
Complete gauge-invariant formalism for arbitrary second-order perturbations
of a Schwarzschild black hole

David Brizuela

Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain
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Using recently developed efficient symbolic manipulations tools, we present a general gauge-invariant

formalism to study arbitrary radiative (l � 2) second-order perturbations of a Schwarzschild black hole.

In particular, we construct the second-order Zerilli and Regge-Wheeler equations under the presence of

any two first-order modes, reconstruct the perturbed metric in terms of the master scalars, and compute the

radiated energy at null infinity. The results of this paper enable systematic studies of generic second-order

perturbations of the Schwarzschild spacetime, in particular, studies of mode-mode coupling and nonlinear

effects in gravitational radiation, the second-order stability of the Schwarzschild spacetime, or the

geometry of the black hole horizon.
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I. INTRODUCTION

Nonlinearities are a characteristic feature of general
relativity. Classifying the possible types of nonlinearity
can help us much in understanding and interpreting the
results of observations or simulations of gravitational phe-
nomena. For instance, the space-based gravitational-wave
observatory LISAwill be able to detect quasinormal mode
coupling and frequency mixing in the ringdown phase of
the collision of two supermassive black holes at distances
of 1 Gpc [1]. Perturbation theory offers a systematic study
of nonlinearities, at least for moderate couplings, and it is
hence worth developing a complete formalism for pertur-
bations in general relativity.

During the last three years, we have prepared a combi-
nation of ideas and tools on which such a systematic
approach to metric perturbation theory in general relativity
can be based. This includes, among other things, general
explicit formulas for the perturbations of curvature tensors
at any order [2], a general analysis of gauge-invariance [3],
and the construction of specialized and efficient tensor
computer algebra tools to handle the enormous equations
of perturbative general relativity [4,5]. For definiteness,
and because this is the most standard scenario in astro-
physical applications, we have generally focused on
spherical background spacetimes.

The purpose of this article is to apply that general
formalism to a Schwarzschild background. Linear pertur-
bations of Schwarzschild have been studied since the
pioneering work of Regge and Wheeler [6], and later

Zerilli [7] and Moncrief [8], in which they were already
able to identify and describe the two polarizations of
gravitational waves, giving two decoupled wave equations
for them.
The first studies of second-order black hole perturba-

tions were carried out in the seventies [9,10] in order to
study the nonlinear stability of the Schwarzschild solution.
In the mid-nineties, motivated by the close-limit approxi-
mation [11], gauge-invariant second-order generalizations
of the Regge-Wheeler and Zerilli-Moncrief formalisms
were developed and applied to a variety of close limit-
type initial data for binary black holes; see [12,13] and
references therein. More recently, the relevance of second-
order perturbation theory on an extreme mass-ratio inspiral
has been evaluated [14]. In general, those references have
focused on the study of the self-coupling of a particular
first-order mode and how that generates some second-order
mode.
We present here a complete, gauge-invariant Regge-

Wheeler-Zerilli-Moncrief like formalism for arbitrary l �
2 first- and second-order perturbations of a Schwarzschild
black hole. In particular, we derive the general first- and
second-order Regge-Wheeler and Zerilli master variables
and the equations they obey. We also reconstruct the per-
turbed metric in terms of those scalars, as well as comput-
ing the radiated energy at null infinity.
Most of our results are not only gauge invariant but also

covariant; that is, independent of the background coordi-
nates. This is analogous to the covariant formalisms for
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linear perturbation theory in Refs. [15–18]. This is a nec-
essary step to, for example, test the geometry near the
horizon or null infinity, for which Schwarzschild coordi-
nates are inadequate. Other results are still given in
Schwarzschild coordinates, for simplicity.

The organization of this paper is as follows: we start in
Sec. II by reviewing the formalism of [2,3]. Section III
presents the high-order Regge-Wheeler and Zerilli equa-
tions, and Sec. IV sketches how we compute the radiated
energy. Setting up the arena for the second-order treatment,
Sec. V rederives in a compact yet complete way a gauge-
invariant version of the Regge-Wheeler-Zerilli first-order
formalism. Finally, Sec. VI presents our general second-
order Regge-Wheeler and Zerilli equations, their sources,
and the computation of the radiated energy in terms of our
second-order Regge-Wheeler and Zerilli functions.

We will use natural units in which G ¼ c ¼ 1.

II. HIGH-ORDER GERLACH AND SENGUPTA
FORMALISM

A. Background spherical spacetime

This section briefly summarizes the formalism intro-
duced in Refs. [2,3] to deal with high-order perturbations
of a spherical spacetime. This formalism can be regarded
as the generalization to higher orders of the Gerlach-
Sengupta linear formalism [15,16].

We start by decomposing the spacetime manifold M as
a product M � M2 � S2, where M2 is a two-
dimensional Lorentzian manifold and S2 the two-sphere.
We will use Greek letters ð�;�; . . .Þ for four-dimensional
indices, capital Latin letters ðA; B; . . .Þ for indices on M2,
and lowercase Latin letters ða; b; . . .Þ for indices on the
sphere. With this notation, and choosing an adapted coor-
dinated system, a general spherically symmetric back-

ground metric with signature (�þþþ) is given by

g��ðxD; xdÞdx�dx� ¼ gABðxDÞdxAdxB
þ r2ðxDÞ�abðxdÞdxadxb; (1)

where gAB is a metric field and r a scalar field, both on the
manifold M2, and �ab is the unit metric on the sphere S2.
The respective coordinate systems on the two-dimensional
manifolds can still be freely specified.
We define the following notation for the covariant de-

rivatives associated with each metric:

gABjC ¼ 0; �ab:c ¼ 0: (2)

For future reference, we define the vector vA � rjA=r.

B. Nonlinear perturbations

In perturbation theory one works with a family of space-
times fMð"Þ; ~gð"Þg depending on a dimensionless parame-
ter ". The background spacetime is the member of this
family for which " ¼ 0, and it is assumed to be a known
solution of the Einstein equations. Performing a Taylor
expansion around the background metric g��,

~g ��ð"Þ ¼ g�� þ
X1
n¼1

"n

n!
fngh��; (3)

defines the perturbations fngh��, which are tensors on the

background manifold. In practice, we will always work at a
given finite maximum order N, truncating the series at that
order.
Using the basis of tensor harmonics described in

Appendix A, we decompose the perturbations of the metric
in the following way:

fngh�� �X
l;m

fngHm
l ABZ

m
l

fngHm
l AZ

m
l b þ fnghml AX

m
l bfngHm

l BZ
m
l a þ fnghml BX

m
l a

fngKm
l r

2�abZ
m
l þ fngGm

l r
2Zm

l ab þ fnghml X
m
l ab

 !
; (4)

where l runs over all non-negative integers andm is limited
to the range �l � m � l.

Perturbations of all relevant curvature tensors in terms of
metric perturbations have been given in [2], in particular,
those of the Einstein tensor. The latter have also been
decomposed there in spherical harmonics at second order,
giving full equations of motion for the harmonic coeffi-
cients of the metric.

Now we proceed to extract the gauge freedom present in
the previous decomposition (4). Per each perturbative or-
der n, four of those ten components are free.

The most natural gauge choice in spherical symmetry is
the one introduced by Regge and Wheeler (RW) [6] for
linear perturbations. Here, we use those same conditions at
all orders, for l � 2

fngHm
l A ¼ 0; fngGm

l ¼ 0; fnghml ¼ 0: (5)

Alternatively, it is possible to construct explicit gauge-
invariant combinations of those harmonic coefficients, as
explained in [3]. The idea is simply to select a gauge and
define the gauge invariants to be the expression of the
general gauge transformation of the metric functions
from an arbitrary gauge to that selected gauge. Around
spherical symmetry, the requirement that the gauge invar-
iants are local (almost) uniquely selects the RW gauge as
the preferred reference gauge, and this is what we will use.
Schematically (see [3] for more details) the gauge in-

variants associated with the RW gauge are given by

BRIZUELA, MARTÍN-GARCÍA, AND TIGLIO PHYSICAL REVIEW D 80, 024021 (2009)

024021-2



fngKm
l AB ¼ fngHm

l AB þ
�
r2

2
fngGm

l jA � fngHm
l A

�
jB

þ
�
r2

2
fngGm

l jB � fngHm
l B

�
jA
þ fngRm

l AB; (6)

fngKm
l ¼ fngKm

l þ 2vA

�
r2

2
fngGm

l jA � fngHm
l A

�

þ lðlþ 1Þ
2

fngGm
l þ fngRm

l ; (7)

fng�m
l A ¼ fnghml A � r2

2

�fnghml
r2

�
jA
þ fngRm

l A; (8)

where the terms fngRm
l AB,

fngRm
l A and fngRm

l are polynomial

combinations of the lower-order harmonic coefficients

ffkgHm
l A;

fkgGm
l ;

fkghml g; with k < n; (9)

all vanishing in RW gauge, by construction. These R terms
can be easily written in terms of theH objects introduced
in Ref. [3]. Because of the k < n condition, those terms are
not present in linearized perturbations (n ¼ 1). For second-
order perturbations (n ¼ 2), they are quadratic in the first-

order quantities ff1gHm
l A;

f1gGm
l ;

f1ghml g, and so forth for

higher n.

Once more, the values of fngKm
l AB,

fngKm
l ,

fng�m
l A in any

gauge coincide with their values in the RW gauge since all
except the leading terms in Eqs. (6)–(8) vanish in this
gauge. Because of this we can do calculations in the RW
gauge, yet still recover the form of any expression in a
generic gauge by making use of the definitions (6)–(8). We
will take advantage of this fact later.

III. HIGH-ORDER REGGE-WHEELER AND
ZERILLI EQUATIONS

From now on we shall assume that our background
solution is the Schwarzschild spacetime. The perturbative
formalism summarized in the previous section allows us to
work with arbitrary coordinates on the reduced manifold
M2. However, we will sometimes use Schwarzschild co-
ordinates ðt; rÞ as intermediate tools for computing expres-
sions, which in the end will be valid in any asymptotically
flat background coordinates. Then we will use the follow-
ing shorthands for coordinate derivatives acting on any
object !:

_! � @!

@t
; !0 � @!

@r
: (10)

When studying perturbations of the Schwarzschild
spacetime, it is possible to reduce the perturbed Einstein
equations to two wave equations for two master functions,
one of odd/axial parity and another one even/polar parity,
and this is true at all perturbative orders. These two func-
tions fully describe the gravitational content of the system,

and actually the whole metric perturbation at order n can
be reconstructed from the master variables at orders k � n.
To alleviate the notation, from now on we will drop the

ðl; mÞ labels of the harmonic coefficients, with only a few
exceptions like the formulas for the radiated power.

A. The even/polar parity sector

We define the nth order Zerilli function as the following
combination of polar harmonic coefficients:

fng� � r4

3Mþ �r
ðvB fngKAB � fngKjAÞvA þ r fngK;

(11)

where � � ðl� 1Þðlþ 2Þ=2. This variable is given in
terms of the nth order gauge invariants tied to the Regge-
Wheeler gauge. To recover the form of the Zerilli function
in a different gauge, we just need to replace the invariants
by their explicit form in terms of a generic gauge (6)–(8).
Then, the Zerilli variable takes the following form in
Schwarzschild coordinates:

fng� � ð2M� rÞ
3Mþ �r

½ð2M� rÞ fngHrr þ r2 fngK0� þ r fngK

þ lðlþ 1Þ
3Mþ �r

ð2M� rÞ fngHr þ 1

2
lðlþ 1Þr fngG

þ fngQ�; (12)

where the subindices t and r stand for components of the
different tensors in these coordinates. In the previous ex-

pression fngQ� collects the terms ffngRAB;
fngRA;

fngRg, and
hence it is itself a polynomial in the lower-order variables
(9). Notice that in Eq. (12) the last three terms, including
fngQ�, are zero when imposing the RW gauge.

The Zerilli master function satisfies the following wave
equation:

fng�jA
A � VZ

fng� ¼ fngS�: (13)

The source term fngS� depends on the lower-order pertur-

bations, while the potential is

VZ � lðlþ 1Þ
r2

� 6M

r3
r2�ð�þ 2Þ þ 3Mðr�MÞ

ðr�þ 3MÞ2 : (14)

In particular, when using the tortoise coordinates ðt; r�Þ
[with r� ¼ rþ 2M lnðr=ð2MÞ � 1Þ] the differential opera-
tor takes the following simple form:

fng�jA
A �

�
1� 2M

r

��1
�
�@2fng�

@t2
þ @2fng�

@r�2

�
: (15)

In order to obtain the Zerilli Eq. (13) one just take some
linear combination of the equations of motion for different
polar harmonic coefficients. Taking the very same combi-

nations of their corresponding sources, the source fngS� is

constructed. Obviously, the first-order source f1gS� is zero.

The second-order one can be given as
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where ðl̂; m̂Þ and ð�l; �mÞ are a pair of two first-order modes,
which contribute to the second-order ðl; mÞ mode. The
sources S in the previous expression are explicitly given
in Ref. [2]. The polarity sign � is defined as � �
ð�1Þðl̂þ�l�lÞ.

Note finally that the definition of the high-order Zerilli
function (11) is essentially determined up to addition of
low-order gauge-invariant terms. That is, the addition of
such low-order terms would keep the same form of the
Zerilli Eq. (13), in particular, with the same potential VZ,

but would change the source fngS�. The definition given in

(11) is just the simplest possibility, and follows [19]. We
will later make use of this freedom.

This article assumes a vacuum spacetime, both at the
background and perturbed levels. Including matter and its
perturbations would introduce additional source terms in
the master equations of motion, as well as additional
evolution equations for the variables describing the matter
fields. Reference [2] gives the equations obtained by
second-order perturbation of energy-momentum conserva-
tion, and Ref. [3] shows how to describe the new matter
fields using gauge-invariant variables.

B. Odd/axial parity sector

The Gerlach and Sengupta (GS) master scalar is defined
as the antisymmetrized derivative of the axial invariant
vector �A=r

2,

fng� � �AB
�fng�A

r2

�
jB
: (17)

Like the Zerilli function, it is given in terms of some of the
RW gauge-invariants (6)–(8). In a generic gauge it takes
the form

fng� ¼ �AB
�fnghA

r2

�
jB
þ fngQ�; (18)

where fngQ� is a source term that depends on lower-order

perturbations, and which is zero in the RW gauge.
It obeys the GS master equation

�
�
1

2r2
ðr4 fng�ÞjA

�
jA
þ ðl� 1Þðlþ 2Þ

2
fng� ¼ fngS�:

(19)

The second-order source can be written in terms of the
source of the Einstein equations

As in the even-parity case, the sources S that appear in the
previous expression are explicitly given in Ref. [2].

Equation (19) is a wave equation for the scalar fng�. It
contains all the relevant physical information of the axial
sector. As we will see, all metric components can be
algebraically reconstructed from this scalar.

We will use the above definition for fng� for historical
reasons. But, in fact, a better choice [20] is the rescaled
fng ~� � r3fng�, because its evolution equation has no first-
order derivatives,

fng ~�jA
A � VRW

fng ~� ¼ �2r fngS�: (21)

This equation is valid in any spherically symmetric back-
ground and the potential is given by

VRW ¼ lðlþ 1Þ
r2

� 3

r2
ð1� gABrjArjBÞ: (22)

For the Schwarzschild spacetime it is

VRW ¼ lðlþ 1Þ
r2

� 6M

r3
; (23)

and Eq. (21) becomes the standard RW equation.
One of the main advantages of the GS master scalar is

that the perturbation of the metric can be algebraically
reconstructed. But there are some other variables that obey
the same RW equation. In particular, one that will be very
useful for our purposes is the one introduced by Regge and
Wheeler themselves in their seminal paper [6]. Its gauge-
invariant generalization to higher orders takes the follow-
ing form:

fng� � vA fng�A: (24)

When using Schwarzschild coordinates for the background
this definition becomes

fng� ¼ 2M� r

2r2

�
fngh0 � 2 fnghr � 2

r
fngh

�
þ fngQ�; (25)

where fngQ� is the standard term that depends on lower-

order perturbations and vanishes when particularizing to
the RW gauge. There are practical advantages and disad-
vantages for each of these definitions for the master scalar
in the odd-parity sector, as we will see in Sec. VB.
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At linear order, f1g� obeys the same equation as f1g ~�.
But at second order the source term changes,

f2g�jA
A � VRW

f2g� ¼ f2gS�; (26)

with

IV. RADIATED POWER

To compute the power radiated to infinity by gravita-
tional waves we will use the Landau and Lifshitz (LL)
formula [21,22]

dPower

d�
¼ 1

16�r2

�
1

sin2�

��������@~g�	@t

��������2

þ 1

4

��������@~g��@t
� 1

sin2�

@~g		

@t

��������2
�
: (28)

This expression is only valid in an asymptotically flat (AF)
gauge, by which we mean, following [22],

fnghtt; fnghrr; fnghtr ¼ Oðr�2Þ; (29)

fnght�; fnght	;
fnghr�; fnghr	 ¼ Oðr�1Þ; (30)

fngh��; fngh		;
fngh�	 ¼ OðrÞ; (31)

�abfnghab ¼ Oðr0Þ (32)

to the desired order n.
Once the Regge-Wheeler and Zerilli functions are

known up to a given order, one can reconstruct the per-
turbed metric components in an AF gauge (we will turn to

this below). Once those are known, we could in principle
use Eq. (28) to compute the radiated energy.
It turns out that the RW gauge is not asymptotically flat.

Because of that we will need to (explicitly or implicitly,
this will be discussed later) make a gauge transformation
from the RW gauge to an asymptotically flat one. Once in
that gauge, we will apply Eq. (28) in order to obtain the
radiated power.
It is useful to rewrite the Landau and Lifshitz formula

(28) in a covariant way with respect to the coordinates on
S2, as follows: We first introduce the trace-free projector to
the sphere (recall that �ab is the standard, unit metric on the
sphere),

Pab
cd � �a

c�b
d � 1

2�ab�
cd; (33)

such that for any rank-two tensor Acd we have that
Pab

cdAcd is trace free. It allows us to introduce the pro-

jected trace-free metric on the sphere

iab � Pab
cd~gcd; (34)

so that formula (28) can be rewritten in the following way:

dPower

d�
¼ 1

32�r2

�
@iab
@t

�
�ac�bd

�
@icd
@t

��
; (35)

where the star denotes complex conjugation.
Using the perturbative expansion in spherical harmonics

(4), the projected trace-free metric takes the form

iab ¼ X1
n¼1

"n

n!

X
l;m

fr2 fngGmAF
l Zm

l ab þ fnghmAF
l Xm

l abg; (36)

where the superscript AF stands for any asymptotically flat
gauge. Note that the harmonic labels l ¼ 0, 1 do not
contribute to the last sum since the coefficients Gm

l and

hml vanish for these cases.

Finally, making use of the normalization shown in
Appendix A and the fact that the tensor spherical harmon-
ics are trace free, it is easy to integrate the emitted power
over the solid angle to get

Power ¼ 1

64�r2
X1
j¼1

X1
k¼1

"jþk

j!k!

X
l;m

ðlþ 2Þ!
ðl� 2Þ!

�
r4
�
@fjgGmAF

l

@t

��
@fkgGmAF

l

@t

�� þ �
@fjghmAF

l

@t

��
@fkghmAF

l

@t

���
: (37)

Therefore, the problem of extracting the radiated power
with an order of "n reduces to finding the value of the time
derivative of the harmonic coefficients fkgGm

l and fkghml , for
all k < n, in an asymptotically flat gauge. Note that in the
last formula there is no coupling between modes with
different harmonic labels. This is so because of the inte-
grated character of the total emitted power, and the or-
thogonality between different spherical harmonics. This
has important consequences when one wants to obtain

the radiated power up to a given order "n consistently, as
discussed later.

V. FIRST-ORDER PERTURBATIONS

We now turn our attention to the reconstruction of the
metric components from the first-order master functions,
and the computation of the radiated energy in terms of
them. The reason for rederiving these results here is two-
fold. First, to fix the conventions that we will use in the
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second-order case, in which the first-order perturbations
will appear as ‘‘source terms.’’ Second, to sketch in a less
complicated case the type of calculations presented in the
next section for second-order perturbations.

After writing down the first-order master equations we
reconstruct the metric in the RW gauge. One can explicitly
transform the result from the latter to an arbitrary gauge. In
fact, in order to use the Landau and Lifshitz formula (28)
we must use an asymptotically flat gauge. As we will see,
the RW gauge is not asymptotically flat. Because of this,
following [12], we will first perform an explicit asymptotic
gauge transformation from the RW gauge to an AF one and
afterwards apply the LL formula.

In addition, following [19], we use an alternative way of
computing the radiated energy, which exploits the gauge-
invariant form of the master functions presented in the
previous section, instead of making an explicit asymptotic
gauge transformation.

In this section we will remove all harmonic labels, as
well as the n ¼ 1 labels, since all objects will be of first
order and correspond to a generic harmonic pair ðl; mÞ.

A. Even-parity/polar sector

At first order, the Zerilli equation is a wave equation
without sources,

�jA
A � VZ� ¼ 0: (38)

This master variable contains the physical information of
the system since it is possible to reconstruct from it all
components of the perturbation of the metric, in the RW
gauge. Making use of its definition (12) and the equations
of motion for different harmonic coefficients, we obtain the
following reconstruction in Schwarzschild coordinates:

Htt ¼ 2M� r

4lðlþ 1Þr3ð3Mþ�rÞ2
�f2ð2M� rÞr2ð6Mþ 2�rÞ2�00

þ 4r½�ðl2 þ l� 8Þr2M� 2�2r3 � 18M3��0

þ 4½18M3 þ 18�rM2 þ 6�2r2Mþ lðlþ 1Þ�2r3��g;
(39)

Hrr ¼ r2

ð2M� rÞ2 Htt; (40)

Htr ¼ 2ð3M2 þ 3�rM� �r2Þ
lðlþ 1Þ½6M2 þ ðl2 þ l� 5ÞrM� �r2�

_�

þ 2r

lðlþ 1Þ
_�0; (41)

K ¼ 1

2lðlþ 1Þr2ð3Mþ �rÞ
� f2r½�12M2 � 2ðl2 þ l� 5ÞrMþ 2�r2��0

þ ½24M2 þ 12�rMþ ðl� 1Þlðlþ 1Þðlþ 2Þr2��g:
(42)

Introducing these relations into the linearized Einstein
equations, one can show that all of them are trivially
satisfied if the Zerilli Eq. (38) holds.
Next we explicitly display the divergent nature of these

quantities (and, as a consequence, of the first-order metric
perturbations in the RW gauge). For that purpose we
temporarily introduce Schwarzschild coordinates ðt; rÞ
and the tortoise one r�. The Zerilli function � can be
expanded in inverse powers of r, with coefficients depend-
ing on the retarded time u � t� r�,

� � �0ðuÞ þ�1ðuÞ
r

þ�2ðuÞ
r2

þO
�
1

r3

�
: (43)

The Zerilli equation is then equivalent to a series of rela-
tions, order by order in r, among those coefficients:

�0ðuÞ ¼ 2

lðlþ 1Þ
€FðuÞ; �1ðuÞ ¼ _FðuÞ;

�2ðuÞ ¼ �

2
FðuÞ � 3Mð�þ 2Þ

2�ð�þ 1Þ
_FðuÞ;

(44)

where _FðuÞ ¼ dFðuÞ=du. The function FðuÞ can be under-
stood as the free data at null infinity.
In order to see the divergent behavior of the harmonic

coefficients in RW gauge at null infinity, we replace the
expansion (43) in (39)–(42) to obtain

Htt ¼ 4F
::::

l2ðlþ 1Þ2 rþ
4�F

:::

l2ðlþ 1Þ2 þO
�
1

r

�
; (45)

Hrr ¼ 4F
::::

l2ðlþ 1Þ2 rþ
16MF

::::þ 4�F
:::

l2ðlþ 1Þ2 þO
�
1

r

�
; (46)

Htr ¼ � 4F
::::

l2ðlþ 1Þ2 r�
8MF

::::þ 4�F
:::

l2ðlþ 1Þ2 þO
�
1

r

�
; (47)

K ¼ � 4F
:::

l2ðlþ 1Þ2 rþO
�
1

r2

�
; (48)

where the orders r0 and r�1 vanish for the harmonic
coefficient K.
In order to apply the LL formula we perform an explicit

asymptotic (that is, near null infinity) transformation from
the RW gauge to an AF one. We will not show the form of
the resulting change of coordinates but instead directly
show the asymptotic form of the metric coefficients in
the new gauge
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HAF
tt ¼ 0þO

�
1

r3

�
; (49)

HAF
rr ¼ 0þO

�
1

r3

�
; (50)

HAF
tr ¼ 0þO

�
1

r3

�
; (51)

HAF
t ¼

�
_�1 � 1

4l2ðlþ 1Þ2
�
4M €Fþ ðlþ 2Þ!

ðl� 2Þ!
_F

��
1

r

þO
�
1

r2

�
; (52)

HAF
r ¼ �

�
_�1 � 1

2l2ðlþ 1Þ2 ½2M
€Fþ �ðl2 þ l� 8Þ _F�

�
1

r

þO
�
1

r2

�
; (53)

GAF ¼ 4 €F

l2ðlþ 1Þ2
1

r
þ 4� _F

l2ðlþ 1Þ2
1

r2
þ 2�1

1

r3
þO

�
1

r4

�
;

(54)

KAF ¼ 0þO
�
1

r3

�
; (55)

where zeros stand to show that in fact one could ask for
faster decay rates than the ones defined in (29)–(32) and
�1 ¼ �1ðuÞ is a gauge freedom that it is not fixed by the
requirement of asymptotic flatness. From the behavior of
the harmonic coefficient G in an asymptotically flat gauge
(54) and the asymptotic expansion of the Zerilli function
(43), it is easy to obtain

GAF ¼ 2�

lðlþ 1ÞrþO
�
1

r2

�
: (56)

Alternatively, this last relation can be directly obtained
from the gauge-invariant definition of the Zerilli variable
(11) and (12). Since that definition is valid for any gauge
we can suppose that we are in an AF gauge. Imposing the
decay rates (29)–(32) it is straightforward to obtain (56).
The advantage of this last method is that we do not have to
do an explicit asymptotic gauge transformation. The dis-
advantage is, however, that we need to assume that (29)–
(32) is indeed possible.

Either way, using the relation (56) and the LL formula
we obtain the radiated power in terms of the Zerilli func-
tion,

½Power�polar ¼ "2

16�

X
l;m

ðl� 1Þðlþ 2Þ
lðlþ 1Þ

��������@�
m
l

@t

��������2

: (57)

Since this expression holds asymptotically, we can now
forget that we have used intermediate Schwarzschild-type

coordinates to derive it, since it will hold for any time
coordinate that agrees with it at infinity.

B. Odd-parity/axial sector

We proceed as in the even-parity/polar sector. Making
use of the evolution equation for the gauge-invariant vector
�A, we reconstruct the metric from the RW scalar �
satisfying the RW equation

�
�
1

2r2
ðr4�ÞjA

�
jA
þ ðl� 1Þðlþ 2Þ

2
� ¼ 0; (58)

in the RW gauge:

ht ¼ r2

2�
ð2M� rÞð4�þ r�0Þ; (59)

hr ¼ r5

2�ð2M� rÞ
_�: (60)

Next we expand the master scalar in inverse powers of r
near asymptotic null infinity (r ! 1, u ¼ const). Since
~� ¼ r3� obeys a standard wave equation, our master
scalar will have the following behavior:

� � �0ðuÞ
r3

þ�1ðuÞ
r4

þ�2ðuÞ
r5

þO
�
1

r6

�
: (61)

We can define a function JðuÞ such that

�0ðuÞ ¼ 2

lðlþ 1Þ
€JðuÞ; �1ðuÞ ¼ _JðuÞ;

�2ðuÞ ¼ �

2
JðuÞ � 3M

lðlþ 1Þ
_JðuÞ:

(62)

With these expansions at hand, we can obtain the precise
divergent behavior of the RW gauge in terms of the func-
tion JðuÞ,

ht ¼ r

�lðlþ 1Þ J
:::þ 1

lðlþ 1Þ
€J þO

�
1

r

�
; (63)

hr ¼ � r

�lðlþ 1Þ J
:::� 2M

�lðlþ 1Þ J
:::� 1

2�
€J þO

�
1

r

�
: (64)

As in the even-parity/polar sector, we make an explicit
asymptotic gauge transformation to an AF gauge. And, as
in that sector, we do not show the details of the resulting
transformation but instead the final asymptotic behavior of
the metric in the new gauge:

hAFt ¼
�
_�0 þ 1

4
_J þ ðl� 2Þ!

ðlþ 2Þ!M
€J

�
1

r
þO

�
1

r2

�
; (65)
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hAFr ¼ �
�
_�0 þ ðl� 2Þ!

ðlþ 2Þ!
�
M €J þ �

2
ðl2 þ l� 8Þ _J

��
1

r

þO
�
1

r2

�
; (66)

hAF ¼ � 2r

�lðlþ 1Þ
€J � 2

lðlþ 1Þ
_J þ 2

r
�0 þO

�
1

r2

�
; (67)

where �0 ¼ �0ðuÞ is a residual gauge freedom. From
there it is easy to obtain that asymptotically

hAF ¼ � r4

�
�þOðr0Þ: (68)

Replacing this result in the LL formula for the emitted
power we obtain

½Power�axial ¼ "2r6

16�

X
l;m

lðlþ 1Þ
ðl� 1Þðlþ 2Þ

��������@�
m
l

@t

��������2

: (69)

One can try to obtain relation (68) with a gauge-invariant
approach, as we have done in the polar case. It is not
possible in this sector, however, since the gauge-invariant
form of the master variable � (18) does not contain the
harmonic coefficient h. Hence, if using that variable one
has to go through the explicit gauge transformation. But at
this point we note that there is another master variable �
whose gauge-invariant form (25) does contain the har-
monic coefficient h. Making a transformation to outgoing
coordinates and assuming that we are in an AF gauge we
can easily obtain the relationship between � and h at null
infinity,

_h AF ¼ 2r�þOðr0Þ: (70)

Therefore, the emitted power can also be given in terms of
this last variable,

½Power�axial ¼ "2

16�

X
l;m

ðlþ 2Þ!
ðl� 2Þ! j�

m
l j2: (71)

Because we can apply this gauge-invariant approach to
relate the master variable with the harmonic coefficient h at

null infinity, at second-order we will use the variable f2g�.
But there is one disadvantage of using� instead of�. We
have shown above the reconstruction of the perturbations
of the metric in the RW gauge in terms of � (59). These
relations are algebraic. If we try to do the same with the
variable �, we find that the reconstruction of the metric is
not algebraic, but differential.

hr ¼ r2

ðr� 2MÞ�; (72)

_ht ¼
�
1� 2M

r

�
2
�
h0r þ 2M

r� 2M

hr
r

�
: (73)

The first expression is obtained from the very definition of
the master variable � (25), whereas the second one is the
evolution equation for the component ht. This is why we
will use � at linear order and � at second.

VI. SECOND-ORDER PERTURBATIONS

In order to solve for the second-order perturbations it is
in principle enough to solve the Zerilli (13) and RW (26)
equations with their corresponding sources [given by (16)
and (27), respectively]. However, as we will discuss in the
next two subsections, in practice there are some technical
obstacles to overcome first.

A. Sources: Even-parity sector

As we have defined it, the second-order Zerilli function
f2g�, and in consequence also the source of the equation it

obeys, f2gS�, diverges at large radii. In order to see this, it is
sufficient to take its gauge-invariant definition (11) and
(12), assume an asymptotically flat gauge, and impose
conditions (49)–(55) and (65)–(67). In this way, we find

that the quadratic source f2gQ� diverges as

f2gQ� ¼ Q2r
2 þQ1rþQ0 þO

�
1

r

�
; (74)

where Q0, Q1, and Q2 are quadratic functions of

fF̂; �F; Ĵ; �Jg. The hat and bar on F and J denote the generic

harmonic labels ðl̂; m̂Þ and ð�l; �mÞ of two first-order modes,
respectively. For instance, the dominant term is given by

Q2 ¼
X
l̂;m̂

X
�l; �m

32

��l2ð�lþ 1Þ2l̂2ðl̂þ 1Þ2 E
0�l �m
0l̂ m̂ l

F̂
::::

�F
:::
; (75)

where the E coefficients, defined in Appendix A, are
normalized products of two Clebsch-Gordan factors. In
this case, the E coefficient restricts the sums to those

harmonic labels fl̂; �l; lg, such that l̂þ �lþ l is an even

number. That is, for the cases in which l̂þ �lþ l is an
odd number the term Q2 cancels out. In contrast, the
term Q1 has a nonvanishing contribution in all cases.
These divergences are nonphysical, and have their origin

in the freedom to add low-order gauge-invariant terms in
the definition of the second- and higher-order Zerilli func-
tions, as discussed in Sec. III. Fortunately, they can be
removed by exploiting that freedom to regularize the

source of the Zerilli equation. In that way fng� will obey
the same equation but with a different, nondiverging source
term. The following discussion is rather technical, but
necessary. The reader not interested in the details, though,
might skip it and refer to Eq. (87) [and (92) for the odd-
parity sector], keeping in mind that we have made use of
the freedom in defining the second-order master functions
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in such a way that their associated sources are nondivergent
both at the horizon and at infinity.

Our aim is to obtain some quadratic terms on the first-

order Zerilli functions and GS master scalars Qreg ¼
Qreg½f�̂; ��; �̂; ��g�, which reproduce the asymptotic di-

vergent behavior of the source Q� near null infinity. That
is, for r � M with u ¼ const,

Qreg½f�̂; ��; �̂; ��g� ¼ Q2½fF̂; �F; Ĵ; �Jg�r2
þQ1½fF̂; �F; Ĵ; �Jg�r

þQ0½fF̂; �F; Ĵ; �Jg� þO
�
1

r

�
: (76)

In order to construct the functionQreg we make the follow-

ing replacements in Q2, Q1, and Q0:

€F ! 1

2
lðlþ 1Þ�; €J ! r3

2
lðlþ 1Þ�: (77)

These rules include all cases but the first and zeroth de-
rivatives. There are no F or J terms without derivatives in
the divergent terms, but there are some first-order deriva-
tives. Hence, the straightforward definition would be

_F ! �r2
�
@�

@r

�
u
: (78)

However, these replacements introduce divergences at the
horizon r ¼ 2M. In order to see this, we choose ingoing
Eddington-Finkelstein coordinates, which are smooth at
the horizon. They are obtained from the Schwarzschild
coordinates ðt; rÞ by the following transformation:

t ! w � tþ 2M ln

�������� r

2M
� 1

��������: (79)

In these coordinates the two-dimensional background met-
ric takes the form

gABdx
AdxB ¼ �

�
1� 2M

r

�
dw2 þ 4M

r
dwdr

þ
�
1þ 2M

r

�
dr2: (80)

Therefore, we have the following relation between coor-
dinate derivatives:�

@�

@r

�
u
¼
�
@�

@r

�
w
þ rþ 2M

r� 2M

�
@�

@w

�
r
; (81)

which makes explicit the divergence of the radial deriva-
tive in outgoing coordinates at the horizon r ¼ 2M. Taking
into account Eq. (78) this implies that the source diverges
there as well.

In order to regularize the source at large radii without
introducing divergences at the horizon we proceed in the
following way: First, we make a Taylor expansion in
inverse powers of r of the right-hand side of Eq. (81).
Next, we define a derivative that approaches ð@=@rÞu for

large r, but without being divergent at the horizon.
Following this method we get

_F¼�r2
�
@�

@r

�
w
�ðr2þ4Mrþ8M2Þ

�
@�

@w

�
r
þO

�
1

r

�
; (82)

which is finite at the horizon. Converting this last relation
into Schwarzschild coordinates gives the following rules to
reconstruct the divergent terms:

_F ! �r2�0 þ r3 � 16M3

2M� r
_�; (83)

_J ! �r2ðr3�Þ0 þ r3 � 16M3

2M� r
r3 _�: (84)

The replacements (77) and (83) must be done system-
atically. That is, first take Q2r

2 and reconstruct the term
that will reproduce it,

X
l̂;m̂

X
�l; �m

8r2

��lð�lþ 1Þl̂ðl̂þ 1ÞE
0�l �m
0l̂ m̂ l

€̂
� _�� : (85)

When expanding near null infinity, this term will go as
Q2r

2 þ R1rþ R0 þOðr�1Þ. In order to remove the diver-
gent terms of orderOðrÞ, it is not enough to find a term that
will reproduce Q1r, it must reproduce ðQ1 � R1Þr, to
compensate the new term we have just introduced.
Therefore, we take ðQ1 � R1Þr and make the above re-
placements (77) and (83) again. And so on, until we
achieve the desired quadratic function

Qreg½f�̂; ��; �̂; ��g�, which asymptotically behaves as in

Eq. (76).
In this way, we define the regularized second-order

Zerilli function as

f2g�reg � f2g�þQreg: (86)

It obeys the following wave equation:

f2g�regl
m
jA
jA � VZ

f2g�regl
m ¼ f2gSreg

� ; (87)

where the regularized source is given by

f2gSreg
� � f2gS� þQ

regjA
jA � VZQreg: (88)

We have implemented this regularization procedure for
generic (l � 2) first- and second-order modes, but the
results are quite lengthy. Just to illustrate the point, though,
we explicitly show the final result for the regularization

factor for the particular case ðl̂; m̂Þ ¼ ð�l; �mÞ ¼ ðl; mÞ ¼
ð2; 0Þ:
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Qreg ¼ � 1

252ð2M� rÞ

ffiffiffiffi
5

�

s
f2ð2M� rÞ

� ½ð9Mþ rÞ f1g _�þ 6 f1g��f1g _�
þ ð110M3 � 21rM2 þ 14r2Mþ 4r3Þ f1g _�f1g €�

� 2ð2M� rÞ½4r2 f1g�0 � ð15M� 6rÞ f1g�� f1g €�g

� 3r6

224

ffiffiffiffi
5

�

s
f16 f1g _� f1g�þ ð2r� 3MÞ f1g _�f1g _�g:

(89)

B. Sources: Odd-parity sector

In the axial case there is no such divergence. Following
the same steps as above, one finds that near null infinity the

quadratic part of the RW function f2g� tends to

f2gQ� ¼ Qð0Þ
� þO

�
1

r

�
: (90)

Therefore, in principle there is no need to regularize the
second-order RW function. But, as it will be clear in the
next subsection, we are still interested in removing the
term of order Oð1Þ. We do so by applying the same
procedure as in the polar case, namely, we obtain a term

Qreg
� , which reproduces Qð0Þ

� at null infinity.

After that we define the regularized second-order RW
variable as

f2g�reg � f2g�þQreg
� ; (91)

and its evolution equation

where the regularized source is again given by

As in the even-parity case, we shall not present the
details of the general procedure but instead simply explic-
itly show the final result for the regularization factor for the

ðl̂; m̂Þ ¼ ð�l; �mÞ ¼ ðl; mÞ ¼ ð2; 0Þ case:

Qreg
� ¼ � r3

84

ffiffiffiffi
5

�

s
f3 _� _�þ €��þ €��g: (94)

The regularized sources for the equations of motion (87)
and (92) are one of the main results of this article. We have
calculated them for the presence of any first- and second-
order axial or polar modes. We do not include their explicit
form here because they are quite lengthy and do not
contribute to the discussion. They are available from the
authors upon request. As an illustration, for the interested
reader, in Appendix B we have written down their explicit
form for some particular values of the harmonic labels.

C. Radiated power

Once we have solved for the first and second-order
master equations we can obtain the radiated power by
using Eq. (37). Expanding it explicitly up to order "3, it
takes the following form:

Power ¼ "2

64�r2
X
l;m

ðlþ 2Þ!
ðl� 2Þ!

�
r4
��������@

f1gGmAF
l

@t

��������2þ
��������@

f1ghmAF
l

@t

��������2þ"Re

�
r4

@f1gGmAF
l

@t

�
@f2gGmAF

l

@t

�� þ @f1ghmAF
l

@t

�
@f2ghmAF

l

@t

����

þOð"4Þ; (95)

where Re means the real part. Again, the problem of finding the radiated power reduces to calculating the harmonic
coefficients Gm

l and hml near null infinity, in an asymptotically flat gauge. More precisely, we want to relate them with the
regularized master scalars constructed in the previous two subsections.

In those subsections we regularized the second-order master variables so that the quadratic contributions from first-order
modes decay asOð1=rÞ near null infinity. Hence, we can use their gauge-invariant definitions, (12) and (18), and assume an
AF gauge (29)–(32) up to second order. This leads to the very same relations as at first-order; namely,

f2gGmAF
l ¼ 2 f2g�m

lreg

lðlþ 1ÞrþO
�
1

r2

�
; (96)

f2g _hmAF
l ¼ 2r f2g�m

lreg þOðr0Þ: (97)

Replacing these expressions in Eq. (95), the radiated power up to order "3 is given in terms of the master scalars by

Power ¼ "2

64�

X
l;m

ðlþ 2Þ!
ðl� 2Þ!

�
4

l2ðlþ 1Þ2
��������@

f1g�m
l

@t

��������2þ r6

�2

��������@
f1g�m

l

@t

��������2

þ "Re

�
4

l2ðlþ 1Þ2
@f1g�m

l

@t

�@f2g�m
lreg

@t

�� � 2r3

�

@f1g�m
l

@t
f2g�m�

lreg

��
þOð"4Þ: (98)
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This last formula, complemented with the evolution equa-
tions for the regularized master scalars constructed above,
provides a closed set of formulas that permits to obtain the
radiated power up to order "3 in the most general case in a
fully consistent way.

At this point we want to discuss an aspect of second-
order perturbations of Schwarzschild black holes, which
seems not to have been discussed before in the literature.
Namely, even when we are solving for the metric up to
second-order perturbations, we can only obtain the com-
plete radiated power up to third order in ". In order to
obtain the following order "4, one should also consider
third-order perturbations.

Let us further elaborate on this point. Consider the
simplest possible scenario: a unique first-order mode with
harmonic labels ðl; mÞ and polarity 
. The polarity 
 will
take the value 1 for even-parity/polar modes and �1 for
odd-parity/axial modes. Because of reality conditions, if
the mode ðl; m; 
Þ is present, so is its conjugate ðl;�m;
Þ.

The self-coupling of this mode will generate several
second-order modes but not in general the one with labels
ðl;	m;
Þ. In contrast, at third order the mode with indices
ðl;	m;
Þ will indeed be generated. This means that the

third-order modes will always contribute to the emitted
power at order "4, coupled to the first-order mode with the
same harmonic labels. Therefore, without considering
third-order modes, one can only obtain the radiated power
consistently up to order "3.
In order for the emitted power (37) to have a contribu-

tion of that order ð"3Þ the self-coupling of the first-order
mode must give a second-order mode with the same labels
ðl; m; 
Þ. It is easy to see that, when only considering a
first-order mode ðl;	m;
Þ, this will happen if and only if
m ¼ 0 and if, for 
 ¼ 1 (
 ¼ �1), l is an even (odd)
number.
In order to make the above discussion more explicit and

analyze which problems can be addressed consistently, let
us consider the particular case of a first-order even-parity/
polar mode with harmonic labels l ¼ m ¼ 2 and l ¼ m ¼
�2. These modes will generate the second-order fl ¼
4; m ¼ 	4; 0g, fl ¼ 2; m ¼ 0g, and fl ¼ 0; m ¼ 0g even-
parity/polar modes as well as the fl ¼ 3; m ¼ 0g odd-par-
ity/axial mode. Particularizing the power formula (37) in
terms of the master scalars to this case, we obtain the
following contributions from the modes:

Power ¼ "2

12�
j@tf1g�2

2j2 þ
9"4

640�
fj@tf2g�0

4j2 þ 2j@tf2g�4
4j2g þ

15"4

8�
jf2g�0

3j2 þ
"4

96�
j@tf2g�0

2j2; (99)

where the second-order master scalars are the regularized ones. Here, it can be clearly seen that the order "3 is not present.
The problem with this last formula is that it is not complete since the third-order fl ¼ 2; m ¼ 	2g polar mode would
contribute to the power at order "4.

On the other hand, let us consider the first-order mode l ¼ 2 with all its possible harmonic labels m ¼ 0, 	1, 	2. By
coupling, they will generate the second-order polar modes l ¼ 0, l ¼ 2, and l ¼ 4with all their possiblem. That is, we will
have the second-order fl ¼ 0; m ¼ 0g, fl ¼ 2; m ¼ 0;	1;	2g, and fl ¼ 4; m ¼ 0;	1;	2;	3;	4g polar modes. This
particular case will provide a nonvanishing "3-order term to the power,

Power ¼ "2

24�
f2j@tf1g�2

2j2 þ 2j@tf1g�1
2j2 þ j@tf1g�0

2j2g

þ "3

24�
Re½2@tðf1g�2

2Þ@tðf2g�2
2Þ� þ 2@tðf1g�1

2Þ@tðf2g�1
2Þ� þ @tðf1g�0

2Þ@tðf2g�0
2Þ�� þOð"4Þ; (100)

where, again, the second-order Zerilli function must be
understood as regularized. In this last case the formula is
exact up to the displayed order, to which the generated
second-order axial modes and third-order polar modes do
not contribute.

VII. FINAL REMARKS

In this paper we have introduced a complete gauge-
invariant formalism to study arbitrary perturbations of a
Schwarzschild black hole up to second order. In particular,
we regularized the resulting equations, making them suit-
able for a numerical implementation.

This formalism enables a variety of applications and
studies. These range from the nonlinear stability of the
black hole horizon, to nonlinear features in gravitational
waves and mode-mode coupling. We will report those
studies elsewhere.
All calculations of this paper have been done with and

have been largely possible at all due to new, efficient
symbolic manipulation tools. The resulting expressions in
most cases are very long and their explicit forms are not
particularly enlightening. For that reason we have refrained
from explicitly presenting most of them. They are however,
available upon request.
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APPENDIX A: TENSOR SPHERICAL HARMONICS

Tensor fields of any rank s on the sphere will be decom-
posed using a basis of tensor spherical harmonics. Such a
basis can be constructed from the symmetric trace-free
(STF) tensors

Zm
l a1...as � ðYm

l :a1...asÞSTF; (A1)

Xm
l a1...as � �ða1

bZm
l ba2...asÞ; (A2)

together with the metric �ab and the antisymmetric tensor
�ab [2]. For the particular case s ¼ 0, those objects must be
read as Zm

l � Ym
l and Xm

l � 0. They are normalized in the

following way:

Z
d�Zm

l ab�
ac�bdðZm0

l0 cdÞ� ¼
1

2

ðlþ 2Þ!
ðl� 2Þ!�ll0�mm0 ; (A3)

Z
d�Xm

l ab�
ac�bdðXm0

l0 cdÞ� ¼
1

2

ðlþ 2Þ!
ðl� 2Þ!�ll0�mm0 ; (A4)

Z
d�Xm

l ab�
ac�bdðZm0

l0 cdÞ� ¼ 0: (A5)

Going beyond linear perturbation theory, the nonlinear
coupling between two first-order modes results in products
between two tensor spherical harmonics ðl; m; sÞ and
ðl0; m0; s0Þ. Those products can be decomposed into a linear
combination of harmonics (l00, mþm0, sþ s0) with an
explicit formula involving coefficients

where Cm0mm00
l0ll00 are the usual Clebsch-Gordan coefficients

and k is a normalization factor defined by

kðl; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þðlþ sÞ!
2sþ2�ðl� sÞ!

s
: (A7)

These E coefficients encode the geometric selection rules
that determine which pairs of modes do actually couple.
See [2] for full details.

APPENDIX B: REGULARIZED SOURCES, SOME
EXPLICIT EXAMPLES

In this appendix we show two particular examples
for the regularized sources of the RW (92) and Zerilli
Eqs. (87).
Let us first assume that we have the first-order fl ¼

2; m ¼ 1g even-parity/polar and fl ¼ 8; m ¼ �4g odd-par-
ity/axial modes. The regularized source generated by them
for the equation of motion of the, for example, second-
order fl ¼ 7; m ¼ 3g even-parity/polar mode is given by

Sreg� ¼ �
i
ffiffiffiffiffiffiffi
22
51�

q
r

945ðUþ 9Þ2ð2U� 1Þð3Uþ 2Þ2 f�60�;trð6U3 þ 55U2 þ 7U� 18Þ2r3�;rr

þ 60�;rrð6U3 þ 55U2 þ 7U� 18Þ2r3�;tr � 20�;trðUþ 9Þ2ð18U4 þ 51U3 � 58U2 � 26Uþ 20Þr2�;r

� 5�;tð3Uþ 2Þ2ð212U4 þ 3364U3 þ 11603U2 � 13149Uþ 3240Þr2�;rr þ 20�;rrðUþ 9Þ2ð126U4 þ 141U3

� 82U2 � 50Uþ 20Þr2�;t þ 5�;rð3Uþ 2Þ2ð308U4 þ 4972U3 þ 17255U2 � 22221Uþ 6156Þr2�;tr � 180�;tr

� ðUþ 9Þ2ð6U4 þ 9U3 þ 2U2 þ 4U� 4Þr�þ�;tð360U6 þ 2568U5 þ 57529U4 � 14036U3

þ 375894U2 þ 88254U� 123444Þr�;r þ�;rð14220U6 þ 253302U5 þ 1234181U4 þ 854111U3 � 966354U2

� 375354Uþ 220644Þr�;t þ 15�ð3Uþ 2Þ2ð92U4 þ 1492U3 þ 8507U2 þ 14154U� 9396Þr�;tr

��;tð6840U6 þ 112128U5 þ 422069U4 þ 1424U3 � 213006U2 þ 271944U� 48924Þ�
þ�ð6210U6 þ 116313U5 þ 1283789U4 þ 6929894U3 þ 6649074U2 � 316926U� 1359504Þ�;tg; (B1)

where U � M=r.
As a second example, we show the regularized source for the RW Eq. (92) for the particular case in which the first-order

even-parity/polar modes (�l ¼ 3, �m ¼ 0) and (l̂ ¼ 4, m̂ ¼ �1) generate a second-order odd-parity/axial mode with labels
(l ¼ 4, m ¼ �1):
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Sreg� ¼ 3i

8800
ffiffiffiffiffiffiffi
7�

p ðUþ 3Þ4ð2U� 1Þ2ð3Uþ 5Þ4
�
�10rð3U2 þ 14Uþ 15Þ4�̂;rrr

��;rrð2U� 1Þ5

þ 26rð3U2 þ 14Uþ 15Þ4�̂;rr
��;rrrð2U� 1Þ5 � ð3Uþ 5Þ2

r2
ð3060U8 þ 49401U7 þ 332 356U6 þ 1 197 973U5

þ 2 636 572U4 þ 3 760 905U3 þ 2 764 530U2 � 467 775U� 1 518 750Þ�̂;rr
��ð2U� 1Þ3

þ ðUþ 3Þ2
r2

ð1620U8 þ 28 161U7 þ 173 844U6 þ 197 637U5 � 1 511 900U4 � 5 534 775U3 � 7 023 550U2

� 3 510 375U� 573 750Þ�̂ ��;rrð2U� 1Þ3 þ 10rð3U2 þ 14Uþ 15Þ4�̂;trr
��;trð2U� 1Þ3

� 26rð3U2 þ 14Uþ 15Þ4�̂;tr
��;trrð2U� 1Þ3 � 16ð1� 2UÞ2

r4
ð1701U11 þ 35 262U10 þ 320 166U9 þ 1 720 086U8

þ 6 285 736U7 þ 16 821 825U6 þ 34 748 135U5 þ 56 990 175U4 þ 68 601 150U3 þ 42 931 125U2 � 5 703 750U

� 15 946 875Þ�̂ ��� 2

r3
ð6U2 þ 7U� 5Þ2ð1530U9 þ 34 221U8 þ 303 099U7 þ 1 485 635U6 þ 4 592 169U5

þ 9 179 205U4 þ 10 353 033U3 þ 3 316 365U2 � 2 994 975U� 1 478 250Þ�̂;r
��

� 10

r
ðUþ 3Þ2ð6U2 þ 7U� 5Þ4ðU3 þ 9U2 þ 27Uþ 90Þ�̂;rrr

��þ 2

r3
ð2U2 þ 5U� 3Þ2ð24 138U9 þ 399 357U8

þ 2 535 795U7 þ 8 866 263U6 þ 20 189 321U5 þ 31 979 265U4 þ 34 936 825U3 þ 20 024 625U2 � 4 674 375U

� 9 618 750Þ�̂ ��;r þ 8

r2
ð6U3 þ 25U2 þ 16U� 15Þ2ð90U7 þ 468U6 þ 1763U5 þ 5632U4 þ 22 704U3

� 6480U2 � 35 025Uþ 15 750Þ�̂;r
��;r þ 2

r
ðUþ 3Þ2ð6U2 þ 7U� 5Þ3ð675U5 þ 5741U4 þ 15 946U3

þ 24 570U2 þ 10 590U� 13 950Þ�̂;rr
��;r � 5ðUþ 3Þ3ð11U� 9Þð6U2 þ 7U� 5Þ4�̂;rrr

��;r

� 2

r
ð3Uþ 5Þ2ð2U2 þ 5U� 3Þ3ð1377U5 þ 11 403U4 þ 25 994U3 þ 19 250U2 � 410U� 10 350Þ�̂;r

��;rr

� 8ð1� 2UÞ4ð3U2 þ 14Uþ 15Þ3ð30U3 þ 91U2 þ 99Uþ 15Þ�̂;rr
��;rr þ 78

r
ð3Uþ 5Þ2ð2U2 þ 5U� 3Þ4

� ð3U3 þ 15U2 þ 25Uþ 50Þ�̂ ��;rrr þ 13ð3Uþ 5Þ3ð17U� 15Þð2U2 þ 5U� 3Þ4�̂;r
��;rrr

� 8

r2
ð3U2 þ 14Uþ 15Þ2ð198U7 þ 1164U6 þ 2627U5 þ 17 137U4 þ 45 972U3 þ 3140U2 � 38 100Uþ 11 475Þ

� �̂;t
��;t � 2

r
ðUþ 3Þ2ð3Uþ 5Þ3ð474U6 þ 4575U5 þ 13 106U4 þ 20 156U3 þ 1014U2

� 23 685Uþ 8100Þ�̂;tr
��;t þ 5ð1� 2UÞ2ðUþ 3Þ3ð3Uþ 5Þ4ð4U2 þ 23U� 9Þ�̂;trr

��;t

þ 2

r
ðUþ 3Þ3ð3Uþ 5Þ2ð2142U6 þ 13 005U5 þ 21 826U4 þ 13 968U3 � 4370U2 � 21 115Uþ 8100Þ

� �̂;t
��;tr þ 24ðU2 � 3U� 5Þð6U3 þ 25U2 þ 16U� 15Þ3�̂;tr

��;tr

� 13ð1� 2UÞ2ðUþ 3Þ4ð3Uþ 5Þ3ð12U2 þ 37U� 15Þ�̂;t
��;trr

�
: (B2)
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