Social Hybridogenesis in the Clonal Ant *Cataglyphis hispanica*

Laurianne Leniaud,¹,4,* Hugo Darras,¹,4 Raphael Boulay,²,³ and Serge Aron¹

¹Evolutionary Biology and Ecology, CP 160/12, Université Libre de Bruxelles, 1050 Brussels, Belgium
²Doñana CSIC, Avenida Americo Vespucio s/n, 41013 Sevilla, Spain
³Departamento de Zoología, Universidad de Granada, 18071 Granada, Spain

Summary

With a few rare exceptions, the vast majority of animals reproduce sexually [1–3]. Some species have, however, evolved alternative modes of reproduction by shifting from classical bisexuality to unorthodox reproductive systems, like parthenogenesis, gynogenesis, or hybridogenesis [4, 5]. Under hybridogenesis, both the maternal and paternal genomes are expressed in somatic tissues, whereas the germline is purely maternal. Recently, a form of hybridogenesis at the level of the society has been reported in some ants, where purebred females develop into reproductive queens and interlineage hybrids into sterile workers [6]. Here, we report a unique case of social hybridogenesis in the desert ant *Cataglyphis hispanica*. Workers are produced exclusively from interbreeding between two distinct genetic lineages, whereas male and female sexuals are produced by asexual reproduction through parthenogenesis. As a consequence, all workers are pure hybridogens, and only maternal genes are perpetuated from one generation to the next. Thus, queens of *C. hispanica* use sexual reproduction for colony growth, whereas they reproduce asexually through parthenogenesis for germline production.

Results

In hybridogenetic species, females of hybrid origin discard the paternal genome prior to meiosis and produce gametes carrying no paternally derived genes [7–9]. The eggs are then fertilized with sperm of the paternal species resulting in a hybridogen, which consists of a clonally inherited maternal part and a sexually inherited paternal part (Figure 1). Hybridogenesis, therefore, results in a situation in which both the maternal and paternal genomes are expressed in somatic tissues, whereas the germline is purely maternal.

A form of social hybridogenesis was recently reported in two ant genera: *Pogonomymex* harvester ants and *Solenopsis* fire ants. Hybrid mating between individuals originating from different genetic lineages results in the production of sterile workers (analogous to the “soma” of solitary organisms), whereas mating between individuals from the same genetic lineage produces new reproductive queens (the “germline”) (Figure 1). In the *Pogonomymex barbatus/rugosus* species complex, colonies are headed by a single queen that mates multiple times with males of their own as well as with males of the alternate lineage. Purebred females become queens, and interlineage hybrids become workers [6, 10, 11]. A similar reproductive system evolved in a hybrid zone between two fire ants: *Solenopsis geminata* and *S. xyloni* [12]. Colonies of *S. xyloni* contain multiple queens each mated with a single male. Queens mated with a male of their own species produce only reproductive females, whereas queens mated with a *S. geminata* male produce only workers. Because males of Hymenoptera arise from unfertilized, haploid eggs by arrhenotokous parthenogenesis, they belong to the queen lineage.

While conducting a population genetic study, we discovered a unique case of social hybridogenesis in which paternally contributed genes are not transmitted, but only maternal genes are perpetuated across generations, in the desert ant *Cataglyphis hispanica*. We found the existence of two genetic lineages across four populations sampled. Queens mate with a single male originating from the alternative lineage than their own. Remarkably, workers are all interlineage hybrids, whereas the sexual line is purely maternal.

Colonies of *C. hispanica* Are Monogynous and Monandrous

A single queen was found in 34 out of the 38 colonies excavated from the two populations of Bonares (B) and Lucena del Puerto (L). The 555 workers sampled from queen-right colonies and genotyped at the five polymorphic microsatellite markers were unambiguously assigned to the queen present in their nest. Moreover, in the four colonies in which no queen was collected, worker genotypes (*n = 74*) were compatible with single maternity. Mother-offspring genetic analyses from 369 lab-raised worker progenies of 30 queens indicated that 28 queens were singly mated, and two were doubly mated, resulting in an average number of patriline per colony of 1.07 ± 0.26 (*P*_{nondetection} = 0.04). Genetic analysis of the sperm content of queens’ spermatheca (*n = 20*) did not reveal alleles that were not detected in parent-offspring analyses.

Parthenogenetic Production of Male and Female Sexuals

A total of 24 new queens (gynes) were produced in 7 of the 38 colonies (mean number of gynes per colony ± SE = 3.43 ± 0.95). All showed strictly identical multilocus genotypes to their mother queen. None carried alleles of their mothers’ mate at any of the five markers studied, indicating that they had been produced by thelytokous parthenogenesis (see Table S1 available online). The probability of these gynes arising from matings with males having no diagnostic allele at the five loci was low, ranging from 0.049 to 4.74 × 10⁻⁷ across colonies (Supplemental Experimental Procedures). In line with parthenogenetic production of gynes, the coefficient of relatedness (*r*) between a queen and her reproductive daughters was 1.0 (SE = 0; n = 7 colonies). Moreover, 51 males were raised in 14 colonies (mean number of males per colony ± SE = 3.64 ± 0.61). All were haploid and carried alleles of the colony queen (Table S1), consistent with their production by arrhenotokous parthenogenesis.

*These authors contributed equally to this work
*Correspondence: leniaud@ulb.ac.be
Remarkably, both reproductive groups were formed by queen and male pools, respectively. In population A, reproductive of both sexes belonged to each of the two groups. Remarkably, in all colonies, the queen and her mate(s) belonged systematically to alternative genetic groups, and all workers were the progeny of these hybrid matings.

Across the four populations, neighbor-joining analyses of the four genetic group pairs identified within populations indicated the presence of two clusters, hereafter called His1 and His2 lineages (Figure 4). Queens from populations B and R belonged to the His1 lineage, whereas those from population L belonged to the His2 lineage; queens of both lineages were collected in population A. The average genetic distance estimated according to Kimura’s two-parameter method in our data (628 bp long sequence) ranged from 0.013 (His1) to 0.021 (His2) within the lineages and was 0.019 between the two lineages.

Discussion
Our results show an original form of social hybridogenesis in the ant C. hispanica. Queens mate with males originating from a different genetic lineage to produce hybrid workers, but they produce new reproductives asexually through parthenogenesis. Thus, both the maternal and paternal genomes are expressed in the worker force, whereas the "germline" is purely maternal. From an inclusive fitness perspective, males of C. hispanica are an evolutionary dead end because they consume resources but cannot transmit their genes to the next generation unless hybrid reproductives are produced. In a reproductive system where males are evolutionarily redundant, we would expect this sex to disappear entirely, resulting in a system in which reproduction by queens is exclusively asexual (as is the case in asexual populations of the ant Mycecelopus smithi [13]). Nevertheless, we found no parthenogenetically produced workers in C. hispanica, indicating that males are still required for the production of workers. Therefore, should one lineage cease producing males, the entire system will be driven to extinction. The reproductive system found in C. hispanica differs from that reported in the sister species C. cursor. In both species, queens use sexual reproduction and parthenogenesis for the production of the worker and queen castes, respectively [14]. However, no genetic lineages were found in C. cursor. Moreover, the occasional production of gynes by the queens though sexual reproduction and by the workers through thelytokous parthenogenesis contributes to the transmission of the male genes over generations in this species. In addition, about 2.5% of the workers are parthenogenetically produced in C. cursor.

Social hybridogenesis in the monogynous and monandrous C. hispanica appears strongly different from that observed in Pogonomyrmex and Solenopsis, for at least two reasons (Figure 1). First, in these species, both the maternal and the paternal intralineage genomes are transmitted to the next generation of queens. By contrast, as is the case in other hybridogenetic species [5], only maternal genes are perpetuated across generations in C. hispanica. Second, in Pogonomyrmex and Solenopsis ants, each colony needs both intralineage
Data reduction another both populations productive and each lineage. Figure of only therefore Few inability females different whereby incompleteness. Barbatus/rugosus patterns: reciprocal lineages. C. queenas and males reproduce and parthenogenetic gynes. Colonies produced in C. hispanica. This contrasts with the Pogonomyrmex system. Such interlineage reproductive similarity of C. hispanica. We infer that interlineage reproductive, whether genetic differences were found in the offspring of different genotypes. This systematic outbreeding may be explained by prezygotic reproductive isolation (males and females of the same lineage may avoid mating) and/or postzygotic reproductive isolation (reduced fertility or inability to produce workers from same-lineage mating). Colonies of C. hispanica are headed by a single queen mated once. Few colonies produce gynes and, for those who do, the number of gynes produced per colony is small. One should therefore expect strong selection for prezygotic isolation with gynes discriminating among potential males to mate only with the alternate lineage, otherwise a huge proportion of gynes mating inappropriately would die every generation.

Discrimination between genetic lineages could be based on chemical cues. Hydrocarbon profiles of the wax layer on the cuticle have indeed been shown to mediate a wide range of behaviors in social insects, including kin recognition, fertility signaling, or mating choice [20].

The maintenance of the dependent lineage system reported here requires that reproductives are pure-breeding lineages and that F1 interlineage worker hybrids are viable. Thus, a viable intergenome must be maintained, whereas the two genetic lineages may diverge over time. Mitochondrial deoxyribonucleic acid (DNA) analyses indicate similar levels of haplotype divergence both between and within lineages, suggesting that the lineages are not reciprocally monophyletic and that the hybridogenetic system reported here may be of very recent origin. We found that all pure-breeding reproductives resulted from asexual reproduction. However, it remains unknown whether viable hybrid reproductives could occasionally be produced and compromise the persistence of the system. Such interlineage reproductives might arise from occasional production of gynes by sexual reproduction or from production of daughter queens and males by worker reproduction through parthenogenesis. Orphaned workers of C. hispanica lay both haploid and diploid eggs that may have interlineage genomes. However, whether these eggs can develop into fully grown and reproductively capable adults is uncertain because all the 199 sexuals (genotyped and inferred) of our sample were pure-breeding lineages. Hybrid reproductives may also carry genetic information from the queen’s mate and, then, represent the only possible way for males to have a nonzero fitness because males seem to transmit their genes only to the worker caste.

We found a single lineage in three out of four populations studied. This strongly suggests that colonies from different lineages structure in patches within populations. This may result from a combination of two processes: the parthenogenetic production of new queens and colony foundation by budding, whereby young mated queens establish a new colony at a walking distance of their natal nest with the help of a worker force. Reduced dispersal of genetically highly similar females is expected to generate strong microgeographical genetic structure. Interestingly, asexual production of new queens and budding are also closely associated in four ant species [14, 16–18] and termites [21]. In this context, males must be the dispersing sex to ensure interlineage mating.

Hybridogenesis in C. hispanica combines the genetic benefits of asexual reproduction, the genetic diversity from sexual reproduction, and the high level of heterozygosity of the hybrid worker force. By using alternative modes of reproduction for the queen and the worker castes, queens of C. hispanica increase the transmission rate of their genes to their reproductive female offspring, while maintaining some level of genetic
diversity in the worker force [14]. Hybridization has long been shown to provide fitness benefits due to heterosis in both plants and animals, e.g., by enhancing growth rate of hybrids and/or by improving resistance to stressful conditions and ability to survive in restricting habitats [22–26]. In ants, the high level of heterozygosity among workers could impact colony fitness by causing a form of social heterosis, giving colonies a competitive advantage in some environments. For instance, worker heterosis could allow exploitation of a wider range of resources more effectively [27] or enhanced resistance to parasites and pathogens [28–30]. However, hybridization may also result in outbreeding depression due to genetic incompatibilities, with hybrids experiencing reduced fertility or sterility [31–33]. Interestingly, in C. hispanica, the use of asexual and sexual reproduction by queens for the worker and reproductive castes, respectively, allows the expression of the positive effects of hybridization without its negative impact on reproduction. Because hybrid individuals exclusively become nonreproductive workers, the potentially negative consequences of hybrid sterility are null, whereas workers may even benefit from nonreproductive heterosis effects [12, 34].

Experimental Procedures

Fifty-eight nests Of C. hispanica were sampled between May 2009 and May 2011 from four Andalusian populations (southern Spain): 27 colonies from B, 11 colonies from L, 10 colonies from R, and 10 colonies from A. Colonies from B and L were completely excavated (n = 38) and were brought to the laboratory for queen mating-frequency estimation. New queens and males that emerged in the laboratory were genotyped to determine their mode of production.

Genotyping

Individual ant DNA was extracted using the Chelex extraction process (Bio-Rad, Hercules; [35]) following standard protocols. Ant legs were crushed and incubated for 1 hr 30 min at 85 C in 100 μl of 5% Chelex with constant agitation. After a 3 min centrifugation at 12,000 rpm, 80 μl of the supernatant was transferred into a 1.5 ml tube. To isolate sperm DNA, the queens' abdomen was dissected in a saline solution, and the content of their spermathecae was extracted following the same procedure. Seven microsatellite markers described for C. cursor were tested [36]; none showed null alleles, but two revealed linkage disequilibrium. Our samples were genotyped at five polymorphic microsatellite loci (Cc11, Cc26, Cc54, Cc76, and Cc93), showing 7–17 alleles across the four populations. Loci were amplified as described in [37] with PCR optimizations following the QIAGEN protocol (available upon request). PCR products were genotyped using an automated Applied Biosystems ABI 3730 Sequencer (Applied Biosystems). Control for genotyping errors due to null alleles and allele dropouts was performed with MICRO-CHECKER [38]. Linkage disequilibrium was tested with genepop’007 [39].

Genetic and Phylogenetic Data Analysis

Colony and population genetic structure was inferred from the pedigree of 820 workers (mean number of workers genotyped per colony = 66 ± SE = 15.47 ± 1.12). Descriptive statistics (i.e., the allele frequencies, observed heterozygosity, and expected heterozygosity) were computed with FSTAT [40]. Relatedness coefficients (r) were estimated using the algorithm of Queller and Goodnight [41] implemented in the program relatedness 5.0.8. Colonies were weighted equally, and SEs were obtained by jackknifing over colonies.

The number of queens per colony was determined from field observations and genetic analyses for the 38 colonies excavated in B and L. Queen genotypes were determined by direct analysis (n = 34 colonies) or were inferred from worker offspring genotypes if the queen was not collected (n = 4).

Figure 4. Number of Distinct Lineages Across All Sites Sampled

(A) Neighbor-joining dendrogram based on Cavalli-Sforza genetic distance between within-site groups. Numbers on nodes indicate bootstrap percentages (1,000 replicates on loci).

(B) Neighbor-joining dendrogram based on allele sharing genetic distances of 58 queens (labeled Q) and their 66 inferred mates (M) collected over four populations: A (green), B (blue), L (red), R (pink). M1/M2 labels differentiate multiple mates. The collection number of each nest is given with the letter of the site.
Individuals were assigned as belonging to different matrilines if they did not share an allele with the queen at at least one locus. Assignment of individuals to matrilines was confirmed with the maximum-likelihood methods implemented in the program COLONY 1.2 [42].

The number of fathers contributing to the progeny of each queen was estimated from the genotype of lab-reared worker pupae from 30 queens (mean number of pupae genotyped per colony = SE = 12.37 ± 0.22, n = 369), by reconstructing each paternal genotype from mother-offspring allele combinations. Queen mating frequency was confirmed by genotyping the sperm content of 20 queens’ spermathecae. The probability of nondelection of additional patrilines due to two fathers sharing the same alleles at all loci was calculated as

\[P_{\text{non-deletion}} = \prod_{i} \left(1 - \frac{f_i}{J} \right) \]

where \(f_i \) is the level frequency of allele \(i \) at locus \(j \) [43].

To test for the presence of genetically distinct interbreeding groups, the genotype of the queen and her mate(s) was inferred from an additional sample of ten workers/colony from ten colonies in population R, and ten workers from ten colonies in population A. We tested whether each of the four sites comprised reproductives of different genetic groups using the maximum-likelihood method implemented in the population assignment program STRUCTURE 2.3.3 [44] with a burn-in of 50,000 and run lengths of 50,000 under an admixture ancestry model. To determine the number of distinct lineages was at all sites, we performed two neighbor-joining clustering analyses based on Cavalli-Sforza and Edwards chord distance between the genetic groups detected in the previous within-site analyses and on the shared-allele distance \(D_{AS} \) [45] between pairs of reproductives (i.e., 58 queens and their 66 mates). Calculation of distances and construction of neighbor-joining dendrograms were performed with the software POPULATION 1.2.32.

Genetic divergence within and between lineages was estimated based on the sequencing of a portion of 628 bp of the COI gene (see Supplemental Experimental Procedures).

Supplemental Information

Supplemental Information includes one figure, one table, and Supplemental Experimental Procedures and can be found with this article online at doi:10.1016/j.cub.2012.04.060.

Acknowledgments

We thank M. Peary and L. Keller for fruitful discussions and T. Schwander, E.L. Vargo, and four anonymous referees for their critical reading of the manuscript. We are also grateful to A. Lenoir and M. Jowers for their help in the field and L. Lechevalier, L. Grumiaux, and B. Gassner for technical assistance. This work was supported by grants from the Belgian FRSFNRS (to L.L. and S.A.) and an Action de Recherche Concertée (to S.A.).

Received: February 7, 2012
Revised: March 14, 2012
Accepted: April 18, 2012
Published online: June 7, 2012

References

