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Summary 

The vertebrate Apolipoprotein D (ApoD) is a lipocalin secreted from subsets of neurons 

and glia during neural development and aging [1-3]. A strong correlation exists between 

ApoD overexpression and numerous nervous system pathologies as well as obesity, 

diabetes and many forms of cancer [4, 5]. However, the exact relationship between the 

function of ApoD and the pathophysiology of these diseases is still unknown. We have 

generated loss-of-function Drosophila mutants for the Glial Lazarillo (GLaz) gene [6], a 

homolog of ApoD in the fruitfly, mainly expressed in subsets of adult glial cells. The 

absence of GLaz reduces the organism’s resistance to oxidative stress and starvation, 

and shortens male lifespan. The mutant flies exhibit a smaller body mass due to a lower 

amount of neutral lipids stored in the fat body. Apoptotic neural cell death increases in 

aged flies or upon paraquat treatment, which also impairs neural function as assessed by 

behavioral tests. The higher sensitivity to oxidative stress and starvation and the reduced 

fat storage revert to control levels when a GFP-GLaz fusion protein is expressed under 

the control of the GLaz natural promoter. Finally, GLaz mutants have a higher 

concentration of lipid peroxidation products, pointing to a lipid peroxidation protection 

or scavenging as the mechanism of action for this lipocalin. In agreement with Walker 

et al. [7], analyzing the effects of over-expressing GLaz, we conclude that GLaz has a 

protective role in stress situations, and that its absence reduces lifespan and accelerates 

neurodegeneration. 
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Results and discussion 

Flies lacking GLaz are more sensitive to oxidative and starvation stress 

We generated two loss-of-function alleles for GLaz by imprecise excision of a nearby 

EP-element located 1425 bp upstream of the transcription initiation site (see Figure 1S). 

Flies homozygous for the two alleles, GLaz∆1 and GLaz∆2 (both null at the RNA level), 

are viable and fertile, suggesting that GLaz is not essential for embryonic or 

postembryonic development. Since oxidative stress is one of the common factors to the 

many situations in which ApoD is overexpressed, we tested the sensitivity of the null 

GLaz mutants to various stressors. GLaz mutant adults are in fact more sensitive to 

oxidative (Figure 1A,C) and starvation stress (Figure 1D). These effects are seen both in 

males and females, but only male data will be considered here. Sensitivity to oxidative 

stress was still observed after placing the GLaz∆2 allele over a deficiency uncovering 22 

genes around the GLaz locus, discarding the possibility that deleterious mutations 

elsewhere in the genome could contribute to the observed phenotype (Figure 2S). A 

putative contribution of the neighboring gene Spt1 was also rejected, since 

transheterozygous flies with the lethal allele Spt1l(2)Sh1626 [8]  and GLaz∆2 show survival 

curves similar to the control GLaz∆2/+ or GLaz+/+ flies upon exposure to paraquat or 

H2O2 (see Figure 2S and supplementary text). Moreover, Spt1 expression levels show 

no significant changes in GLaz∆2 mutants (results not shown), as assessed by 

quantitative RT-PCR using the ProbeLibrary technology (Exiqon) and 18S as 

endogenous control. Together, these results suggest that GLaz protects the organism 

against damage caused by environmental stress. Transgenic flies overexpressing GLaz 

in nervous and muscular tissues have been independently generated by Walker et al. [7]. 
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An excess of GLaz results in an increased resistance to oxidative stress and starvation, 

strongly supporting a protective role for GLaz. 

The absence of GLaz reduces lifespan 

Oxidative damage to macromolecules is also one of the major causes of the aging 

process [9], and increased longevity is correlated with resistance to several forms of 

stress [10]. In accordance with these relationships, GLaz mutant adults have a reduced 

lifespan. The same results are obtained with the GLaz mutation placed in two genetic 

backgrounds. The survival curves of age-synchronized cohorts of male flies reared at 

25ºC show a reduction in both the median and the maximum lifespan (Figure 1E,F), 

reflecting an early onset of senescence. Mirroring this phenotype, GLaz overexpression 

[7] results in an extended male longevity. 

GLaz expression sites in the adult fly: the nervous system and hemocytes 

In order to understand how a lipocalin, an extracellular lipid-binding protein, can 

contribute to the regulation of oxidative damage in general and of aging in particular, 

we analyzed the expression pattern of GLaz in adult flies (Figure 2). We generated a 

reporter gene construct that drives the expression of GFP under the GLaz promoter 

(GFP-R3rd line; see Figure 1S and supplementary text). The expression of the reporter 

gene is mostly seen in the nervous system, where it is restricted to a subset of cells in 

the perineurial sheath surrounding brain and ganglia, some cells in the optic system, 

(Figure 2A) and in the mushroom body (not shown). Perineurial cells surrounding the 

peripheral nerves and motoneuron terminal branches also show expression (Figure 2B). 

In addition to their stereotyped position, the lack of co-expression with neuronal 

markers (Figure 2A) and coincidence with expression sites of the REPO glial marker 

(not shown) [11] suggest these are glial cells. This expression is consistent with both the 
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developmental expression of GLaz in Drosophila [6], and with the main glial expression 

of vertebrate ApoD [1-3]. Both, sequence comparisons and exon-intron structure [12, 

13] already point to a close GLaz-ApoD kinship. Expression similarities suggest that 

regulatory regions might be conserved as well. Outside the nervous system, expression 

is observed only in the proventriculus (not shown) and in cells located in the hemocoel 

which are probably hemocytes (Figure 2C). 

We also generated a construct that drives the expression of a GLaz-GFP fusion 

protein under the same native GLaz promoter (see Figure 1S and supplementary text). 

The construct uses the genomic GLaz sequence, including introns, so all the regulatory 

regions within the locus are expected to be present. Two independent insertions of this 

construct (on the 2nd and X chromosome) yield an expression pattern (not shown) 

similar to the transcriptional reporter construct. Thus, a supply of GLaz within the 

nervous system is provided by secretion from glial cells, while secretion from 

hemocytes could generate a systemic supply of GLaz. 

 

The effects of GLaz mutation on motor activity impairment are enhanced under 

oxidative stress conditions 

The expression pattern within the nervous system led us to evaluate whether the mutants 

show an age- and oxidative stress-dependent nervous system functional impairment. 

Locomotor behavior has been used extensively to evaluate neurodegeneration and age-

related functional decline [14]. We found no differences in running, climbing or flying 

abilities of young mutant and control flies (not shown). We then tested 21 days old flies, 

when the mortality risk has increased only slightly for the mutant males, and found that 

GLaz mutant males significantly reduce their climbing ability (Fig. 3A). Although 

senescence of all motor activities tested does occur in females, no effect of genotype 
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was observed (not shown). These data are compatible with a mild acceleration of motor 

activity senescence in males lacking GLaz. 

After 24h of exposure to paraquat, GLaz mutant flies of both sexes perform 

significantly worse than controls in all tests (Fig. 3B). An increased level of apoptotic 

death has been reported in flight and leg muscles upon treatment with oxidative 

stressors and during normal aging in wild type flies [15]. This apoptotic pattern supports 

the notion that the normal decline of locomotor functions with age is due to 

accumulation of oxidative damage disturbing neuromuscular function. The 

enhancement of locomotor decline in GLaz mutants suggests that this damage is 

intensified when GLaz is not present. However, can the observed effects be causally 

linked to a nervous system defect or to a more widespread damage affecting other 

tissues? 

 

Apoptotic cell death increases within and outside the nervous system in GLaz 

mutants upon aging or under oxidative stress treatment 

In agreement with Zheng et al. [15], we detect low signs of apoptosis within the nervous 

system of aged wild type flies (as detected by TUNEL, 8±4 cells/section), but a 

significant increase in apoptotic cell death is observed in the aged GLaz∆2/∆2 brain (25±6 

TUNEL-positive cells/section, t-Test p=0.003). Apoptosis in neural cells also increases 

when young GLaz∆2/∆2 flies are exposed to paraquat (95±35 TUNEL-positive 

cells/section; Figure 2E and inset), while levels in the wild-type nervous system remain 

low (33±6 TUNEL-positive cells/section, t-Test p=0.007; Figure 2D). These differences 

in patterns of apoptosis reveal that, in normal conditions, GLaz contributes to the higher 

tolerance to oxidative damage of the nervous system. Therefore, at least part of the 

decrement in locomotor performance observed in aged and paraquat-treated mutant flies 
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can arise from a diminished nervous system function due to the death of irreplaceable 

cells. 

Nevertheless, the nervous system is not the only tissue in which apoptosis levels rise. 

The number of TUNEL-positive nuclei in the pericerebral fat body of old GLaz∆2/∆2 flies 

(10±3 TUNEL-positive cells/section) increases compared to a negligible control level 

(3±2 TUNEL-positive cells/section, p=0.002). Upon paraquat feeding, also described by 

Zheng et al. [15]), apoptotic nuclei are commonly observed in the digestive system and 

the abdominal and pericerebral fat body (30±23 vs. 8±4 TUNEL-positive cells/section 

of GLaz∆2/∆2 and wild-type flies respectively, t-Test p=0.01; Figure 2F-G). Thus, the 

loss of GLaz function seems to be altering other tissues in addition to the nervous 

system. 

 

Fat body physiology and morphology is greatly altered in GLaz mutant flies 

Because changes in body size have also being linked to changes in longevity and stress 

resistance [16], we explored whether the weight of GLaz mutant flies differs from wild 

type controls. Both sexes of GLaz∆2/∆2 flies show significantly lower wet and dry body 

weight (Fig. 3C; male data are shown).  

 Protein content does not differ between genotypes (not shown, t-Test p= 0,23). 

Therefore, most of the body weight variations observed can be accounted for by a 

marked reduction in relative fat content of GLaz∆2/∆2 flies (Fig. 3D; male data are 

shown). Further analyses show that the relative content of triglycerides (Fig. 3D) in both 

young and old adults is significantly decreased when GLaz is absent. These biochemical 

parameters correlate well with the observed morphology of the fat body: both 

pericerebral and abdominal fat body tissue of GLaz mutants are markedly reduced in 

size (Figure 4A-B, I). Young adult GLaz∆2/∆2 flies of both sexes show fewer and smaller 
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lipid bodies (Figure 4C-D) and aging worsens this effect with a reduction in the fat body 

mass (Figure 4E-F). Moreover, the limited lipid bodies present in old GLaz∆2/∆2 flies are 

accompanied by increased eosinophilia due to protein aggregates, a morphological 

indicator of forthcoming cell death (Figure 4H). 

These data suggest that the absence of GLaz provokes (i) a profound reorganization 

in the lipid storage/lipid metabolism balance, (ii) an acceleration of age-dependent 

neural cell death in the CNS, and (iii) intense degeneration in both fat and neural tissues 

upon experimental oxidative stress. 

 

Restoring GLaz expression under its native promoter returns oxidative stress 

sensitivity and fat body physiology back to control levels 

When a GLaz-GFP fusion protein construct (GLaz-Fx line, see Figure 1S and 

supplementary text) is placed in a GLaz∆2/∆2 background, the survival upon paraquat 

treatment returns to control levels (Fig. 1B). Starvation sensitivity is also recovered, 

with a 66.2 % increase in median survival time when comparing GLaz-Fx:GLaz∆2/∆2 to 

GLaz∆2/∆2 (p < 0.00001 log-rank test). The size and morphology of the fat body is 

restored as well (Figure 4I-L, N=15 flies/genotype). These results confirm that the 

observed phenotypes are due to the lack of GLaz protein, with negligible contributions, 

if any, from neighboring genes (see supplementary text for discussion). 

The native regulatory regions used here to reinstall GLaz expression in the null 

mutants seem to control the level of expression within physiological levels. 

Interestingly, as described in the accompanying paper [7], strong overexpression in the 

nervous system does not provide beneficial effects on longevity. The amount of secreted 

GLaz might therefore be a critical factor. 
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We can conclude from our data that GLaz expression in a subset of cells within the 

nervous system and in hemocytes is sufficient to fulfill the protective function of GLaz 

against oxidative damage, starvation resistance, and its influence on fat body physiology 

(regulating lipid stocks). This also suggests that the effects seen in the fat body are 

exerted non-autonomously. Whether a systemic supply of GLaz provided by hemocytes 

is sufficient for these effects, or the GLaz protein produced within the nervous system 

has direct or indirect influences on lipid management by fat body cells can not be 

discerned. However, it is interesting that brain-fat body regulatory neurohormonal 

circuits are proposed to control nervous system and somatic senescence, which in turn 

are linked to the response to nutrient levels and environmental stressors [see 17 for a 

review]. 

 

Lipid peroxidation protection or scavenging as the mechanism of action for the 

lipocalin GLaz 

With a few exceptions, lipocalin function has been related to the binding of 

hydrophobic ligands. This biochemical property is put to work in different cellular and 

organismal contexts, generating a panoply of physiological roles, such as lipid transport 

[18], regulation of the innate immune system [19], regulation of cell proliferation and 

apoptosis [20], anti-inflammatory and antibacterial function [21] as well as scavenging 

of toxic molecules, like heme [22] or lipid peroxidation products [23]. In addition, some 

lipocalins have enzymatic activities, including antioxidant activities: alfa-1-

microglobulin is able to protect tissues from pro-oxidant molecules, inhibit oxidation 

and remove oxidation products [22, 24]. 

The data presented so far strongly suggest that GLaz is part of a defense system 

acting in situations of unbalanced oxidative stress, provoked exogenously from 
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environmental conditions or endogenously by aging or pathological situations. GLaz 

could act as a general scavenger of toxic products (most probably peroxidated lipids) 

and/or exert a protective role by preventing oxidation of lipids, which is known to occur 

in the CNS and fat body of aged and paraquat-treated flies [25].  

This hypothesis predicts that the levels of peroxidated lipids should be higher in the 

GLaz mutants. That is in fact the case:  the concentration of free malondialdehyde 

(MDA), the main product derived from unstable lipid peroxides, is more than two times 

higher in GLaz∆2/∆2 flies than in control flies (Fig. 3E). The levels of MDA therefore 

represent a measure of the degree of oxidative damage in the tissue.  

 

How can a molecule protecting against oxidative stress modify lipid stocks in the 

fat body? 

If GLaz function is exerted by lipid peroxidation protection or scavenging, then the 

absence of GLaz would mimic a stress condition. This would result in an accelerated 

senescence and neurodegeneration. Fat body cells also show more cell death upon aging 

in GLaz null mutants. However, the depletion of lipid bodies is a more generalized 

phenomenon within this tissue, and the lower resistance to starvation could be directly 

linked to this effect. Possibilities to be considered are that GLaz might exert a direct 

signaling function on fat body cells; or that it might perform a transport function that 

controls the supply of lipids in a rate-limiting fashion. However, a direct interaction 

with the fat body is not a requirement, since the stress provoked by the absence of a 

protective agent (GLaz) would secondarily become a feedback loop reverberating on the 

stress response signaling networks. In this scenario, depletion of lipids from the fat body 

in GLaz null mutant flies would be the result of the metabolic activation triggered, for 

example, by biogenic amines (dopamine and octopamine) in response to the unfavorable 
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conditions [26]. Interestingly, ApoD has been identified as a direct target of the liver X 

receptors in adipose tissue [27], pointing to a role of this lipocalin in the regulation of 

lipid homeostasis in vertebrate fat tissue as well. 

 

Functional significance of GLaz/ApoD function in disease and aging 

In recent years data coming from different model organisms (C. elegans, Drosophila 

and mouse [see 17 for a review]) suggest that the general scaffold of the neurohormonal 

and signaling pathways controlling stress responses and aging has been evolutionarily 

conserved. The loss-of-function (this work) and the gain-of-function [7] analyses of 

GLaz in Drosophila clearly suggest that this lipocalin has a protective function both 

during experimental (mimicking disease) or endogenous (aging) oxidative stress. 

Although co-options to new functions and multifunctionality [28] can not be ruled out, 

the GLaz function is most likely conserved in ApoD, the vertebrate lipocalin closer to 

the insect-vertebrate node in the gene family tree. 

Evidence pointing to a role for ApoD in aging and disease has accumulated over the 

years. The results presented here suggest that GLaz/ApoD is an active, non-dispensable, 

element that is predicted to influence the time course and the severity of degenerative 

diseases and cancer as well. 

Since the Drosophila adult is essentially a non-regenerating post-mitotic organism, 

functional conservation with the vertebrate ApoD is expected especially in tissues that 

are also mainly post-mitotic, e.g., the nervous system. If genetic manipulations in 

vertebrate model organisms confirm this prediction, the potential use of ApoD as a 

therapeutic agent in neurodegenerative disorders should become a research priority. 
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Figure Legends 

Figure 1. The absence of GLaz reduces resistance to oxidative stress and starvation, and 

shortens lifespan. Sensitivity to stress is rescued if normal GLaz expression is restored. 

Data in A-D are the average ± SEM from three independent experiments. Male data are 

shown. Log-rank test was used for statistical analysis. Flies still alive at the end of the 

experiment are assigned a censoring value of 1 and their survival time was considered 

as a minimum survival time. 

(A) Survival of GLaz∆2/∆2 flies compared to wild type flies upon exposure to a ROS 

generator (paraquat, 20 mM) supplied in the food (N=100/genotype); p < 0.00001. 

GLaz∆2/∆2 mutants were outcrossed with the Canton-S (CS) strain. Line G2, 

homozygous for the GLaz∆2 allele, is compared to line G10, homozygous for the GLaz+ 

allele.  

(B) The sensitivity to paraquat of GLaz∆2/∆2 mutant flies is reverted back to control 

levels when a GFP-GLaz fusion protein is expressed under the control of the GLaz 

natural promoter (N=75/genotype); p < 0.00001. Paraquat  was supplied in Whatman 

3M filter papers soaked with 1 ml of a 10% sucrose, 20 mM paraquat solution (see 

methods and supplementary text). 

 (C) Survival analysis upon feeding 1% H2O2 on day 1 and 5% H2O2 on subsequent 

days to the GLaz mutant and control flies (N=150/genotype); p < 0.00001. H2O2  was 

supplied daily in Whatman 3M filter papers soaked with 1 ml of a 10% sucrose solution 

with H2O2.  

(D) Effect of starvation on survival of GLaz∆2/∆2 compared to GLaz+/+ flies 

(N=75/genotype); p < 0.00001. Humidity was supplied daily in Whatman 3M filter 

papers soaked with 1 ml of water. 
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 (E) Lifespan determination of GLaz∆2/∆2 compared to wild type males (CS). Median 

survival time is reduced by  19.3% in the GLaz mutant (log-rank test, p<0.0001, 

N=65/genotype) and maximum survival time is reduced by 10.9% (Gehan´s Wilcoxon 

test, p=0.0013).  

(F) Reduction of lifespan is maintained after outcrossing the GLaz∆2 mutant allele with 

the CS strain (see supporting text) (N=225/genotype). Median survival time is reduced 

by 18.1% (log-rank test: p<0.00001). Maximum survival time is reduced by 12.7% 

(Wilcoxon test: p<0.0001).  

 

Figure 2. (A-C) Expression of GLaz in the adult fly. GFP reporter expression was 

assayed by anti-GFP immunohistochemistry on horizontal paraffin sections of 3 days-

old adult  flies carrying the GFP reporter construct R3rd (red labeling in A-C). 

Monoclonal antibody 22C10 was used as a neuronal marker in A,B (green labeling). 

Anterior is up. 

(A) In the brain, the transcriptional reporter is expressed in the perineurial sheath glia 

(arrows) and in subsets of cells in the medulla neuropil, the lamina, and the lobula and 

lobula plate in the optic lobe (triangles). The location of the GLaz driven GFP 

expression in these cells suggests its glial origin. 

(B) In muscle fibers (m), peripheral nerves labeled by 22C10 are surrounded by GLaz-

GFP positive perineurial glia. 

(C) GLaz-reported labeling in cells in the hemocoel. 

(D-G) Patterns of apoptotic cell death upon loss of GLaz function in adult young flies 

after exposure to experimental oxidative stress. See text for quantitative analysis of 

TUNEL-positive cells. Pericerebral fat body (white triangle in E) as well as cells in the 

brain, show apoptotic cell death in paraquat treated GLaz mutants. Apoptotic cells are 
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observed in the brain cortex (arrows in D,E, inset in E), and in the brain neuropil 

(probably glial cells, black triangles in D,E). 

(F,G) TUNEL-positive cells are found in the digestive tract (black triangle in G) and the 

abdominal fat body (white triangles in G). 

Abbreviations; br: brain fb: fat body; g: gut; La: lamina; Lo: lobula; Lp: lobula plate; m: 

muscle; Me: medulla; OL: optic lobe; pfb: pericerebral fat body; Re: retina. Bars 

represent 50µm (C) or 25µm (A,B,D-G). 

 

Figure 3.  

Age-related (A) and oxidative stress-triggered (B) functional decline of locomotor 

activities. Geotropism and phototaxis responses were evaluated as described by 

Palladino et al. [29]. Flies collected and reared as for the longevity analyses  (see 

Supporting Online Material) were tested in groups of 10 at 3-4 days (not shown) or 20-

21 days of age. Male data are shown. Scores are represented as 1/t to facilitate visual 

comparison with other tests results. A better performance gets a higher score in all tests. 

(A) No difference between genotypes is observed in phototaxis, but GLaz∆2/∆2 aged 

males get a lower score in geotropism since they take significantly longer to climb the 

same distance (N=50/genotype). Flight performance was scored following Benzer [30]. 

No difference between genotypes is observed in flying ability (N=150/genotype).  

(B) After 24 h of feeding with 20 mM paraquat supplied in filter paper, locomotor 

activities in the three behavioral tests were significantly impaired in GLaz∆2/∆2 mutants 

as compared to paraquat-treated control flies. Phototaxis was evaluated as above. 

Methods imposing a less strenuous exercise to the flies were chosen to evaluate 

geotropism and flying abilities. N=20/genotype. Female data are shown. Percent 
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number of flies climbing over a 6 cm line in 15 seconds is recorded in 4 consecutive 

trials. Spontaneous number of flights over 4 intervals of 2 minutes is recorded. 

(C-E) Absence of GLaz results in a smaller body mass due to a lower amount of neutral 

fats, and in accumulation of lipid peroxidation products.  

(C) Body weight differs significantly between GLaz∆2/∆2 and GLaz+/+. Mutant males 

weight less than GLaz+/+ flies (Ν=200/genotype).  

(D) Relative fat content in GLaz∆2/∆2 flies is significantly smaller than in control flies 

(Ν=200/genotype). Levels of triglycerides normalized to protein content also differ 

significantly between genotypes in young and aged flies (N=70/genotype). 

(E) Levels of free malondialdehyde (MDA), the most abundant product derived from 

unstable lipid peroxides, are highly increased in GLaz null mutants compared to control 

flies. Results are shown normalized to protein content. Experiments performed in 

triplicate (N=150/genotype).  

Data are represented as mean ± SD. Statistical differences assayed by unpaired, two-

sided Student’s t-test. 

 

Figure 4. Lack of GLaz profoundly alters the morphology of the fat body tissue. The 

effect is reverted when a GLaz-GFP fusion protein is expressed under the control of 

GLaz natural promoter.  

Standard hematoxilin-eosin histochemistry was performed on paraffin (C-L) or resin 

(A-B) sections. N=15 flies/sex/genotype/condition. 

(A-B) Horizontal brain sections showing the pericerebral fat body (triangles) of control 

and mutant 7-days old flies. Mutant fat body tissue is markedly reduced in size. 
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(C-D) Abdominal fat body of 3-days old control and GLaz∆2/∆2 flies showing the 

reduction in size an number of lipid bodies (triangles) in mutant tissue. The same effect 

is observed in the pericerebral fat body (not shown). 

(E-H) Aging enhances this effect as shown in the pericerebral fat body of aged control 

(E, G) and GLaz∆2/∆2 (F, H) flies. The same effect is observed in the abdominal fat body 

(not shown). G and H panels are magnifications of E and F respectively. Arrow in H 

points to an eosinophilic cell. 

(I-L) GLaz∆2/∆2 fat body size reduction and decrease in lipid bodies (I, K) is restored to 

normal levels in mutant flies expressing the GLaz-GFP fusion protein (J, L; Fx 

construct) in brain and hemocytes (see Figure 3). Abdominal fat body (triangles) is 

shown in I-J, while pericerebral fat body is shown in K-L (triangles point to lipid 

bodies). 

Abbreviations; Re: retina. Bars represent 50µm (A-B, I-J), 50µm (E-F) or 20µm (C-

D,G-H, K-L). 
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Loss of Glial Lazarillo, a homolog of Apolipoprotein D, reduces lifespan and stress 

resistance in Drosophila 

D. Sánchez, B. López-Arias, L. Torroja, I. Canal, X. Wang, M.J. Bastiani and M.D. 

Ganfornina 

 

Materials and Experimental Procedures 

 

Fly strains and husbandry. 

Flies were grown at 25ºC under a 12h-12h light cycle. Food recipe: yeast 84 g/l, sugar 

84 g/l, NaCl 3.3 g/l, agar 10 g/l, wheat flour 42 g/l, apple juice 167 ml/l, propionic acid 

5 ml/l. 

GLaz∆2 and GLaz∆1 mutant alleles were obtained in a w1118 background by imprecise 

excisions of the P-element (P{EP}EP2383) (Figure1S). The fly line EP-2383 was 

isogenized before excision. Homozygous GLaz∆2/∆2 where outcrossed into Canton-S 

(CS) background (see supporting text). Two lines, G2(GLaz∆2/∆2) and 

G10(GLaz+/+), were chosen for further characterization. 

Transheterozygous flies GLaz∆2 Spt1+/GLaz+ Spt1l(2)Sh1626 or GLaz+ Spt1+/GLaz+ 

Spt1l(2)Sh1626 were generated by crossing homozygous virgin females from the outcrossed 

lines G2(GLaz∆2/∆2) or G10(GLaz+/+) with Spt1l(2)Sh1626/CyO males. The 

Spt1l(2)Sh1626/CyO line was kindly provided by S.X. Hou [8].  

The deficiency Df(2R)Exel 8057 which uncovers 22 genes (from CG13323-CG4630, 

including GLaz) was obtained from the Bloomington Stock center (BL7871). The 
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GLaz∆2 allele was placed over the deficiency by crossing homozygous virgin females 

with Df(2R)Exel 8057/CyO males. 

A transcriptional reporter construct, containing 1876 bp of the genomic sequence 

upstream of GLaz gene plus the 5’UTR of GLaz (45 pb) followed by the green 

fluorescent protein (GFP) coding sequence, was used for P-element mediated 

transformation of w1118  flies. An insertion on the 3rd chromosome (GLaz-R-3rd) was 

chosen for further characterization (Figure 1S F). 

A fusion protein reporter construct was also used to drive the expression of GLaz-

GFP under the same upstream sequences used in GLaz-R-3rd (Figure 1S G). The 

upstream sequence was followed by the entire genomic GLaz sequence up to the last 

coding nucleotide. The stop codon was removed and the GFP coding sequence was 

placed in frame. Two independent P-element mediated insertions were analyzed, one on 

the second chromosome (GLaz-F-2nd) and one on the X chromosome (GLaz-Fx). 

 

Molecular characterization of GLaz mutants and reporter lines. 

Initial selection and posterior genotyping of the GLaz alleles was carried out by PCR 

amplification of genomic DNA. The primers 5’ ATGGAGGAACAGTGGAATATGG 

3’ and 5’ TGTTGTACGGCTCAAACTGAAA 3’ that lie outside the deleted region 

were used to show the presence and size of the deletion (Figure 1S C). The absence of a 

GLaz mRNA in the mutant flies was tested by RT-PCR using the primers 5’ 

TGTTGTACGGCTCAAACTGAAA 3’ and 5’ ATTTGCTGGGACAGATGCCTAC 3’ 

(Figure 1S D), and by Northern analysis of total RNA probed with the complete GLaz 

cDNA (Figure 1S E). Total RNA was extracted from adult flies using Trizol. 20 µg of 

RNA was electrophoresed in a formaldehyde-agarose gel and blotted to a nylon 

membrane, which was hybridized in Ultrahyb solution (Ambion) for 18 hours at 65 ºC 
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to the GLaz radiolabeled probe. The membranes were then washed at 65 ºC, and 

exposed to film. 

Expression of GFP under the control of GLaz promoter in reporter lines (selected by 

the presence of w+) was first assayed by fluorescence microscopy of dissected brains 

and thoracic ganglia. Since fluorescence signal was very low (not shown), we tested for 

the expression of GFP by immunoblot on crude protein extracts from heads and thorax 

of transgenic flies. Levels of expression are relatively high (not shown), suggesting that 

the low fluorescence signal could be due to some conformational change in the GFP 

protein that deters its normal fluorescence emission. 

Quantitative RT-PCR experiments were performed using the Drosophila 

ProbeLibrary technology (Exiqon) and analyzed in an ABI PRISM 7700 sequence 

detection system (Applied Biosystems). Primers of equal amplification efficiency 

designed for Spt1 and for 18S (endogenous control). The amplifications were performed 

on three independent RNA Trizol extractions for each genotype (GLaz∆2/∆2 / 

GLaz+/+). RNA was quantified by Nanodrop technology and the reverse transcription 

reaction was primed with random hexamers. Τriplicate PCR reactions were performed 

for each RNA extraction. 

 

Lifespan analysis. 

Flies were collected within 24 h of eclosion and were allowed time for mating (2-3 days 

after adult emergence). They were then separated by sex under brief CO2 anesthesia and 

housed in groups of 25. They were raised at 25ºC under a 12h-12h light cycle and 

transferred to fresh food vials every 2-3 days.  
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Body weight and fat content. 

Five groups of 40 flies (3 days old) were weighed in a precision balance (Sartorius® 

ultra microbalance) after killing them by a short exposure to cold (–80ºC). Flies were 

then dried in glass vials at 65ºC for 36 h and re-weighed to calculate dry body weight. 

The fat-free dry weight value was calculated after extraction of fat with diethyl ether for 

24 h (with 2 changes of  4 ml). Flies were dried again at 65ºC for 24 h and re-weighed. 

Relative fat content was calculated by dividing absolute fat content by dry weight. 

Triglycerides content was determined by an enzymatic colorimetric test (TG, Roche) 

in pools of 50 flies. Measures were carried out in triplicate and were referenced to the 

amount of total protein per sample estimated by the Bradford’s assay. 

 

Lipid peroxidation levels. 

A spectrophotometric assay was used to determine the concentration of free 

malondialdehyde (MDA-586, Bioxytech). Groups of 50 flies/genotype were 

homogenized in 100 mM phosphate buffer (pH 7.2) in the presence of an antioxidant 

(butylated hydroxytoluene, BHT) to prevent new lipid peroxidation during 

homogenization. Half of each lysate was used to perform sample blanks. Absorbance at 

586 nm of experimental samples was subtracted from blank samples and referred to a 

standard curve. Three independent experiments with measurements in triplicate were 

performed.  

 

Behavioral assays. 

Flies for all behavioral assays were collected as described for the longevity analysis. 

The tests were performed when flies were 3-4 days old or after aging in the same 

conditions as for the lifespan assay (see above). The same groups of flies were subjected 
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sequentially to the running and climbing tests. Different samples were used for the 

flight performance measures. Brief CO2 anesthesia was used to separate flies in groups. 

Tests were performed following a minimum of 24 hours after anesthesia. 

Running ability: 

Running ability was estimated following Palladino et al. method [29]. Groups of 10 flies 

were transferred without anesthesia to a 10 ml serological pipette truncated and sealed 

with wax film at the conical end. Aluminum foil was used to cover 20 cm from the 

bottom. Flies were knocked down to the bottom by gentle tapping, and the pipette was 

immediately placed horizontally so that the uncovered area was illuminated by a fiber-

optic lamp. The time taken for half of the sample to get to the illuminated area was 

recorded four times, and the inverse of the time was used as performance score. This 

way, the better performers get a higher score, facilitating comparisons with all other 

behavioral tests. 

Geotaxis and climbing ability: 

Climbing ability was monitored as in Palladino et al. [29]. Groups of 10 flies were 

scored four times by measuring the time taken by half of the sample to traverse the 150 

ml line (13 cm) in a 250 ml graduated cylinder. The cylinder was illuminated from the 

top with a fiber-optic lamp and covered with wax film to prevent escapes. As for the 

running ability test, the inverse of the time taken was used as performance score. 

When climbing ability was tested after 24 h of paraquat treatment the following test 

was performed. Flies were selected among the survivors by gentle aspiration of the flies 

moving or flying on the upper part of the vials. Flies with extremely low mobility were 

discarded. Groups of 10 flies housed in vials were recorded in video. After a gentle tap 

of the vial, the number of flies climbing above 6 cm in 15 seconds were counted. The 

cycle was repeated four times per vial and the average performance calculated. 
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Flight ability: 

Flight performance was evaluated according to Benzer [30]. Groups of flies 

(n>200/genotype) were tested for flight ability in a graduated cylinder with oil-coated 

walls. The position (measured from the bottom of the cylinder) at which each fly gets 

stacked after they are dumped into the cylinder is measured and plotted in 10 intervals 

of 2.5 cm each. Overall performance was estimated by averaging the height-interval of 

each group of flies.  

An alternative flight ability measurement was performed after 24 h of paraquat 

treatment. Selection of survivors was carried out as for the climbing alternative test. A 

gentle tap of the vial was followed by a 2 min. period of video recording in which 

number of spontaneous flights were counted. The cycle was repeated four times per vial 

and the average performance calculated. 

  

Oxidative stress toxicity and starvation stress. 

Flies collected as described for the longevity analysis were separated by sex in groups 

of 25 when they were 3 days old. Application of different stressors was performed as 

follows. 

Paraquat treatment: 

After a period of dry starvation (3 hours) flies were transferred to vials with Instant 

Food (Carolina Biological Supplies) with or without 20 mM paraquat (Sigma). 

Incubation proceeded in the absence of light to delay paraquat degradation. Deaths were 

scored every 4-8 h. 

Alternatively, paraquat was supplied in filter papers soaked with 1 ml of a 10% 

sucrose-20 mM paraquat solution, or with sucrose alone. See supporting text for a 

comparison of the effects of paraquat depending on the method used. 
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H2O2 treatment: 

Starting at age of 3 days, flies were transferred daily to vials with filter papers soaked 

with 1 ml of a 10% sucrose solution with or without H2O2. 1% H2O2 was used for the 

first 24 h and 5% for the subsequent days. Dead flies were scored every 4-8 h. 

Wet starvation treatment: 

Starting at age of 3 days, flies were transferred to vials with filter papers soaked with 1 

ml of water. Dead flies were scored every 4-8 h. 

 

Histology, immunohistochemistry, and TUNEL assay. 

Adult flies were fixed with 4% paraformaldehyde, dehydrated in ethanol, and included 

in paraffin. Paraffin sections (7µm) were dewaxed and rehydrated in an ethanol series. 

Alternatively, Technovit resin (Kulzer) was used according to the manufacturer 

instructions. Histochemical staining with hematoxylin and eosin was performed 

according to standard procedures. Anti-GFP rabbit serum (Invitrogen), and mAb 22C10 

(DSHB) were used as primary antibodies for immunohistochemistry. Alexa-594 or 

FITC-conjugated secondary antibodies (Molecular probes) were used for 

immunofluorescent labeling. A biotin-conjugated secondary antibody and the ABC kit 

(Vector Labs) were used for samples developed for light microscopy. The labeled 

sections were observed with a Nikon (Eclipse 80i) microscope, photographed with a 

Jenoptik camera, and processed with Adobe Photoshop (version 5.5). Apoptotic cell 

death was assayed in paraffin sections of flies with the TUNEL labeling kit (Roche) 

following the manufacturer protocols. Quantification of TUNEL-positive cells was 

performed by sampling one every five 8µm-sections (n=2 flies/genotype). 

 

28 



Supporting text 

Changing the genetic background of GLaz mutations does not significantly alter 

their effect on stress sensitivity or longevity. 

The GLaz∆2/∆2 line, generated five years ago, was kept as a homozygous stock and 

hence might have accumulated deleterious or compensating mutations that could affect 

longevity and stress resistance. Therefore we outcrossed the mutant line with our CS 

stock. Ten independent lines were PCR tested for the presence of the wild type or 

mutant allele of GLaz. We selected several sister lines with the mutant allele GLaz∆2 or 

the wild type allele GLaz+ for further characterization. The lines G2, homozygous for 

the GLaz∆2 allele, and G10, homozygous for the GLaz+ allele were chosen as 

representatives for in depth characterization.  

 Lifespan differences of the original GLaz∆2/∆2 mutant and wild type (CS) flies (Fig. 

1E) are very similar to those of the outcrossed lines (Fig. 1F). Likewise, sensitivity to 

paraquat was similar in both the GLaz∆2/∆2 original line and the outcrossed lines (results 

not shown), discarding any significant contribution of hybrid vigor to the lifespan or 

stress resistance of the outcrossed lines. Thus, the higher sensitivity to stressors and the 

reduction of lifespan observed in the lines carrying the GLaz∆2 allele are not due to 

deleterious mutations accumulated elsewhere in the genome. 

 

GLaz phenotype can not be ascribed to alteration of other genes in the genome.  

A deficiency uncovering the GLaz genomic region (22 genes) fails to complement the 

oxidative stress sensitivity phenotype of the GLaz null mutants (Fig 2S), discarding the 

possibility that mutations in other regions of the genome might contribute to the 

observed effects. We have also discarded a specific contribution of the nearest gene, 

Spt-1 (see Figure 1S A), to the oxidative stress sensitivity conferred by the GLaz∆2 allele 
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(Figure 2S). Finally, the rescue of this phenotype (as well as the starvation sensitivity 

and fat body reduction phenotypes) by the GLaz-GFP fusion protein expressed under 

the control of the native promoter (Figures 1B and 4I-L) demonstrate that GLaz 

expression is sufficient to fulfill the stress protective function and the role in the control 

of lipid stocks. However, the deletion removing the beginning of GLaz gene is upstream 

of the essential Spt1 gene, and thus, it might contribute to its regulation. Our 

quantitative PCR experiments show no significant alterations in the level of expression 

of Spt1 in the null GLaz mutants, suggesting that Spt1 would not significantly influence 

other putative phenotypes.  

 

Comparison of paraquat feeding methods. 

We have observed that the method used to feed the flies with paraquat influences the 

amount of effect obtained. When paraquat is added to the food, the effect in survival is 

consistently lower than when it is supplied, at the same concentration, in filter papers 

(see methods section). To discard that the difference was due to variables related to the 

flies that might have changed over time (e.g. general health status) we performed an 

experiment with a batch of flies collected from the same bottle and treated with 20 mM 

paraquat supplied in the two forms. The difference was again observed (not shown). We 

conclude that some components in the food must have antioxidant properties that 

counterbalance the effect of paraquat. Therefore, the effective concentration of paraquat 

when supplied in the food is lower than when supplied in filter papers. Only 

experiments using one methodology are integrated in a given set for analysis. 

30 



Supporting figures 

 

Figure 1S. Generation of GLaz loss-of-function mutants and GFP reporter line 

(A) The GLaz locus in chromosome 2. Arrows represent the direction of transcription. 

Spt-1: Serine palmitoyltransferase. Nrk: Neurospecific receptor kinase.  

(B) GLaz∆1 and GLaz∆2 are null alleles generated by imprecise excision of the P element 

P{EP}EP2383. Deletions start at ±12 bp from the EP insertion site and cover 2049 bp 

and 2794 bp respectively, eliminating the transcription initiation site, the first coding 

exon and part of the first intron of GLaz gene.  

(C-E) Molecular analysis of GLaz alleles at the DNA and RNA levels. (C) Primers 

flanking the deletions were used to amplify fragments from genomic DNA. These 

fragments were sequenced to determine the exact break points of the deletions (not 

shown).  

(D) Primers in exons 1 and 2 were used to amplify fragments from mRNA by RT-PCR. 

No band can be detected in the mutant alleles. Absence of genomic DNA contamination 

was proved by omitting the reverse transcriptase  from the reaction mixture (RT- control 

lanes). The expected wild type genomic fragment was amplified in the same experiment 

for comparison.  

(E) Northern analysis of total RNA probed with P32-labeled GLaz cDNA. Hybridization 

shows the expected 0.8 kb band in wild type flies while no signal is detected in the 

RNA from GLaz∆1/∆1 or GLaz∆2/∆2 homozygous flies, confirming that both alleles are 

null alleles.  

(F) The GFP transcriptional reporter construct.  

(G) The GLaz-GFP fusion-protein reporter construct.  
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Figure 2S. Complementation studies of oxidative stress sensitivity phenotypes. 

The neighboring gene Spt1 does not contribute to the sensitivity to oxidative stress of 

the GLaz∆2 allele. Transheterozygous flies GLaz∆2 Spt1+/GLaz+ Spt1l(2)Sh1626 are as 

resistant to paraquat (A) or H2O2 (B) as the controls heterozygous for either gene. When 

the GLaz∆2 allele is placed over a deficiency uncovering 22 genes in the GLaz locus 

area, the survival curve upon paraquat (A) or H2O2 exposure (not shown) is similar to 

the GLaz∆2/∆2 homozygous flies, discarding mutations in distant areas of the genome as 

putative contributors to the GLaz null mutant phenotypes. In all cases the oxidative 

stressor was supplied in filter papers. 
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