Angle velocity contour maps for the H+D2→HD+D reaction from quasiclassical trajectory calculations

F. J. Aoiz, V. J. Herrero, O. Puentedura, and V. Sáez Rábano

Citation: J. Chem. Phys. 100, 758 (1994); doi: 10.1063/1.466896
View online: http://dx.doi.org/10.1063/1.466896
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v100/i1
Published by the American Institute of Physics.

Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/
Journal Information: http://jcp.aip.org/about/about_the_journal
Top downloads: http://jcp.aip.org/features/most_downloaded
Information for Authors: http://jcp.aip.org/authors
Angle-velocity contour maps for the \(\text{H} + \text{D}_2 \rightarrow \text{HD} + \text{D} \) reaction from quasiclassical trajectory calculations

F. J. Aoziz
Departamento de Química Física I. Facultad de Química, Universidad Complutense, 28040 Madrid, Spain

V. J. Herrero
Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid, Spain

O. Puentedura
Departamento de Química Física I, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain

V. Sáez Rábanos
Departamento de Química General y Bioquímica, ETS Ingenieros de Montes, Universidad Politécnica, 28040 Madrid, Spain

(Received 13 August 1993; accepted 22 September 1993)

In a very recent article, Kitsopoulos et al.\(^1\) have reported the results of a “reaction product imaging” experiment carried out on the \(\text{H} + \text{D}_2 \rightarrow \text{HD} + \text{D} \) reaction. This novel technique, developed in the late 1980s\(^2\) is based upon the ionization of the species of interest and subsequent detection by means of a position sensitive ion detector. By choosing the adequate kinematic arrangement and after the appropriate data treatment, one can recover from the recorded images simultaneously angle and velocity distributions in scattering experiments. The application of this technique to one of the isotopic variants of the \(\text{H} + \text{H}_2 \) reaction is of great interest since it offers the possibility of a sound comparison with theory and with high resolution measurements.

The most resolute experiment to date on the dynamics of the \(\text{H} + \text{D}_2 \) (and also of any variant of the \(\text{H}_3 \) reactive system) has been performed by Schnieder et al.\(^3,4\). In this experiment, differential cross sections have been determined for individual rotational states of the HD product.\(^4\) The H atoms generated by photolysis of HI were crossed with a cold D\(_2\) molecular beam. The main difference with other experiments lies on the detection of the D atoms, which are promoted to a metastable Rydberg state by resonant two photon absorption, then field ionized in the detector region allowing the measurement of their time-offlight distribution.

A similar scheme (photolysis of HI and detection of D atoms) has been used by Kitsopoulos et al.\(^1\) in their product imaging experiment. Their experimental arrangement has a smaller energy resolution and does not allow the identification of individual internal states of the products. The method provides, however, in a nearly straightforward manner an angle-velocity contour map and hence a global picture of the dynamics.

In the present note angle-velocity contour plots from QCT calculations are reported in order to compare with those from the ion imaging measurements.\(^1\) The QCT calculations are carried out on the LSTH potential energy surface\(^5\) at collision energies of 0.54 and 1.29 eV corresponding to the mean collision energies of the experiment and include the D\(_2\) initial rotational states \(j = 0, 1, \) and 2 present in the experiment. The resulting contour plots depicted in Figs. 1 and 2 are weighted in D\(_2\) rotational states in the ratio reported for the experiment (0.5:0.25:0.25). The figures include also as a reference the kinematic circles corresponding to the maximum recoil velocities classically allowed for a given vibrational state of the HD molecule. Note that these “classical circles,” which correspond to vibrational energies \(E_v \gtrsim \hbar v' \), are shifted by the amount of about half of the vibrational quantum to higher velocities than those obtained from the energies of the actual quantum states.

A first glance at the measured and calculated contour plots shows a noteworthy qualitative similarity between them. In both cases the preponderance of forward scattering of the D atoms in the center-of-mass (c.m.) frame (corresponding to backscattering of the HD product) is evident as well as the fact that a broader angular distribution is obtained for the higher collision energy. The good agreement between the measured angular distributions integrated on final D velocities and those from QCT calculations\(^6\) is already commented on in Ref. 1. The present contour plots show that the classical trajectories reproduce also the observed tendency towards lower D atom recoil velocities with increasing scattering angle, which according to previous QCT data\(^6\) is due to a higher rotational excitation of the sideways scattered products. In fact, in both cases at 1.29 eV is noticeable that sideways scattering lies within the kinematic limits of \(v' = 1 \) and \(v' = 2 \). Also at this energy QCT calculations predict some D atom backscattering, which seems to be in accord with the experiment.

A closer inspection reveals, however, important differences between the calculated and measured velocity distributions. From the kinematic circles of Fig. 4 of Ref. 1, it is easily inferred that the maxima of the measured velocity distributions of the nascent D atoms are located at velocity values smaller than those from the QCT results. Although the maximal velocities classically allowed are higher than the real ones due to the fact that collisions leading to products with a vibrational energy content less than the zero point \((E \sim \hbar v) \) are possible, this is not enough to justify the differences observed. In addition, experimental velocity
FIG. 1. Bottom: Angle-velocity contour map for the H + D$_2$(v=0) → HD + D reaction for the collision energy $E_T=0.54$ eV. The calculations include the D$_2$ rotational distribution (0.5:0.25:0.25 for $j=0,1,2$) reported in Ref. 1. The crossed circles correspond to the maximum D atom recoil velocity classically allowed for a given HD vibrational state. The separation between the ticks of the axis is 1000 ms$^{-1}$. Top: Three-dimensional representation.

distributions are sensibly broader than the calculated ones at all the angles. The discrepancy is particularly appealing in the $E_T=1.29$ eV case, where the maximum in the experimental velocity is obtained inside the $v'=1$ circle, which would imply either a predominance of the HD($v'=1$) state or a very high rotational excitation of the HD($v'=0$) even at angles close to 0 deg (c.m.). This is clearly at variance with the results of QCT calculations6 as well as with the high resolution experiments of Schneider et al.4 that yield for this collision energy a much higher population for the HD $v'=0$ than for the HD $v'=1$ channel, and at forward D atom scattering angles a low rotational excitation.

In view of the above discussed discrepancies it seems that a more detailed study, both experimental and theoretical, of this prototypic reaction would be very timely.

Note added in proof: After the submission of this letter for publication, we have received additional information on the experimental results reported in Ref. 1 [T. Kitsopoulos (private communication)]. According to this information, the Newton circles corresponding to the nominal collision energies of 0.54 and 1.29 eV do not coincide with the yellow circles depicted in Fig. 4 of Ref. 1 but should rather pass through the center of the full red circles labeling the internal states of HD. As a consequence, the maximum in the D forward scattering for $E_T=1.29$ eV lies approximately on the $v'=1$ circle. In addition, the experimental energy resolution is estimated to be roughly 30% of the total energy of the fragment.

Considering these two facts, the comparison of experimental results and those obtained by convoluting the QCT triple differential cross section with the above mentioned energy resolution still shows differences. The calculated distributions become broader but not so much as the experimental ones, and although the discrepancy in the location of the maxima becomes smaller, it remains noticeable.

ACKNOWLEDGMENTS

The authors acknowledge the financial support by the DGICYT under Project No. PB92-0219-C03. FJA and VSR also acknowledge the German–Spanish scientific exchange program “Acciones Integradas” HA-074.