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ABSTRACT 

The hydrotalcite structure is an ionic lamellar solid with positively charged layers 

incorporating two kinds of metallic cations and hydrated gallery anions. The ability of 

these compounds to retain aggressive ions and simultaneously release a corrosion 

inhibitor is the main reason for the development of hydrotalcite compounds to replace 

hexavalent chromium compounds (chromates) as inhibitive pigments. 

In this study, alkyd coatings formulated with Al-Zn-vanadate hydrotalcite, at different 

pigment concentrations were applied on aluminum specimens. The painted panels were 

subjected to different accelerated tests (condensing humidity, salt spray and Kesternich) 

and atmospheric exposure in atmospheres of different aggressiveness. Corrosion 

performance was evaluated by Electrochemical Impedance Spectroscopy (EIS). A 

traditional zinc chromate pigment was also tested for comparative purposes. 

The obtained results confirm that hydrotalcite compounds achieve corrosion inhibition 

of the underlying aluminum substrate. It has been shown that an increase of 

anticorrosive pigment content (for a constant Pigment Volume Concentration) does not 

always improve the primer behavior, but a larger amount of vanadates released from Al-

Zn-vanadate hydrotalcite particles does improve anticorrosive behavior. 
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1. Introduction 

It is known that the combination of a physical barrier, a chemical inhibitor and an 

electrical resistor improves the performance of coating systems [1]. The role of 

pigments as anticorrosive inhibitors depends on how they influence the above 

parameters.  

Nowadays there is a special interest to study and develop new anticorrosive pigments to 

replace chromates (one of the most effective inhibitive pigments) due to their toxicity 

and carcinogenic effects. The use of ion-exchangeable pigments (IEP) is one alternative 

that is being studied. Layered double hydroxides (LDHs), also known as hydrotalcite-

like compounds (HTlc), are one example of IEPs with the following general equation: 
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 , where M
2+

 and M
3+

 are the divalent and trivalent 

metals. Their structure consists of brucite-like layers comprised of edge-sharing 

Mg(OH)6 octahedra. The isomorphic substitution of Mg
2+

 by M
3+

 generates a positive 

charge in the hydroxyl sheet. This net positive charge is compensated by anions (usually 

CO3
2-

) and water. In general these compounds consist of a host structure with a fixed 

charge and within the host there are „galleries‟ that can accommodate anions and 

solvent molecules.  

This intrinsic feature allows hydrotalcites (HTs) to be described as anion-exchange 

compounds. HTs are thus being studied in corrosion research as anticorrosive inhibitors 

loaded with different anions [2, 3] and also in relation with coating application [4-8]. 

These pigments are commonly used in the form of solid particulate materials dispersed 

throughout the paint film. In this case the cathodic, anodic or both reactions are 

suppressed for as long as the inhibitor is present. The proposed mechanism makes the 

use of these pigments in coating formulation more attractive, since they can retain 

aggressive anions (e.g. Cl
-
) during their permeation through the paint and at the same 

time can release a corrosion inhibitor (e.g. vanadate) during the leaching process.  

Several studies have been carried out to assess the anticorrosive behavior of different 

types of coatings (conversion coating, sol-gels, model coatings, commercial primers, 

etc.) formulated with different HTs [9-23]. Williams and McMurray showed that HT 

can provide effective inhibition against filiform corrosion propagation on organic-

coated AA2024-T3 alloy [9-11]. Alvarez et al. observed by EIS that the addition of HT 



to sol-gel films improved the corrosion resistance of coated AA2024-T3 alloy in salt 

spray [12]. Anticorrosive improvements were studied by the application of a HT 

conversion coating on AZ91D alloy, AA2024-T3 alloy and galvanized steel. Different 

corrosion resistance levels and an improvement in the adhesion properties were found 

[13, 16-21]. On the other hand, Yu et al. observed by EIS some inhibition by adding HT 

to an epoxy resin applied on AZ31 alloy [14].  

Among the different HTs, attention has particularly been paid to Al-Zn-vanadate 

hydrotalcite (HT-V) [21, 24-27]. With regard to HT-V, Buchheit et al. studied inhibition 

on AA2024-T3 alloy coated with an epoxy binder formulated with HT-V pigment in 

salt spray. They found that HT-V affords protection by a combination of barrier 

protection and active inhibition. Corrosion protection was also observed at scribes, 

where the underlaying bare metal is exposed [24, 27]. On the other hand, Chico et al. 

observed a irregular behavior of primers formulated with HT-V and applied on low 

carbon steel [25]. Zheludkevich et al. studied a commercial water-borne epoxy primer 

formulated with HT-V on AA2024 alloy. These samples displayed good behavior 

during immersion in sodium chloride but showed significantly higher blistering in the 

humidity condensation test compared to chromates [26].  

Therefore, the few studies conducted with coatings formulated with HT-V are not 

conclusive about their anticorrosive efficiency and controversy surrounds their 

functioning mechanisms in a real commercial primer. 

The present work focuses on the study of anticorrosive protection of aluminum by alkyd 

paint coatings formulated with HT-V, assessing performance in environments with 

different aggressiveness, both natural and accelerated. 

 

2. Experimental 

HT-V pigment was prepared in the laboratory following the coprecipitation method 

developed by Kooli and Jones [28] and described by Buchheit et al. [27], wherein the 

HT-V compound is synthesized using decavanadate anions to compensate the positive 

charge in the HT structure 



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Table 1 shows the composition of the five alkyd paints used in this study. The different 

paints were formulated maintaining the same pigment volume concentration (PVC). In 



order to know the PVC, the HT-V density (ρ) was determined experimentally according 

to ISO 787-10 by the method of Gay-Lussac [29].  

As can be seen in Table 1, a TiO2 (25%) coating, formulated without anticorrosive 

pigment, and a ZnCrO4 (10%) coating, with 10% zinc chromate, were also considered 

as references. HT-V (5%), HT-V (10%) and HT-V (15%) coatings (containing 5%, 10% 

and 15% HT-V, respectively) were prepared and applied in order to study the effect of 

the pigment content on anticorrosive behavior. The paints were applied by air-spraying 

to a dry film thickness of 60  10 µm on degreased 15 x 10 cm panels prepared from 

1 mm aluminum 1050 plate. A scribe of 0.3 mm width and 6 cm length was made in the 

lower part of the panels to evaluate the inhibitive properties of the different pigments in 

natural and accelerated tests.  

Adhesion measurements were carried out on painted panels according to the cross cut 

test described in ISO 2409:1991 (E) [30].  

 

2.1 Corrosion tests 

The paints were subjected to the following accelerated corrosion tests: resistance to 

condensing humidity (ISO 6270-1) [31], salt spray (ISO 9227) [32] and Kesternich (ISO 

3231, 0.2 l SO2) [33]. An atmospheric corrosion exposure test was also conducted at 

two test sites: one located on the roof of the CENIM laboratory in Madrid (Spain), in an 

urban atmosphere of corrosivity category C2-C3, and the other in Aviles (Spain), in an 

urban-mild industrial atmosphere of corrosivity category C3, according to ISO 

9223[34]. 

 

2.2 Electrochemical Impedance Spectroscopy (EIS) 

The anticorrosive performance of the coatings was investigated by EIS in a classic 

three-electrode cell consisting of a silver/silver chloride reference electrode, a stainless 

steel counter electrode and the coated aluminum 1050 specimens as a working electrode 

in the horizontal position, with a working area of 9.62 cm
2
. EIS measurements were 

carried out at room temperature using a potentiostat/galvanostat (AutoLab EcoChemie 

PGSTAT30) equipped with a FRA2 frequency response analyzer module. Frequency 

scans were carried out by applying a ± 5 mV amplitude sinusoidal wave perturbation, 

close to the corrosion potential. Five impedance sampling points were registered per 



decade of frequency. The analyzed frequency range was from 100 kHz to 1 mHz and 

the electrolyte used was 0.1M sodium sulphate solution. The impedance data was 

analyzed using the electrochemical impedance software ZView® (Version 3.1c, 

Scribner Associates, Inc., USA).  

Different measurements were carried out. On one hand, the samples exposed to the 

accelerated tests were evaluated after different exposure times. On the other hand, the 

samples exposed to the natural atmospheres were evaluated after 1 year of exposure. 

 

3. Results 

3.1 Accelerated corrosion tests 

Table 2 offers a summary of the results obtained in the accelerated corrosion tests. The 

evaluation of blistering of the painted surface was performed according to the standard 

ASTM D714 [35]. Blister size and frequency values have been converted into numerical 

values using the Keane conversion table [36]. Delamination at the scribe was also 

evaluated. However, as can be seen in Table 2, great delamination was only observed 

for the HT-V (15%) primer after 120h of exposure in the Kesternich test, and 

significantly lower delamination in case of HT-V (10%) in the same accelerated test. 

The resistance to humidity test has provided the most significant differences, where 

TiO2 and HT-V (10%) primers showed the lowest blistering after 300h of exposure. 

When the exposure time is increased, general blistering can be observed in all cases. 

Table 3 shows the Rp values obtained by EIS measurements in the three accelerated tests 

considered after different exposure times.  

3.2 Atmospheric exposure 

After one year of atmospheric exposure all the primers showed an excellent condition, 

with a complete absence of blistering and only slight delamination around the scribe for 

the HT-V (15%) primer in the Madrid atmosphere.  

Nyquist impedance diagrams are shown in Figures 1 and 2. The TiO2 primer showed the 

lowest resistance values in both atmospheres. Similar low values where obtained for 

ZnCrO4 (10%) in Madrid and for HT-V (5%) in Aviles. Better behavior was found for 

the rest of the primers in both atmospheres. However, one year of atmospheric exposure 

is not enough time to reach conclusive effects. 

 



4. Discussion 

The most widely used equivalent circuit (EC) model for the metal/coating system is 

shown in Figure 3, where three time constants (τ) can be observed. Rs is the electrolyte 

resistance; Ri is the electric resistance of the protective coating or also known as pore 

resistance; Cc is the capacitance of the protective coating; Rct is the charge transfer 

resistance of the corrosive process; Cdl is the double layer capacitance; and Zw is the 

Warburg finite diffusion impedance. The parameters Ri and Cc, and their evolution in 

time supply information on the characteristics of the protective system (coating 

resistance and capacitance) and on its maintenance or deterioration, while the 

parameters Rct and Cdl yield information on the corrosion processes at the bottom of the 

pores in the coating, or on all the metallic surface if the coating permeability allows the 

diffusion of water [37-39].  

However, when only one or two time constants can be observed, the EC can be reduced 

to Rs-RiCc or Rs-RiCc-RctCdl respectively, although when exposure time increases, some 

of this time constant may be poorly defined or overlapping in the impedance diagram. 

In order to evaluate the corrosion resistance, polarization resistance (Rp) gives an idea 

about the corrosion rate because it is inversely proportional. Rp is the sum of all the 

resistances present.  

The condensing humidity test has revealed the most significant differences between the 

coatings due to the different resistance to osmotic blistering presented by the considered 

primers according to the water solubility of the pigments. Blistering may also occur by 

local alkalization of the metal substrate in the presence of pigments. Blistering has been 

observed on all the primers, but surprisingly HT-V (10%) does not show a similar or 

intermediate behavior between the others HT-V primers (Table 2) but a significantly 

lower osmotic blistering. The Rp values obtained by EIS (Table 3) normally increase 

with exposure time. The metal surface is being corroded and the formed corrosion 

products and the blisters are increasing the total resistance in the impedance diagram. 

Figure 4 shows the Bode plots obtained after 168h of exposure, although this behavior 

is maintained for a longer time. A single time constant can be observed in three of the 

primers, HT-V (10%), TiO2 and ZnCrO4, but three time constants are present for HT-V 

(5%) and HT-V (15%). This result may indicate the presence of more defects on these 

primers and could be one reason for the premature blistering encountered (Table 2). 



Blistering in the humidity test was previously reported on a water-base epoxy coating 

formulated with a fixed quantity of HT-V pigment [26]. 

Finally, it is interesting to point out that ZnCrO4 (10%) and HT-V (10%) primers have 

the highest and the lowest Rp values, respectively, after 168 and 816h. One possible 

explanation for the low Rp value offered by the HT-V (10%) could be the low blistering 

shown by this primer. Water takes longer to get the metal/paint interface and to start the 

corrosion process. Additionally, although the adhesion of all HT-V primers to the 

metallic substrate was generally poor, the HT-V (10%) showed the best behavior 

(Figure 5). Similar results were previously reported on steel substrates [40].  

With regard to the salt spray test, Figure 6 shows a single time constant and a high 

impedance modulus for all the primers after 576h, although HT-V (5%) and HT-V 

(15%) show the lowest resistance values. This may again indicate the presence of 

defects on these primers that could enhance the permeability of aggressive anions. The 

Rp values obtained in the salt spray test follow the same trend seen in the condensing 

humidity test, with an increase in resistance with exposure time (Table 3). The final 

resistance is one or even two orders of magnitude higher for all the primers compared to 

the values obtained in the humidity test. On the other hand, blistering is almost 

negligible in all the specimens (Table 2). These differences may indicate the 

metal/interface stability and may also be a sign of the difficulty for Cl
-
 to initiate local 

corrosion over the metal, due to the low permeability rate of this aggressive anion in all 

the studied primers [41]. 

Finally, the samples were also exposed to a simulated industrial atmosphere following 

the Kesternich test. The resistance values after 672h of exposure are high for all the 

primers formulated with anticorrosive pigments. However the TiO2 primer show less 

resistance, around two-three orders of magnitude lower, compared to any coating with 

anticorrosive pigment (Table 3). When exposure time increases (1008h), the Rp 

decreases for all the HT-V primers, remains constant for ZnCrO4, and increases 20 

times for the TiO2 primer. Figure 7 shows the Bode plots after 1008h of exposure to the 

Kesternich test. Two time constants and worse behavior were observed for all the 

primers compared to ZnCrO4 (10%), which showed only one single time constant. This 

may be due to the presence of defects and a lower inhibitor power of these primers 

compared to ZnCrO4 in this very aggressive environment. 



Therefore, some evidence of a certain inhibition capacity of HT-V compared with TiO2 

was observed in the accelerated corrosion tests, although the chromate primers still 

behave better. This active corrosion protection may be originated by the release of 

vanadates from the pigment. The simultaneous release of Zn
2+

 observed by other 

authors may also improve the corrosion resistance [27]. The poor performance shown 

by the HT-V (15%) primer could be due to adhesion failure at the metal/paint interface 

(Figures 5 and 8). 

The results obtained in the natural exposure test will be discussed from the Nyquist 

plots. According to the proposed EC, the low-frequency arc in the Nyquist plot is 

related to the double layer capacitance and charge-transfer at the pore base of the paint 

system and/or with mass transport processes occurring within the pores, whilst the arc 

appearing at high frequencies is related to the paint coating itself. In the case of 

Figures 1 and 2, a single time constant can be observed in almost all the primers, 

although a second time constant starts to appear in some of them. The arcs in Figure 1  

for TiO2 and ZnCrO4 (10%) primers exposed to the Madrid atmosphere indicate lower 

impedance for those coatings, with phase angles of -12 θ and -9 θ, respectively 

(Table 4). This means more resistive behavior than the other primers and is a clear 

indication that the corrosion process may be initiated earlier.  

On the other hand, the TiO2 and HT-V (5%) primers showed the lowest impedance 

values after one year exposure to the Aviles atmosphere (Figure 2). However, the phase 

angle values were -17 θ and -35 θ, respectively. This difference shows that HT-V (5%) 

still has some capacitive component compared with TiO2, despite the other HT-V 

primers behaving better in this atmosphere. Although there are some differences 

between the primers, all of them show low capacitance values (Table 4). 

In summary, HT-V (10%) primer has shown more corrosion protection than the other 

HT-V primers. 5% of HT-V pigment may not be enough inhibitor in the coating if it is 

assumed that this anticorrosive compound provides active inhibition and barrier 

properties, as observed in the epoxy coatings [24]. On the other hand, the HT-V (15%) 

primer has shown good behavior in natural testing but not in the accelerated tests. One 

possible reason is that a larger amount of anticorrosive pigment may increase 

heterogeneity in the coating, creating more pathways and defects on the coating and 

making the increased inhibitor inefficient, as was observed in the accelerated tests. The 



accelerated tests may also increase the leaching of the inhibitor and its concentration at 

the interface, but it has been shown that a higher concentration of vanadates does not 

always mean a greater inhibition but depends on the predominant speciation [42].  

 

5. Conclusions  

 HT-V (10%) primer may be considered a chromate alternative for slightly 

aggressive environments. 

 HT-V (5%) offers good anticorrosive behavior in slightly and moderately 

aggressive environments, while HT-V (15%) shows poor behavior in the 

accelerated corrosion tests, due to the presence of defects and bad adhesion to 

the substrate, although it behaves well in short (1 year) natural exposure. 

 In the very aggressive Kesternich test, a significant preponderance of zinc 

chromate over all the studied HT-V primers was observed. However, the high 

solubility of chromates leads to significant blistering in the condensing humidity 

test. 
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Table 1. Formulation of the studied alkyd paints, showing composition as %wt of 

components between brackets. 

. 

Designation Binder 
Anticorrosive 

Pigment 
Others 

Pigment Volume  

Concentration 

(PVC) 

TiO2 (25%) 

Linseed-

soybean oil 

modified alkyd 

resin (35.5) 

None TiO2 (25), CaO (20) 38.3 

ZnCrO4 (10%) ZnCrO4 (10) TiO2 (20), CaO (15) 38.0 

HT-V (5%) HT-V (5) TiO2 (20), CaO (20) 39.4 

HT-V (10%) HT-V (10) TiO2 (20), CaO (15) 39.3 

HT-V (15%) HT-V (15) TiO2 (20), CaO (10) 39.3 

 



Table 2. Summary of results obtained in the accelerated corrosion tests. 

 

Designation 

Condensing Humidity Salt Spray Kesternich (0.2 L) 

Delamination 

at the Scribe 

(mm) 

Blistering 

of the 

painted 

surface 

Delamination 

at the Scribe 

(mm) 

Blistering of 

the painted 

surface 

Delamination 

at the Scribe 

(mm) 

Blistering of 

the painted 

surface 

816 h 300 h 576 h 780 h 318 h 318 h 

TiO2 (25%) 0 7 0 9 0 9 

ZnCrO4 (10%) 0 5 0 9 0 9 

HT-V (5%) 0 3 0 10 0 8 

HT-V (10%) 0 7 0 9 4 9 

HT-V (15%) 0 3 0 10 * * 

* Significant paint failure was observed at 120h (Figure 8). 

 



   

Table 3. Summary of coating resistance (Rp, *cm
2
) values from panels exposed 

in different accelerated corrosion tests (Table 2). 

 

 

Designation Condensing Humidity 

Rp (*cm
2
) 

Salt Spray 

Rp (*cm
2
) 

Kesternich (0.2 L) 

 Rp (*cm
2
) 

 168 h 816 h 168 h 576 h 672 h 1008 h 

TiO2 (25%) 3.6 10
+08

 2.5 10
+09

 5.1 10
+10

 1.5 10
+11

 4.9 10
+07

 9.8 10
+08

 

ZnCrO4(10%) 1.3 10
+09

 3.0 10
+10

 1.0 10
+11

 7.3 10
+11

 4.9 10
+10

 3.2 10
+10

 

HT-V (5%) 2.8 10
+08

 9.2 10
+08

 1.2 10
+09

 9.8 10
+09

 1.2 10
+10

 2.9 10
+07

 

HT-V (10%) 2.8 10
+06

 1.5 10
+07

 6.9 10
+11

 3.8 10
+11

 8.9 10
+09

 2.8 10
+08

 

HT-V (15%) 1.2 10
+08

 3.8 10
+08

 7.7 10
+08

 4.5 10
+09

 * * 

* Significant paint failure was observed at 120h (Figure 8). 
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Table 4. Summary of phase angle value (θ) at low frequency (10 mHz) and capacitance 

(F/cm
2
) obtained for the different primers after one year of exposure in Madrid 

and Aviles atmospheres. 

 

Designation 

Phase angle (θ) at 10 mHz Capacitance (F/cm
2
) 

Madrid Aviles Madrid Aviles 

TiO2 (25%) -12 -17 8.6 10
-10

 1.0 10
-09

 

ZnCrO4 (10%) -9 -81 1.0 10
-9

 1.3 10
-10

 

HT-V (5%) -60 -35 6.4 10
-10

 8.3 10
-10

 

HT-V (10%) -46 -77 7.9 10
-10

 4.5 10
-10

 

HT-V (15%) -70 -70 9.2 10
-10

 9.6 10
-10
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Figure 1. Nyquist plots obtained during immersion in 0.1M Na2SO4 aqueous solution of 

9.62 cm
2 

paint samples after one year of exposure in the natural atmosphere of 

Madrid. 
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Figure 2. Nyquist plots obtained during immersion in 0.1M Na2SO4 aqueous solution of 

9.62 cm
2 

paint samples after one year of exposure in the natural atmosphere of 

Aviles. 
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Figure 3. Classic equivalent circuit for the metal/paint system. 
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Figure 4. Bode plots obtained during immersion in 0.1M Na2SO4 aqueous solution of 

9.62 cm
2 

paint samples after 168h of exposure in the condensing humidity test. 
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Figure 5 Adhesion results according to ISO 2409:1991 (E), where “0” means excellent 

adhesion and “5” very bad adhesion. 
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Figure 6. Bode plots obtained during immersion in 0.1M Na2SO4 aqueous solution of 

9.62 cm
2 

paint samples after 576h of exposure in the salt spray test. 



 21 

-4 -2 0 2 4 6

0

1

2

3

4

5

6

7

8

9

10

 TiO2 (25%)

 ZnCrO4 (10%)

 HT-V (5%)

 HT-V (10%)

log Frecuency, Hz

lo
g

 /
Z

/,
 o

h
m

 

0

-20

-40

-60

-80

-100

P
h

a
s
e

 A
n

g
le

 

Figure 7. Bode plots obtained during immersion in 0.1M Na2SO4 aqueous solution of 

9.62 cm
2 

paint samples after 1008h of exposure in the Kesternich test. 
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Figure 8 Appearance of the HT-V (15%) primer after 120h of exposure to the 

Kesternich test, showing significant delamination. 
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