tr>
<tr>
<td>T34</td>
<td>6,00</td>
</tr>
<tr>
<td>T35</td>
<td>4,63</td>
</tr>
<tr>
<td>T36</td>
<td>15,26</td>
</tr>
<tr>
<td>T37</td>
<td>16,63</td>
</tr>
<tr>
<td>T38</td>
<td>6,00</td>
</tr>
<tr>
<td>T39</td>
<td>4,63</td>
</tr>
<tr>
<td>T40</td>
<td>15,26</td>
</tr>
<tr>
<td>T41</td>
<td>4,63</td>
</tr>
<tr>
<td>T42</td>
<td>15,26</td>
</tr>
<tr>
<td>T43</td>
<td>16,63</td>
</tr>
<tr>
<td>T44</td>
<td>6,00</td>
</tr>
<tr>
<td>T45</td>
<td>4,63</td>
</tr>
<tr>
<td>T46</td>
<td>15,26</td>
</tr>
<tr>
<td>T47</td>
<td>16,63</td>
</tr>
<tr>
<td>T48</td>
<td>6,00</td>
</tr>
<tr>
<td>T49</td>
<td>1,62</td>
</tr>
<tr>
<td>T50</td>
<td>12,25</td>
</tr>
<tr>
<td>T51</td>
<td>19,63</td>
</tr>
<tr>
<td>T52</td>
<td>9,01</td>
</tr>
<tr>
<td>T53</td>
<td>1,62</td>
</tr>
<tr>
<td>T54</td>
<td>12,25</td>
</tr>
<tr>
<td>T55</td>
<td>19,63</td>
</tr>
<tr>
<td>T56</td>
<td>9,01</td>
</tr>
</tbody>
</table>

pudiendo modificarse en + 0,5 Å, sin que se produzca un cambio en la conectividad de los átomos que forman la estructura.

5 7. Un procedimiento para sintetizar el material cristalino de una cualquiera de las reivindicaciones 1 a 6, *caracterizado por que* comprende al menos:

una primera etapa en la que se hace reaccionar una mezcla de síntesis que comprende al menos lo siguiente:

10
- \(\text{H}_2\text{O} \),
- una fuente de al menos un elemento tetravalente \(\text{Y} \),
- un agente director de estructura \(\text{R} \), siendo dicho agente director de estructura una sal del dicátion hexametilên bis(trimetil-amonio),
- una fuente de iones hidróxido con un cátion \(\text{M}^+ \),

15 una segunda etapa que comprende mantener la mezcla de síntesis a una temperatura entre 80 y 200 °C hasta que se formen cristales de dicho material cristalino; y
una tercera etapa que comprende recuperar dicho material cristalino.

20 8. Un procedimiento según la reivindicación 7, *caracterizado por que* comprende al menos:

una primera etapa en la que se hace reaccionar una mezcla de síntesis que comprende al menos lo siguiente:

25
- una fuente de al menos un elemento trivalente \(\text{X} \),
- \(\text{H}_2\text{O} \).
- una fuente de al menos un elemento tetravalente Y,
- un agente director de estructura (R), siendo dicho agente director de estructura una sal del dicatión hexametilen bis(trimetil-amonio), y
- una fuente de iones hidróxido con un catión M'.

5

una segunda etapa que comprende mantener la mezcla de síntesis a una temperatura entre 80 y 200 °C hasta que se formen cristales de dicho material cristalino; y
una tercera etapa que comprende recuperar dicho material cristalino.

9. Un procedimiento según la reivindicación 7 u 8, caracterizado por que comprende además una cuarta etapa en la que se elimina materia orgánica oculta en el interior del material cristalino mediante un tratamiento seleccionado entre tratamientos de extracción, tratamientos térmicos a temperaturas superiores a 250 °C durante un periodo de tiempo comprendido entre 2 minutos y 25 horas, y combinaciones de los mismos.

10. Un procedimiento según la reivindicación 8, caracterizado por que la fuente del elemento tetravalente Y es un óxido, la fuente del elemento trivalente X es un óxido, y la mezcla de síntesis tiene una composición, en términos de relaciones moleares de óxidos, de

$$\frac{YO_2}{X_2O_3} \geq 5$$
$$\frac{H_2O}{YO_2} = \text{entre 1 y 50}$$
$$\frac{R}{YO_2} = \text{entre 0,05 y 3,0}$$
$$\frac{OH}{YO_2} = \text{entre 0,05 y 6,0}$$
$$\frac{M^+_{2n}/X_2O_3}{M^+_{2n}/X_2O_3} = \text{entre 0 y 1,0}$$

25 donde j es el estado de oxidación del catión M' y puede ser uno o dos.

11. Un procedimiento según la reivindicación 8, caracterizado por que la fuente del elemento tetravalente Y es un óxido, la fuente del elemento trivalente X es un óxido, y la mezcla de síntesis tiene una composición, en términos de relaciones moleares, de

$$\frac{YO_2}{X_2O_3} > 7$$
$$\frac{H_2O}{YO_2} = \text{entre 2 y 20}$$
$$\frac{R}{YO_2} = \text{entre 0,05 y 1,0}$$
$$\frac{OH}{YO_2} = \text{entre 0,1 y 2,0}$$
$$\frac{M^+_{2n}/X_2O_3}{M^+_{2n}/X_2O_3} = \text{entre 0 y 1,0}$$

35 donde j es el estado de oxidación del catión M' y puede ser uno o dos.

12. Un procedimiento según la reivindicación 7, caracterizado por que el agente director de estructura es una sal del dicatión hexametilen-bis(trimetil amonio).

13. Un procedimiento según la reivindicación 7, caracterizado por que la fuente del ión hidróxido con un catión M' se selecciona entre al menos un catión de compensación M, el catión director de estructura orgánico y una mezcla de los dos.

45

14. Un procedimiento según la reivindicación 7, caracterizado por que se añaden semillas de ITQ-24 durante la primera etapa, o durante la segunda etapa del procedimiento.

15. Un procedimiento según una de las reivindicaciones 7 a 14, caracterizado por que se añaden iones fluoruro a la mezcla de síntesis en una relación molar F/YO_2 menor o igual a 0,02.

16. Un método para convertir una alimentación formada por al menos un compuesto orgánico caracterizado por que comprende poner en contacto la alimentación con una cantidad catalíticamente activa de un material cristalino denominado ITQ-24 definido en cualquiera de las reivindicaciones 1 a 6, para la conversión de dicho compuesto orgánico.

55

17. Un método para convertir una alimentación formada por al menos un compuesto orgánico caracterizado por que comprende poner en contacto la alimentación con una cantidad catalíticamente activa de un material cristalino obtenido de acuerdo con el procedimiento reivindicado en cualquiera de las reivindicaciones 7 a 16.

60

18. Un método según la reivindicación 16 o 17, caracterizado por que el material cristalino se usa combinado con componentes hidrogenantes-desoxigenantes.

19. Un método según la reivindicación 16 o 17, caracterizado por que el material cristalino se usa combinado con componentes hidrogenantes-desoxigenantes seleccionados entre platino, paladio, níquel, renio, cobalto, tungsteno, molibdeno, vanadio, cromo, manganeso, hierro.
20. Un método según la reivindicación 16 o 17, **caracterizado por que** el material cristalino comprende elementos trivalentes en su composición y se usa como componente peletizado de catalizadores en una conversión seleccionada entre un proceso de craqueo catalítico de hidrocarburos, hidro-craqueo catalítico de hidrocarburos, reformado de hidrocarburos, alquilación de aromáticos con olefinas, esterificación, acilación y reacción de anilina con formaldehído.

21. Un método según la reivindicación 16 o 17, **caracterizado por que** el material cristalino comprende elementos tetravalentes seleccionados entre Ti, Sn y una mezcla de ambos, y se usa como catalizador heterogéneo en una conversión seleccionada entre un proceso de oxidación de olefinas con peróxidos orgánicos o inorgánicos, un proceso del tipo Bayer-Villiger, y una reacción Meerwein-Pondorf.

22. Un método según la reivindicación 20, **caracterizado por que** el material cristalino se usa en una forma seleccionada entre una forma ácida, intercambiado con cationes, y en forma ácida e intercambiado con cationes.
Vista de los canales rectilíneos formados por 12 tetraedros de la zeolita ITQ-24

FIG. 1
Vista de los canales sinusoidales formados por 12 tetraedros de la zeolita ITQ-24

FIG. 2
Vista de los canales formados por 10 tetraedros de la zeolita ITQ-24

FIG. 3
Celda unidad de la zeolita ITQ-24

FIG. 4
Estructura del dicátion hexametilén-bis(trimetilamonio)

FIG. 5