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AppHcatlon of a dlabatlc distorted wave approximation to the study of X· . ·H2 
(X = He, He, Ar) van der Waals molecules 

o. Roncero, S. Miret-Artes, G. Delgado-Barrio, and P. Villarreal 
Instituto de Estructura de la Materia, C.S.LC., Se"ano 123, 28006 Madrid, Spain 

(Received 25 February 1986; accepted 30 April 1986) 

A diabatic rotational decoupling scheme is applied to X· . ·H2 van der Waals molecules using the 
anisotropic potentials of Tang and Toennies [J. Chem. Phys. 68, 5501 (1978); 74, 1148 ( 1981 ) ]. 
We have developed the method proposed by Beswick and Requena [J. Chem. Phys. 72,3018 
( 1980) ] in an entirely numerical way. Attention is focused on the rotational predissociating levels 
and on the shape resonances of these systems. Among these resonances, a narrow orbiting and 
narrow overbarrier resonances are found for the complexes Ne-H2 and Ar-H2' respectively. They 
should be amenable to experimental observation in molecular beam scattering as well as infrared 
spectroscopic studies. 

INTRODUCTION 

Weakly bound rare gas-H2 systems are of considerable 
interest in the context of van der Waals (vdW) molecules. 
Recently a great amount of experimental information about 
these systems has become available. Knowledge ofthese ex
perimental results is very important for the determination 
and understanding of intermolecular forces in the region of 
the attractive well. 

In the present paper, we envisage the fragmentation of 
the He, Ne, Ar-H2 vdW molecules occurring when the di
atomic subunit is rotationally excited. Thus, within a diaba
tic picture, we can recognize two different mechanisms: (a) 
if the metastable level is coupled to a family of continua, due 
to the anisotropy of the vdW interaction, the complex disso
ciates by rotational predissociation (RP). This process takes 
place by transference of an excess of internal rotational ener
gy from H2 towards the weak bond, leading eventually to its 
breaking up. And, (b) if the metastable level interacts with 
its continuum, the fragmentation occurs directly. Such me
tastable levels, called shape resonances, are associated to po
tential energy barriers. It can be distinguished into two 
classes: the orbiting resonances, which are located under the 
top of the barrier, and the overbarrier resonances. In both 
mechanisms, the relevant quantities are the energy position 
ofthe metastable level and its associated width. Experimen
tal widths for RP have only been reported for the Ar-HO 
and Kr-H2 complexes. I However, the RP process has been 
suggested in connection with broadening features found in 
the infrared spectra of many other systems. I ,2 Also, in the 
experimental observations with crossed molecular beams, 
the vdW metastable states cause perturbations in the energy 
dependence of the various scattering cross sections3 and 
therefore are amenable, in principle, to direct detection. In 
this way, infrared spectra 1,2(a)-2(c) and molecular beam scat
tering studies4,s on rare gas-H2 systems have greatly con
tributed to the understanding of the features of the corre
sponding vdW interactions. 

On the other hand, from the theoretical point of view, 
two kinds of related problems must be overcome in order to 
study these systems. The first one concerns the determina
tion of the intermolecular potentials. Although there are a 

great amount of computational problems in order to deter
mine these potentials, some ab initio,6 semiempirical,7,8 or 
completely empirical potentials9 are available now. The sec
ond problem is related to the dynamics of dissociation for 
which "exact" and several approximate methods have been 
proposed. The aim of these approximate methods is mainly 
twofold, to provide physical pictures of the process and to 
avoid the excessive computational effort of the exact calcula
tions. Moreover, they can also provide reliable empirical po
tential surfaces, 

Among the different approaches for treating the RP 
process of these complexes, we want to stress two efficient 
methods: (1) the secular equation (SE) method, 10 recently 
improved by adding perturbation theory (PT), II that yields 
results in very good agreement with the exact ones,16(a) and 
(2) the diabatic rotational distorted wave (ORDW) meth
od, 12 that leads to sufficiently precise results when it is devel
oped in an entirely numerical way, 13 but involving less com
putational effort. In the second method, the Hamilton is 
represented in an angular basis and, taking advantage of the 
large rotational spacing of the H2 molecule, only the diag
onal elements are considered in order to obtain zero-order 
discrete and continuum solutions. After that, discrete-con
tinuum coupling through the nondiagonal matrix elements 
are used to estimate widths for the RP process within the 
"Golden Rule" framework. This decoupling scheme, as pro
posed by Beswick and Requena,12 was developed in an ana
lytical way. 

In this work, our objective has been the numerical appli
cation of the OROW approximation to the study of X-H2 
systems (X = He, Ne, Ar). We investigate rotational pre
dissociating levels and also, as a straightforward extension, 
shape resonances on a single channel corresponding to a 
unique diatomic rotational state. We shall restrict ourselves 
to the particular case of J = 0, Jbeing the total angular mo
mentum. We have chosen the semiempirical potentials pro
posed by Tang and Toennies (IT).7 As these authors point 
out, these potentials are found to work fairly well in the at
tractive and repulsive regions, yielding cross section aniso
tropy factors in agreement with experiment. The IT poten
tials describe the interaction of a rare gas atom and the H2 
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molecule considered like a rigid rotor. The diatomic bond 
length is frozen at its averaged value in the ground vibration
al state. Therefore, the process of vibrational predissociation 
(VP) is neglected. This is a reasonable point, since it has 
been shown 14 that for these molecules the VP process is very 
slow as compared with the dissociation tnechanisms studied 
here. Also, close coupling calculations for the He + H2 colli
sion IS have confirmed this tendency showing low vibrational 
relaxation cross sections. However, the rotational predisso
ciating levels and their associated widths have been found to 
be strongly dependent on the diatomic vibrational excita
tion.IO(C) This fact must be taken into account in order to do 
a proper comparison between theoretical results and spec
troscopic data. 

We start the presentation of the results with a compari
son between the two versions, analytical or numerical, of the 
DRDW approach. Then, we report energy positions and 
half-widths for the RP process, using the TT potentials. For 
Ar-H2' a very good agreement with available exact results l6 

is found. This indicates the small contribution arising from 
discrete-discrete and continuum--continuum couplings, 
that are neglected in our treatment. Concerning shape reson
ances, we have searched only the first one appearing on each 
rotational channel investigated. As expected, the associated 
widths are larger than those of rotational predissociating lev
els. However, a narrow orbiting resonance for Ne-H2 and a 
narrow overbarrier one for Ar-H2 were found. The lifetime 
of this last resonance is about 6.7 ps. This interesting result 
has been verified by means of close-coupling calculations. At 
the same time, in both types of quasibound levels, and for the 
Ar-H2 complex, we have studied the reliability of the corre
sponding TT potential. We have obtained an overestimate of 
the energy positions of - 1 cm -I as compared with experi
ment. All these results are reported and discussed in the last 
section. 

II. THEORETICAL TREATMENT 

We are interested in X·· .H2 van der Waals molecules 
where X = He, Ne, Ar, and the diatomic molecule is treated 
like a rigid rotor rotational constant Be. After separation of 
the center-of-mass motion of the whole system, the Hamilto
nian for nuclear motion on a single electronic potential ener
gy surface may be written as9 (c).16 

fz2 a 2 fz212 '2 
H = - 2J.t aR 2 + 2J.tR 2 + BeJ + V(R,r), (1) 

where J.l is the atom-diatom reduced mass, R is the distance 
between X and the H2 center of mass, r is the angle between 
the R vector and the vector corresponding to the H2 bond, r, 
while I andj are angular momentum operators associated to 
Rand r, respectively. In Eq. (1) V(R,r) describes the van 
der Waals interaction. It goes to zero as R goes to infinity 
whatever be the orientation r. 

For J and M quantum numbers given, associated to the 
total angular momentum J = j + I and its third component 
in a space-fixed representation, respectively, the Schro
dinger equation 

HII{IJM(R,r» =EII{IJM(R,r» (2) 

may be solved by expanding the wave function in a body
fixed angular basis l7 

I'IIJM(R,r» = 22t/Jft!(R) IJMjfl) , (3) 
j,O 

where r is the unit vector in the r direction,j is the rotational 
quantum number associated to j and referred to the body
fixed system of coordinates, while fl is the "tumbling" angu
lar momentum quantum number corresponding to the pro
jection of J on the R direction. Substitution of Eq. (3) into 
Eq. (2) leads, after scalar multiplication by IJA(lfl') , to the 
following set of coupled equations: 

{ _£ a
2

2 
+Bej(j+ 1) + Vf~o(R) -E}t/Jft!(R) 

2J.t aR 

= 22 Vft:.ro' (R)t/Jjf[. (R), Ufl') '1= (j,fl), 
1,0' 

where the potential matrix elements are 

(4) 

Vft:.ro' (R) = (JMjfll [ V(R,r) + ::2] IJMlfl'). (5) 

Henceforth, the superscripts JM drop out for simplicity. 
Diabatic approach consists in neglecting all the off-diag

onal terms in Eq. (4), solving in zero order the uncoupled 
equations 

{ _£ a
2

2 
+ Vjo;Jo(R) +B.JU+ 1) -E}t/Jj<g)(R) =0; 

2J.t aR 
(6) 

Eq. (6) has discrete as well as continuum solutions. 12 Dis
crete solutions are obtained by solving 

{- : ~22 + Vjo;Jo(R) -EjO,v}t/JJg~v(R) =0, (7) 

where v is a quantum number associated to the van der 
Waals stretching and EjO,v <0. Actual triatomic energy is 

Ejo,v = EjO,v + Bej(j + 1) 

and the corresponding state may be a bound or quasibound 
(metastable) state. 

On the other hand, continuum solutions are obtained 
from the equation 

{- : ~22 + Vjo;Jo(R) -E}t/Ji<g~E(R) =0, (8) 

where E> 0 represents the relative kinetic energy between 
the fragments, E = E + B.JU + 1) being the total energy. 
The functions t/J;g~E (R) are chosen to be energy normalized. 

Now, within the simplest Golden Rule framework, the 
half-width for rotational predissociation associated to the 
Ufl,v) quasibound state is given by 

riO,v = 1T 22 I (t/JJg~v (R) I Vjo;J'o' (R) It/Ji<g~E (R»)I2, (9) 
l<i 

where each contribution must be calculated "on-shell ener
gy," i.e., for 

E=EjO,v +BeUU+ 1) -/U' + 1)]. 

Also, from Eq. (8), we may search shape resonances on 
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each channel labeled by ua). It is well known that, asymp
totically, continuum wave functions behave as 

4>Jg~E(R) - A sin{kR + 8Jo (E)}, 
It._", 

( 10) 

where k = (2p,E)1/2/1i is the wave number, A = (2p,1 
'Irk) 112 Iii is the normalization factor, and 8JO the phase shift. 
Near a resonance, this quantity takes the Breit-Wigner 
form l8 

8JO (E) = 8Jg> (E) + arctan{ r JO 
}, 

2(EJv - E) 

where EJo denotes the resonance position while r JO stands 
for its corresponding width; 8J<g> is a background contribu
tion that, for narrow and isolated resonances, becomes 
smooth as a function of the energy. Hence, the cross section 

uJo (E) = 4: (2j + 1 )sin2 8Jo (E) (11) 
k 

looks, near a resonance, as a Lorentzian or Fano-type func
tion depending on the local value of the background 8J<g> at 
the resonance energy. 

III. RESULTS AND DISCUSSION 

Usually, the van der Waals interaction is described by 
an expansion in terms of Legendre polynomials p;.. (cos y) as 
follows: 

V(R,y) = LV;.. (R)P;.. (cos y). (12) 
;.. 

Hence, potential matrix elements V;0;J-0' (R), Eq. (5), 
may be analytically calculated from the well-known matrix 
elements of p;.. (cos y) and 12 in the body-fixed representa
tion. 17

(b) In this work, we have assumed a total angular mo
mentum J = 0, that implies a projection on the Z space-fixed 
axis M = 0 and a tumbling quantum number a = O. There
fore the necessary matrix elements are reduced to the follow
ing: 

(OOjOI12 100/0) = 8JljU + 1), 

(OOjOIP;..I(cosy)IIOO/O) = [(2/ + 1)/(2j+ 1)]1/2 

X C 2 U'01l o li'lljO) , 

where C(jlmd2m2Ijd2j3m3) are Clebsh-Gordan coeffi
cients. 19 

To obtain bound and rotational predissociating triato
mic levels, we have numerically solved Eq. (7) using the 

Truhlar's algorithm.20 Essentially, it consists in expanding 
the wave function as a Taylor series up to the second order. 
Usual boundary conditions lead to a tridiagonal matrix 
whose diagonalization provides the desired eigenValUes and 
eigenfunctions in an efficient way.21 

Similarly, continuum wave functions were obtained by 
numerical solution of Eq. (8). We have employed a Fox
Numerov algorithm22 of propagation and evaluated the 
phase shift by using the expression (10). Hence, shape res
onances were investigated through the behavior of the cross 
section, Eq. (11), as a function of the relative kinetic energy 
E. 

Also, application of the Golden Rule approximation, 
Eq. (9), was carried out by standard numerical quadrature 
after the discrete states, the continua and the relevant cou
pling were determined. 

Assuming a rotational diatomic constant Be = 60.81 
em -I and using the Dunker and Gordon potentials for Ne
H2 and Ar-H2' a comparison between our numerical results 
and the analytical onesl2 is shown in Table I. As it can be 
seen, both types of calculations give rise to similar results for 
the rotational predissociating levels investigated. This agree
ment was also obtained in a previous work on the He-HF 
system. 13 However, in the Ne-H2 molecule we have not 
found any level corresponding to a diatomic rotational quan
tum number j = 4, in contrast with the analytic result. In 
fact, the analytic method introduces a spurious term in the 
diagonal potentials V;o"n (R) when the Pekeris' procedure23 

is followed [see Eq. (28c) of Ref. 12]. Thus, an energy of 
1224.2 em-I, higher than the diatomic rotational energy 
Be X4X5 = 1216.2 em-I, was reported!2 Therefore, that 
energy does not correspond to an actual quasibound level, 
but is an artifact of the analytical calculations. 

As we already mentioned, more accurate potentials for 
some X-H2 systems can be found in the literature; however, 
for the purpose of comparison among the system studied 
here, it is convenient to use the anisotropic potentials of Ref. 
7. They are expressed by two terms in the Legendre expan
sion (12) as 

V(R,y) = Vo(R) + V2 (R)P2 (cos y) 

and the rigid rotor H2 is assumed to have a bond length equal 
to the corresponding expectation value on the ground vibra
tional state.7 Hence, the rotational constant of the diatomic 
subunit takes a value of Be = 56.90 em-I. 

Up to a diatomic rotational excitationj = 5, bound and 

TABLE I. Energies E and half-widths r in cm -I numerically calculated for some rotational predissociating 
levels of X ... H2 (X = Ne, Ar) van der Waals molecules. They correspond to the stretching quantum number 
v = 0 and are compared with the analytical results of Ref. 12. The same potentials [Ref. 9(c) 1 were used in 
both calculations, assuming a rotational diatomic constant Be = 60.81 cm -I. 

j=2 

j=4 

Ne···H2 

Ref. 12 

E= 364.5 
r = 0.51 X 10-2 

E= 1224.2 
r=0.14XIO-3 

This work Ref. 12 This work 

E=363.7 E= 347.2 E= 346.9 
r = 0.40 X 10-2 r = 0.77 X 10-2 r = 0.72 X 10-2 

E= 1206.6 E= 1206.1 
r = 0.37X 10-3 r = 0.33 X 10-3 
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rotational predissociating levels for Ne-H2 and Ar-H2 are 
shown in Table II. These levels were not found in the He-H2 
system. All these states correspond to negative eigenvalues 
Ep,o in Eq. (7). Because of the Legendre expansion taken for 
the potentials, rotational predissociation occurs with a vari
ation of the diatomic rotational state Aj = - 2. So that, tria
tomic levels for whichj = 0, 1 cannot predissociate and be
come bound levels. Afterj = 3 andj = 6, for Ne-H2 and Ar
H2, respectively, the corresponding effective diagonal poten
tials do not support discrete levels. When the results shown 
in this table are compared with those of Table I, large differ
ences in energies and a factor about 2 in half-widths can be 
observed for both systems. This discrepancy is similar to that 
reported by Le Roy et al.IO(c) Moreover, when we compare 
energy position and half-width corresponding to Ar-H2 
(J = O,j = 2) with those obtained by a complex-coordinate 
coupled channel (CCCC) formalism l6 using the same po
tential surface,'(b) a good agreement is found. Thus, with 
the rotational constant Be = 60.853 cm - I of that work in
stead of the value 56.90 em - I assumed here, we get 
E=346.172 cm- I and r=0.13xlO- 1 cm- I, while the 
CCCC values are 346.1433 and 0.127 X 10- I cm -I, respec
tively. It may be stressed that the width reached within the 
present approach is accurate to 2%-3%, while the level en
ergy shows an error of 0.03 cm -I. Larger differences were 
found 16 depending on the potential surface chosen. In fact, 
using the Buckingham-Comer potential ofLe Roy and Car
ley,9(d) that is probably the most realistic potential for Ar
H2, the results of CCCC calculations are E = 345.3871 
cm -I and r = 0.0158 em -I for the same J = O,j = 2 level. 
Therefore, for the Ar-H2 complex, the Tang and Toennies 
potential yields errors in energy position of rotational predis
sociating levels of about 1 cm -I. Anyway, from Table II, we 
realize that the general features pointed out in Ref. 12 are 
held. For the only comparable level, the half-width in Ne-H2 
is lower than in Ar-H2. This quantity, for Ar-H2' decreases 
as j increases showing the gradual dynamical decoupling 
between diatomic rotation and the van der Waals stretching 
motion. 

Energy positions and widths associated to some shape 
resonances are listed in Table III for the three systems under 
consideration. They were obtained within the single channel 

TABLE II. Energies and half-widths (units are cm -I) for Ne-H2 and Ar
H2 of bound and metastable predissociating levels. They were obtained by 
numerical application of the diabatic rotational model with the potentials of 
Tang and Toennies. A rotational diatomic constant of 56.897 cm - 1 was 
assumed. 

j 

o 

2 
3 
4 
5 

Energy 

- 5.31 

109.35 

339.14 

Ne-H2 

Half-width 

0.102X 10- 1 

Ar-H2 

Energy Half-width 

- 21.37 
-0.35 

92.26 
113.68 
322.44 0.134X 10- 1 

667.17 0.287 X 10-2 

1126.69 0.6SOXIO- 3 

1700.96 0.15IXIO-3 

TABLE III. Energies and widths, in cm - I, for shape resonances of X-H2 
systems (X = He, Ne,Ar). Except that marked with an asterisk, all of them 
correspond to overbarrier resonances. Because of the asymmetry found in 
most of them, we report the associated total width (full width at half of the 
maximum cross section). 

He-H2 Ne-H2 Ar-H2 

j Energy Width Energy Width Energy Width 

2 345.22 4.67 346.58 7.64 341.91 0.79 
3 683.78- 0.13 684.75 2.81 
4 1142.94 3.97 1142.07 4.59 
5 1713.66 6.58 

diabatic approach, and correspond to the first resonance 
found at eachj value investigated. The cross sections calcu
lated by means ofEq. (11) look, in most cases, like asymme
tric Lorentzian functions of the energy. Hence, we report the 
full widths estimated at half of the corresponding maximum 
cross section. For He-H2, wide overbarrier resonances were 
obtained. Moreover, due to the small well-depth of this sys
tem, the effective potential forj = 3 already presents a posi
tive minimum. Concerning Ne-H2, wide overbarrier reson
ances were again got, except that corresponding to j = 3 
which is supported by the barrier, i.e., it is an orbiting reso
nance. This narrow resonance appears when the effective 
potential has no bound levels. Its width is of the same order 
of magnitUde as some orbiting resonances recently reported 
by Hutson and Le Roy II using also an approximate, but very 
precise, method. 

As regards Ar-H2' only overbarrier resonances were 
found in the range of j values considered. Their widths in
crease asj increases, obtaining the contrary behavior to that 
of rotational predissociating levels. So, the higher kinetic 
energy associated to the resonance, the quicker the system 
breaks. However, a narrow resonance appears at j = 2 de
spite its character. In order to check our diabatic plus single 
channel approach for this level, we have carried out close 
coupling calculations including two open channels (j = 0,2) 
and a closed one (j = 4). We get in this way the same energy 
position with an error of 0.001 cm -I and a width of 0.82 
cm- I

. As far as we know, such narrow overbarrier reson
ances for triatomic X .. ·BC van der Waals systems have not 
been reported. 

To finish, it has seemed to us interesting to reproduce 
some molecular beam scattering data of orbiting resonance 
for Ar-H2's This constitutes a good test for determining the 
reliability of the IT potential surface. In particular, we have 
focused our attention on the resonances labeled by j = 0; 
1 = 8,9 in that work.s In our frame, they correspond to 

j = 8,9, respectively, withJ = 0, neglecting (artificially) the 
anisotropic term V2• In this way we achieve the kinetic ener
gy values E( 1 = 8) = 14.53 cm- I and E( 1 = 9) = 22.81 
cm- I

, while the experimental values are 13.39 ± 0.48 and 
21.78 ± 1.21 cm- I

, respectively. As it was already men
tioned for the j = 2 predissociating level an overestimate in 
energy resonances of - 1 cm -I is also found. In addition, we 
have obtained the corresponding widths r(1 = 8) = 2.02 
cm- I and r(1 = 9) = 5.71 cm- I

. Although we do not dis-
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pose of the experimental widths, a qualitative agreement is 
found if we examine Fig. 11 of Ref. 5. These results also agree 
with CC calculations,24 see Fig. 2 in that work, where r (9) 
appears to be larger than r(8) by a factor of -3. 

Finally, we want to stress the long lived shape reson
ances found for Ne-H2 (j = 3) and Ar-H2 (j = 2). In prin
ciple, they should be amenable to spectroscopic as well as 
very low energy scattering experiments, providing addi
tional valuable information about the van der Waals interac
tions. Also, in regard to the method developed here, we con
clude that it constitutes a very quick and accurate way to 
obtain energy positions and widths of all levels (rotational 
predissociating levels and shape resonances). This proce
dure may be applied to systems presenting large rotational 
spacings in the diatomic subunit and low anisotropy. How
ever, the method may be improved, with a little additional 
computational effort, by introducing discrete-discrete and 
continuum-continuum couplings, allowing the study of 
more general systems. Work in this direction is now in prog
ress. 
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