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Abstract 

The Rho family of GTPases are highly conserved molecular switches that control some 

of the most fundamental processes of cell biology, including morphogenesis, vesicular 

transport, cell division and motility. Guanine nucleotide-exchange factors (GEFs) are 

directly responsible for the activation of Rho-family GTPases in response to 

extracellular stimuli. In fission yeast, there are 7 Dbl-related GEFs and they activate 6 

Rho-type GTPases within a particular spatio-temporal context. The failure to do so 

might have consequences reflected in aberrant phenotypes and in some cases lead to cell 

death. In this review, we briefly summarize the role of Rho GTPases and Rho-GEFs in 

the establishment and maintenance of cell polarity and cell integrity in 

Schizosaccharomyces pombe. 

 

 

 

Rho-GTPases and Rho-GEFs in fission yeast 

Rho GTPases are key molecules in morphogenetic and polarity processes; 

approximately one per cent of the human genome encodes proteins that either regulate 

or are regulated by members of the Rho family of small GTPases (reviewed by [24, 43]). 

The guanine nucleotide-bound state of Rho GTPases determines the physiological 

activity of the protein. When bound to GDP, Rho GTPases are inactive, but when 

loaded with GTP, Rho proteins are conformationally primed to engage downstream 

effectors and influence cellular functions. The simplicity of this model contrasts with 

the complexity of the pathways regulated by these proteins. In fact, the proteins that 

control the nucleotide state of Rho GTPases are much larger and more complex than the 
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GTPases themselves and they contain multiple domains capable of protein-protein 

interactions [36, 74, 97, 105].  

Rho GTPases activity is controlled by three types of proteins: (a) guanine nucleotide 

exchange factors (GEFs), which catalyze the exchange of GDP for GTP, rendering the 

protein active [105]; (b) GTPase activating proteins (GAPs), which stimulate the 

intrinsic GTPase activity turning off the GTPase [8]; (c) guanine nucleotide dissociation 

inhibitors (GDIs), whose role appears to be to block spontaneous activation [21] (Figure 

1). These different possibilities are not mutually exclusive, and it is likely that full 

activation of GTPases requires activation of GEFs as well as inactivation of their GAPs 

and/or GDIs. 

The fission yeast Rho family of small GTPases includes Cdc42p, Rho1p, Rho2p, Rho3p, 

Rho4p and Rho5p [2]. Fission yeast Cdc42p and Rho1p are functional homologues of 

human Cdc42p and RhoAp, respectively, and of budding yeast Cdc42p and Rho1p, 

respectively, and are essential for cell viability [72, 80]. Cdc42p has been reported to be 

involved in the establishment of cell polarity [72], while Rho1p is involved in the 

maintenance of cell integrity and polarization of the actin cytoskeleton [2-4, 80]. On the 

other hand, Rho2p, Rho3p, Rho4p and Rho5p are not essential for growth, although 

they also play important roles in morphogenesis. rho2+ has been shown to be involved 

in the control of cell morphogenesis, probably by regulating the synthesis the α-1,3-

glucan, via a Pck2p pathway [9, 40]. rho3+ and rho4+ participate in cell separation 

processes. Rho3p interacts with the formin For3p and modulates exocyst function [82, 

119], and Rho4p is necessary for septum degradation during cytokinesis [83, 100, 101]. 

The function of Rho5p is still not well established; it is expressed under stress 

conditions (sporulation and stationary phase) and its overexpression can compensate 

Rho1p depletion [81, 96]. 

GEFs turn on Rho GTPases and are important for GTPase activation, localization, 

stabilization, and interaction with their effectors. Sequence analysis of the S. pombe 
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genome has revealed the existence of seven Rho-GEFs: scd1+, gef1+, gef2+, gef3+, rgf1+, 

rgf2+ and rgf3+ (http://www.genedb.org/genedb/pombe/index.jsp), [42]. Of these, scd1+ 

and gef1+ are Cdc42p-specific GEFs and Rgf3p, Rgf2p and Rgf1p has been described to 

function as GEFs for Rho1p, while gef2+ and gef3+ have not yet been assigned to any 

known GTPase [11, 16, 29, 31, 41, 75, 78, 111]. Considering that there are four other 

Rho GTPases and at least two biochemically uncharacterized GEFs, it will take 

considerable effort in the future to sort out the biochemical specificities, cellular roles 

and regulation of each Rho-GEF. 

GEFs for Rho GTPases contain a conserved domain in human Dbl and S. cerevisiae 

CDC24, known as the DH (Dbl homology) domain, which is necessary for GEF activity 

[25, 37]. Small GTPases contain nucleotide- and Mg2+- binding pockets. The form of 

nucleotide (GDP or GTP) that is bound modulates the conformation of the switch region 

whereas Mg2+ is required for the high-affinity binding of guanine nucleotides. DH 

domains participate in the formation of the GTPase interaction pocket by promoting 

GTPase intermediates that are devoid of nucleotide and Mg2+. Because of the high 

intracellular ratio of GTP:GDP, the released GDP is replaced with GTP, leading to 

activation (Figure 1). 

DH domains, also called “Rho GEF domains”, share little sequence identity with each 

other. In S. pombe, the identity percentage between the deduced amino acid sequence of 

DH domain that belong to GEFs with the same substrate specificity is less than 20% 

upon comparing Rgf1p and Rgf3p, and Scd1p and Gef1p, respectively, while it rises to 

63.4% upon comparing the DH domains of Rgf1p and Rgf2p, the closest related 

members among the GEF family. Despite this, crystallographic and NMR analyses of 

several DH domains have revealed a highly related three-dimensional structure [60, 110, 

122]. DH domains have three conserved regions called (CR1, CR2 and CR3), each 10-

30 amino acids long; two of those regions -CR1 and CR3- are exposed on the surface of 

the DH domain and pack to form the core domain. Amino-acid substitutions within 
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these regions adversely affect nucleotide exchange activity. In S. pombe, a point 

mutation located on helix H8 (CR3) of Rgf3p or deletion of 4 amino acids in the same 

region of the Rgf1p-DH-domain produce a lack-of-function phenotype [31, 111].  

Almost all Rho-GEFs possess a pleckstrin homology domain (PH) adjacent and C-

terminal to the DH domain (Figure 2), and in most cases the DH-PH tandem is the 

minimal structural unit that can promote nucleotide exchange in vivo. PH domains have 

been proposed to localize Rho proteins to plasma membranes, and to regulate their GEF 

activity through allosteric mechanisms [98]. A mutation between the PH and the CNH 

domains produces a novel allele of the rgf3 gene [75]. The mutation prevents Rgf3p 

from localizing to the medial ring during cytokinesis and causes cell lysis, the same 

lack-of-function phenotype as a mutation within the GEF domain [111]. Moreover, the 

mutation is suppressed by a Rab GAP, which appears to stabilize Rgf3p and drives its 

recruitment to membranes, thus indicating that proper localization is also essential for 

function [75]. Interestingly, Gef1p, which lacks the PH domain, forms a ring structure at 

the cell division site that shrinks during cytokinesis [16, 41].  

Apart from the DH-PH module, most GEFs contain additional functional domains, 

including: DEP (Dishevelled, Egl-10, and Pleckstrin), CNH (Citron and NIK1-like 

kinase homology domain), PB1 (Phox and Bem1p domain), and a Calponin homology 

(CH) domain, which in some proteins has been implicated in binding to actin [56, 118] 

(Figure 2). Their function is not clear, but in most cases they are likely to be involved in 

coupling GEFs to upstream receptors and signalling molecules. Here we shall discuss 

possible mechanisms of participation of Rho GTPases in cell polarity and cell wall 

biosynthesis, and the specific activation by its GEFs in the vicinity of the polarization 

point. 

 

 

The role of Cdc42p, Scd1p and Gef1p in cell shape  
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In order to maintain intracellular osmolarity and to produce cell shapes other than 

spheres, cell expansion must be focused on particular regions. There are three switches 

in polarized cell growth patterns during the cell cycle [84]. First, selective and polar 

growth is initiated at the beginning of the cell cycle at the “old end” of the cell, the end 

that preexisted before cell division. This growth can be monitored by staining with the 

dye Calcofluor and by the presence of cortical actin dots [62, 69]. Second, during the 

G2 phase, in a transition called “new end take off” (NETO), cells initiate growth at the 

new end of the cell (the previous cell division site) [73]. This growth pattern is 

visualized by the appearance of both Calcofluor staining and cortical actin dots at the 

new end. Finally, when the cell reaches its maximal size, tip elongation ceases and 

mitosis occurs followed by cytokinesis. Following cell separation polarity must be re-

established at the old end. Fission yeast uses both microtubules and the actin 

cytoskeleton for cell expansion, for reviews, see [14, 30, 125]. It has been proposed that 

it is the interaction of microtubules with the cell tips that allows the establishment of 

new sites of actin assembly (reviewed by [6, 13, 14, 38, 64, 109]).  

Fission yeast Cdc42p is essential for cell proliferation and its inactivation probably 

affects many functions, the most readily observable of which is a change in cell 

morphology from elongated to round [72](Figure 3A). Overexpression of a 

constitutively active form of Cdc42p or a mutant that is slow to hydrolyze GTP 

produces large, round and misshapen cells, and the disruption of normal actin 

distribution [72]. These observations suggest that Cdc42p activation must be restricted 

temporally and spatially and that Cdc42p is involved in controlling polarized cell 

growth. 

Cdc42p is a component of a multiprotein complex that functions downstream from 

Ras1p, the single Ras GTPase homolog in S. pombe. Like Cdc42p, Ras1p participates in 

the regulation of cell morphology and mating in S. pombe but, unlike Cdc42p, it is not 

essential for cell viability [28, 79]. To control cell morphology, Ras1p interacts with 
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Cdc42p via complex formation with the Cdc42p guanine nucleotide exchange factor 

Scd1p [11]. In addition Ras1p also activates the Byr2p protein kinase (a MEKK 

homolog) to mediate mating pheromone signalling [120].  

How Cdc42p controls cell shape is anything but straightforward. Cdc42p is localized to 

the medial region of the cell in early cytokinesis and remains at the cell division site 

until cell separation; it also localizes to the cell periphery and internal membranes [70].  

 

Downstream effectors of Cdc42p 

Cdc42p can interact with multiple downstream effectors to regulate a diverse set of 

functions [23]. These effectors preferentially bind to GTP-bound Cdc42p and transduce 

the Cdc42p-dependent signals downstream to ultimately affect actin rearrangements, 

microtubule polarization, and other events. In S. pombe, the best known Cdc42p 

effectors are the PAKs (p21-activated kinases) Shk1p/Pak1p/Orb2p and Shk2p/Pak2p. 

shk1 is an essential gene required for polarized growth and morphology, proper control 

of cell cycle progression, completion of cytokinesis, and the normal mating response 

[61, 87, 115], whereas shk2+ is a non-essential gene that appears to be largely redundant 

with shk1+ [71, 106, 123]. The function of Shk1p is positively modulated by three non-

essential proteins -Scd2p [10, 11], Skb1p [33, 34] and Skb5p [124]- and negatively 

regulated by Skb15p, an essential WD repeat protein [47].  

Insight into possible roles for Shk1p in regulating cell polarity has been gained from 

studies of shk1 mutants. Cells of the orb2-34 mutant (a hypomorphic allele of shk1) are 

unable to activate bipolar growth and grow only at one tip [115, 116]. Analysis of the 

actin cytoskeleton in orb2 mutants reveals that actin is only localized at one growth pole. 

Moreover, it has been suggested that Shk1p may play a role in the process by which 

fission yeast cells recognize their ends as sites for growth [102]. Cells severely defective 

for Shk1p function, either due to deletion of the shk1+ gene or to overexpression of a 
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kinase-defective Shk1p mutant protein, results in the formation of spheroidal cells that 

exhibit the cortical F-actin randomly distributed [61, 87].  

With the knowledge that activation of Cdc42p leads to the accumulation of F-actin, the 

next question is reduced to understanding the link between the activated Cdc42p and 

actin polymerization. In S. cerevisiae a bifurcated signalling pathway downstream from 

Cdc42p recruits and activates the Arp2/3 complex. One branch, which requires formin 

homologues, mediates the recruitment of the Bee1p (the WASp orthologue) complex to 

the cortical site where the activated Cdc42p resides [53]. The other is mediated by p21-

activated kinases (PAKs), which activate the motor activity of myosin-I through 

phosphorylation [53]. In S. pombe, patch assembly proceeds via two parallel pathways: 

one dependent on WASp Wsp1p and verprolin Vrp1p converges with another 

dependent on class 1 myosin, Myo1p, to activate the actin-related protein 2/3 (Arp2/3) 

complex [108]. In S. pombe, Cdc42p/Shk1p could promote polarized cell growth by 

controlling myosin phosphorylation. The Myo1p head contains the so-called TEDS rule 

phosphorylation site, which is indicative of regulation by PAK kinase and a mutation in 

that possible phosphorylation site slightly impairs the function of Myo1p [7, 114]. No 

interaction between Cdc42p and Wsp1p has been reported so far. 

In addition to regulating F-actin cytoskeletal organization, Shk1p/Pak1p may also 

regulate the stability of the microtubule cytoskeleton [95]. Curiously, Tea1p is directly 

phosphorylated by Shk1p in vitro, suggesting that it is likely to be a direct substrate of 

Shk1p [48]. Tea1p is needed to establish polarized cell growth at cell tips that have not 

grown previously. Recently, it has been shown that Tea1p may regulate cell polarity by 

associating with large 'polarisome' complexes that include the formin For3p [27, 65]. 

Although the details remain to be elucidated, there is evidence that the interaction of the 

Ras1p/Cdc42p/Shk1p complex with Tea1p hints at a molecular pathway explaining how 

microtubules contribute to the proper spatial regulation of actin assembly and polarized 

cell growth. 
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Upstream modulators of Cdc42p 

Cdc42p is activated by at least two GEFs, designated Scd1p or Ral1p [11, 29] and 

Gef1p [16, 41]. The scd1+/ral1+ gene was found in a search for round and sterile 

mutants (shape and conjugation deficiency). In the same study another regulator for 

Scd1p, Scd2p/Ral3p was selected [11, 29]. S. pombe Scd1p is 32% identical to Cdc24p, 

the only GEF for Cdc42p in S. cerevisiae. Moreover, this latter is able to rescue 

conjugation and weakly improve the cell shape of the scd1-1 mutant. Scd1p interacts 

directly with Scd2p; however a complex with Cdc42p was observed only when Scd2p 

was co-expressed, suggesting that Scd2p may bridge and facilitate interactions between 

Cdc42p and its GEF [11]. Ras1p can also enhance the physical interaction between 

Scd1p and Cdc42p in the yeast two-hybrid system [11]. 

Disruption of scd1+ causes deformation of cell shape and inability to mate [11, 29]. 

However, scd1∆ mutants can induce pheromones and sporulate efficiently. It is possible 

that Scd1p might contribute to mating by affecting functions such as cell polarity and 

cytoskeletal organization. Consistent with this hypothesis, Scd1p localizes to the cell 

ends in vegetative cells and to the tip of conjugation tubes in mating cells. Moreover, 

Scd1p also localizes to the cell equator, the nucleus and the spindle [57]. Such a 

dynamic localization suggests that Scd1p can engage a wide variety of activities such as 

the regulation of cell polarity, spindle formation and cytokinesis.  

It has been established that Scd1p activates the Ras1p-Scd1p-Cdc42p-Shk1p signalling 

pathway for apical growth [10]. Interestingly, Scd1p also affects the functioning of 

microtubules. Inactivation of scd1 renders cells hypersensitive to TBZ (thiabendazole), 

which promotes microtubule depolymerization, while mutations in scd1+, together with 

tubulin mutations, block proper spindle formation [57]. Furthermore, scd1+ mutation is 

synthetically lethal with the deletion of tea1+ [89], which localizes to the tips of 

microtubules and to the cell ends [68].  
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Scd1p interacts with a conserved protein complex containing Yin6p and Moe1p to 

affect proper spindle formation and chromosome segregation [15, 126]. Deleting yin6+, 

moe1+ or both produces essentially the same phenotypes: slow growth in the cold and 

inefficient separation of sister chromatids. These abnormalities are exacerbated by 

scd1∆ or ras1∆, causing severe chromosome missegregation and cell death. Yin6p, 

either alone or in cooperation with Ras1p/Scd1p, influences proteasome localization and 

assembly; in consequence, inactivation of Yin6p can lead to the accumulation of mitotic 

regulators affecting cell division and mitotic fidelity [127]. 

Another function of Ras1/Scd1p is to mediate cytokinesis. This is supported by the fact 

that the kinesins Klp5p and Klp6p can form a complex with both Scd1p and Cdc42p.  

Furthermore, inactivation of Klp5/6p, together with inactivation of the Ras/Scd1p 

pathway, leads to mispositioned or fragmented contractile rings [56]. 

Gef1p is another GEF for Cdc42p [16, 41]. gef1+ deletion is viable but causes defects in 

bipolar growth and septum formation [16], and the protein is mainly localized to the cell 

division site, where Scd1p is also seen. Deletions of gef1+ and scd1+ are synthetically 

lethal, generating rounded cells that mimic the phenotype of cdc42+ deletion. Therefore, 

the function of Gef1p and Scd1p to activate Cdc42p at the septation site may be 

indispensable for cell proliferation. Together with Scd1p, Gef1p forms a ring structure, 

which shrinks during cytokinesis [41]. Cdc42p is deposited at the shrinking 

Gef1p/Scd1p ring and is left behind, forming a plaque structure where the septum is 

being formed. It is possible that both GEFs play a key role not only in activating 

Cdc42p through GDP-GTP exchange but also in recruiting Cdc42p to the septation site 

through their affinity for it, although this remains to be confirmed. Accordingly, what is 

the relationship between Cdc42p and the construction of the septum? Cdc42p may 

activate vesicle transport to bring septum materials to the septation site, probably 

through reorganization of cytoskeletal F-actin. Related to the recruitment of Cdc42p at 

the division site, Gef1p also interacts with Hob3p, a protein that belongs to the BAR 
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(Bin-Amphiphysin-Rvs) family of adaptors (P. Coll and P. Perez, personal 

communication). 

Gef1p and Scd1p cannot be substitute for one another in the morphogenetic role [16]. 

However, genetic experiments indicate that Gef1p may act in the same signalling 

pathway as Scd1p (Ras1p-Scd1p-Cdc42p-Shk1p), since overexpression of Gef1p 

suppresses the orb2-34 phenotypes (a non-lethal thermosensitive mutation in the 

essential shk1+ gene). This situation seems to be different from that of S. cerevisiae, 

where Cdc42p is regulated by a single GEF Cdc24p, which controls both apical growth 

and septation [36].  

 

 

The role of Rho1p, Rgf3p, Rgf1p and Rgf2p in maintaining cell integrity 

Cell growth in S. pombe is a process necessarily related to cell wall biogenesis, for 

reviews, see [14, 22, 109]. The cell wall is the essential cellular boundary controlling all 

communications with the extracellular world. Because of its mechanical strength, it 

allows cells to withstand turgor pressure and consequently prevents cell lysis.  In fission 

yeast, the cell wall mainly consists of three polysaccharides -β(1,3)-glucan, α(1,3)-

glucan, and galactomannoproteins- all of which form a large complex. Their 

coordinated synthesis and degradation is essential to ensure cell integrity during 

morphological changes [22]. 

Cell growth transitions are correlated with changes in the actin cytoskeleton. The 

growing ends of fission yeast contain polarized cables and actin patches [30, 63], while 

at cell division, actin patches disappear from the poles and the cytokinetic actomyosin 

ring (CAR) forms at the cell equator from a combination of the reorganization of 

interphase cables and de novo actin assembly [1, 90]. The relationship between actin 

and cell wall deposition at the cell poles and equator is still not well understood [109]. 

Actin cables are bundles of actin filaments nucleated by the formin For3p [26, 82]. 
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Cables are thought to serve as tracks for the delivery of myosin V-driven vesicles 

towards the cell ends or the equator for cell growth.  In the absence of Myo52 (type V 

myosin), the cell wall α–glucan synthase Mok1p is delocalized and cell wall formation 

is aberrant [76, 77, 121]. Accordingly, it has been shown recently that directionality of 

F-actin cables changes during the cell cycle; most F-actin barbed end faced the cell tip 

during interphase whereas most F-actins in the cables were oriented such that the barbed 

end faced the mid-region of the cell during mitosis. These orientations of F-actin would 

ensure proper transport of materials to growing sites [45]. Actin patches are sites of 

Arp2/3-mediated actin polymerization and are believed to mediate the internalization of 

endocytic vesicles moving inward from the cell tips [32, 91]. Whether such patches play 

any role in cell wall biosynthesis remains to be clarified. In regenerating protoplasts, 

patch localization coincides precisely with the active sites of cell wall deposition [50], 

and cortical actin is required for the localization of at least two classes of enzymes 

involved in cell wall synthesis: α-glucan synthase [46, 121] and β–glucan synthase [18].  

Rho1p provides a link between polarized actin and the cell wall biosynthesis playing 

multifunctional roles upon interacting with its targets [3, 4, 80]. Rho1p functions 

downstream the polarity marker Tea1p [3], and localizes to places of active cell growth, 

both ends and the septum. Depletion for Rho1p activity in growing cells causes the 

disappearance of polymerized actin, while an increase in Rho1p expression produces 

larger actin dots, randomly distributed throughout the cell [3, 80]. A proper balance of 

Rho1 activity is important to regulate the actin cytoskeleton; however, to date no likely 

candidate to mediate changes in the actin cytoskeleton has been found. Formins are 

required for actin nucleation to form cables and are activated by binding to the Rho 

family GTPases [117]. Thus, they are likely candidates as mediators of changes in the 

actin cytoskeleton. S. pombe has three formins (Cdc12p, Fus1p and For3p), each of 

which nucleates a distinct actin structure [12, 26, 82, 93]. Other than the interaction 

between For3p with Rho3p, it is not yet clear whether any of the formins interact with 

 12



Rho1p [82]. No reports relating Rho1p and the Arp2/3 complex have been found in the 

literature so far [54, 108]. 

 

Downstream effectors of Rho1p 

The final phenotype of cells devoid of Rho1p activity is lysis, mainly during cytokinesis 

but also at other stages of the morphogenetic cycle, indicating that Rho1p is required to 

maintain cell integrity (Figure 3B). In fact, the best characterize effectors of Rho1p are 

enzymes involved in cell wall synthesis: β(1,3)-glucan synthase (GS) [4] and the PKC-

type proteins Pck1p and Pck2p [5, 103]. 

β(1,3)-glucan is the first polymer to be synthesized in S. pombe regenerating protoplasts  

[85, 86] and in the spore wall [67], and hence the regulation of this polysaccharide may 

be a key step in the sequential assembly of the other cell wall components. The 

enzymatic system that catalyzes the synthesis of this polymer is β(1,3)-glucan synthase 

(GS), a multimeric enzyme composed by at least two fractions: the catalytic moiety of 

the enzyme and the regulatory component. The catalytic subunit of GS is encoded by 

the family of the beta glucan synthase bgs genes (bgs1+, bgs2+, bgs3+ and bgs4+) all of 

them code for proteins essential at different stages in the cellular life cycle [17, 18, 52, 

58, 59, 66, 67]. Rho1p directly stimulates GS and glucan synthesis in its GTP-bound 

prenylated form, providing a rationale for an understanding of the mechanism through 

which the cell can switch β(1,3)-glucan synthesis on and off by interconverting the GDP 

and GTP forms of Rho1p [4].  

However, many questions remain unanswered. How does Rho1p regulate these 4 

catalytic subunits? Rho1p travels to growth sites, the poles and the septum to meet 

Bgs1p, Bgs3p and Bgs4p. It is known that the three GS catalytic subunits localize to the 

poles during tip elongation at to the septum during cytokinesis. All of them are large 

integral membrane proteins whose levels do not fluctuate along the cell cycle [58, 66]. 

Bgs1p is a putative β(1,3)-glucan synthase required for the synthesis of the primary 
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septum and for constriction of the actomyosin ring (J.C. Ribas, personal communication, 

[58]), while Bgs3p and Bgs4p are good candidates for the synthesis of the β(1,3)-glucan 

of the surrounding cell wall and the secondary septum, which is similar in composition 

[17, 66]. Is Bgs regulation controlled by local or temporal activation of Rho1p or both? 

Does each GS need a different input to be activated?   

GTP-bound Rho1p also interacts with both Pck1p and Pck2p. In this interaction, Rho1p 

seems to stabilise the kinases, increasing their concentration in the growing areas of the 

cell [2, 103].  pck1∆ mutants display a lytic phenotype and have a regular shape, while 

pck2∆ mutants appeared miss-shaped and bent, suggesting that these two protein 

kinases regulate cell morphology in different ways. Both mutants display slightly 

different cell wall defects; pck1∆, but not pck2∆, cells are hypersensitive to 

Echinocandin (Ech) [5] and pck2∆ mutants show hypersensitivity to lytic enzymes 

[112]. Pck2p is essential for the cortical localization of Mok1p (the α–glucan synthase) 

and is also necessary to regenerate the cell wall when protoplast are incubated in 

osmotically stabilized liquid medium [46, 49]. Moreover, Pck1p and Pck2p may be 

involved in reorganising the actin cytoskeleton, affecting polarity or secretion, i.e., 

processes in which Pkc1p, its counterpart in S. cerevisiae, has been implicated [19, 39]. 

Interestingly, the phenotype observed following combined depletion of both pck1+ and 

pck2+ is very similar to that observed in cells depleted for Rho1p [2]. 

 

 

Upstream modulators of Rho1p 

Rho1p is activated by three GEFs called Rgf1p, Rgf2p and Rgf3p (for rho gef) [31, 42, 

75, 78, 111]. All of these Rgfs have similar molecular structures to the budding yeast 

Rho1p-GEFs Rom1p and Rom2p [88, 104] (Figure 2). 
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 rgf3+ was first cloned by complementation of a mutant (ehs2-1) hypersensitive to drugs 

that interfere with cell wall biosynthesis [111], and was also found to complement a 

lad1-1 mutation that undergoes cell lysis specifically at cell division [75].  

rgf3+ is essential for cell viability and depletion of Rgf3p causes cell lysis and elicits 

phenotypes very similar to those of cells devoid of Rho1 or Pck1/2 activity [5]. Rgf3p 

expression peaks during septation in an Ace2p-dependent manner [92, 99] and the 

protein exclusively localizes to the medial region of the cell. Early on in mitosis, Rgf3p 

forms a ring-like structure that contracts to a dot during the latest stages, while the 

Rho1p signal is delayed with respect to Rgf3p and accumulates at the cell division site, 

first as a ring and later on as a plate-like structure (our unpublished observation, [78]). 

In this context, there are two possible, not mutually exclusive mechanisms of action for 

Rgf3p. It has been shown that Rgf3p activates glucan synthase GS and raises the 

amount of cell wall β(1,3)-glucan [111]. Thus, it is probable that Rgf3p stimulates the 

Rho1p-mediated activation of a glucan synthase activity that would be crucial for proper 

septum functioning. Additionally, Rgf3p could be necessary to pull Rho1p, recruiting it 

to the first line of septum assembly.  

The role of Rho proteins in cytokinesis has been clearly established [94]. In budding 

yeast, the Polo-like kinase Cdc5p is required for the recruitment of Rho GEFs to the 

division site that in turn is necessary for recruitment and activation of Rho1p [128]. 

Rho1p regulates formin-mediated contractile ring assembly [113], in consequence a 

failure in the mechanism of Rho1p regulation causes a profound defect in CAR 

assembly.  In fission yeast, the formin Cdc12p is also required for contractile ring 

formation [1, 12]; however, Cdc12p does not have an RBD (Rho binding domain) and 

does not bind any of the Rho proteins [78].  

Rgf3p localization to the medial ring requires actin polymerization and Cdc12p but 

seems to be independent of SIN [Septation Initiation Network] function (our 

unpublished observations, [75]). However, it is not yet resolved whether Rgf3p function 
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can be regulated by the SIN. The SIN pathway in S. pombe is required for actomyosin 

ring stability (reviewed by [35, 51, 107]). It has recently been shown that SIN might 

also function to regulate cell wall assembly at the septum [44]. This is based on the fact 

that several mutants of the SIN pathway lyse at low restrictive temperatures, with a 

phenotype similar to the one seen in rho1∆ and rgf3 mutants. Lysis occurs after ring 

contraction and septum formation, during the process of septum cleavage, and can be 

rescued by overexpression of Rho1p. Thus, it is possible that the SIN targets Rho1p as 

one of its downstream effectors by activating Rgf3p [44]. 

The lysis caused by Rho1p depletion is not prevented by an osmotic stabilizer and 

occurs mainly after cytokinesis, probably because correct cell wall assembly is essential 

at that point of the cell cycle [3]. However, Rgf3p depletion is prevented by 1.2 M 

sorbitol, suggesting that in the absence of Rgf3p, but in the presence of an osmotic 

support, Rho1p could be activated by different stimuli. In fact, two other GEFs act on 

Rho1p: Rgf1 and Rgf2p [111]. 

Rgf1p specifically regulates Rho1p during polarized growth [31]. Rgf1p localizes to the 

cell tips in interphase cells and at the division septum in mitotic cells. During septum 

formation Rgf1p is distributed as a division plate that becomes double just before cell 

separation [31, 75, 78]. rgf1∆ cells are defective in cell integrity and lyse at one of the 

poles with a phenotype similar to that of cells devoid of Rho1p. Additionally, rgf1∆ 

cells show a defect in the actin reorganization required for the transition from 

monopolar to bipolar growth [31].  

In S. pombe, Rho1p signalling is required to maintain cell integrity, regulating the 

biosynthesis of β(1,3)-glucan and the cell wall in general, and it is also required for 

actin polymerization. Rgf1p activates the β-GS complex containing the catalytic subunit 

Bgs4p and is involved in the activation of growth at the second end, a transition that 

requires actin reorganization [31]. Interestingly, while other mutants defective in bipolar 

growth, tea1∆, tea4∆, bud6∆, grow at wild-type rates a novel aspect of the rgf1∆ is that 
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its growth rate and viability are compromised. This is probably because its failure to 

initiate bipolar growth coincides with cell lysis, thus coupling a growth polarity 

transition with cell wall biosynthesis [31].  

Rgf1p localization to the poles depends on actin (our unpublished observations), and on 

phosphoinositides (phosphatidylinositol 4,5-bisphosphate) [20]. Moreover, Tea1p is 

also required for Rgf1p to be recruited to the new end [31]. During NETO, the 

formation of a protein complex that includes Tea1p, Tea4p and For3p, called the 

“polarisome” is necessary and sufficient for the establishment of cell polarity and 

localized actin assembly at the new ends. Whether Rgf1p is related to this complex will 

be a challenge for future investigation.  

Depletion of Rgf3p in a haploid strain deleted for rgf1+ produces viable cells in the 

presence of sorbitol, thus suggesting that Rgf2p or other activators may be acting on 

Rho1p (our unpublished observations). In fact, Mutoh et al. [77] have shown that Rgf2p 

also interacts with Rho1p. Although rgf2∆ cells are apparently very similar to wild-type 

cells, deletion of both genes, rgf1+ and rgf2+, is synthetically lethal [75, 78]. Moreover, 

the growth and morphology defects of rgf1∆ cells are suppressed by over-expression of 

rgf2+, suggesting that both proteins are functionally redundant during vegetative growth 

[78]. In addition, Rgf2p may perform an essential function during the sporulation 

process. We found that rgf2∆ zygotes produced immature ascospores that were unable 

to germinate (our unpublished data). This phenotype is similar to the one seen in spores 

lacking bgs2+, the sporulation-specific GS catalytic subunit [67], suggesting a role for 

Rgf2p in the spore wall maturation process. 

Why does Rho1p have multiple GEFs? An attractive hypothesis is that each GEF could 

determine the downstream signalling specificity of Rho GTPases. This has been 

suggested for Ras1p signalling in fission yeast, where two GEFs, Ste6p and Efc25p, 

differentially regulate two Ras pathways [89]. Rgf1p would specifically activate the 

Rho1-GS complex during the transition from monopolar to bipolar growth. Rgf2p may 
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share an essential function with Rgf1p, although its contribution has not yet been 

defined. Rgf3p might be necessary to coordinate cell wall biosynthesis with the 

septation machinery in order to maintain cell integrity [111]. Double-mutant and 

phenotypic complementation results hint that Rgf1p and Rgf3p are not functionally 

exchangeable. Moreover, the localization patterns of Rgf1p and Rgf3p are very different, 

suggesting non-overlapping functions. The identification of Rho1-GEF interacting 

proteins will be necessary to understand how Rho1p regulates cell integrity. The genetic 

tools available in fission yeast and genome sequencing and deletion programs should be 

of great help in the near future. 
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Figure legends 

Figure.1. A biochemical model of Rho guanine nucleotide exchange factor (RhoGEF) 

function in the signalling scheme of Rho GTPases. The cycle between the active, GTP-

bound, and the inactive, GDP-bound state of Rho GTPases is regulated by three classes 

of proteins. Guanine nucleotide-dissociation inhibitors (GDIs) mainly bind to the switch 
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regions and the C-terminal isoprenil moiety (black wavy line) of Rho GTPases to 

sequester them in the cytosol. GEFs also bind to the switch regions to stabilize 

nucleotide-depleted GTPases. However, owing to the relatively high concentration of 

intracellular GTP, nucleotide-depleted complexes rapidly dissociate into GTP-bound 

GTPases and free GEFs. When they are GTP-bound, Rho GTPases regulate the activity 

of their binding partners, or effectors, to promote cellular responses that usually 

influence the organization of the actin cytoskeleton or the expression levels of several 

genes. GTPase-activating proteins (GAPs) stimulate the intrinsic hydrolytic capacity of 

Rho GTPases to promote GDP-bound forms and terminate signalling. Pi inorganic 

phosphate. 

 

Figure. 2. Multifunctional domain features of Rho guanine nucleotide exchange factors 

(GEFs) family member analysed by the SMART program ([55]; http://smart.embl.de/). 

Domains are indicated: CNH, citron homology domain. This acts as a regulatory 

domain and could be involved in macromolecular interactions; RhoGEF (DH domain), 

domain conserved among GEFs for Rho/Rac/Cdc42-like GTPases; PH, pleckstrin 

homology domain; DEP, domain of unknown function present in signalling proteins 

that also contain the PH, RasGEF, RhoGEF, RhoGAP, RGS, PDZ domains; PB1 

domain, the Phox and Bem1p domain. PB1 domain function is the formation of PB1 

domain heterodimers; CH, calponin homology domain, found as tandem repeats in 

proteins that cross-link actin filaments (such as fimbrin, spectrin and alpha-actinin) or 

link the actin cytoskeleton to intermediate filaments (such as plectin). 

 

 

Figure.3. Roles of Rho GEFs in morphogenesis. (A) Fission yeast cell expansion is 

focused to particular regions. Cdc42p is recruited to the sites of polarized growth and is 

activated through its guanine nucleotide exchange factors Scd1p and Gef1p. Scd1p and 
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Gef1p activate the Ras1p-Scd1p-Cdc42p-Shk1p signalling pathway for apical growth 

and also to mediate cytokinesis. Mutations that render Cdc42p inactive produce round 

and misshaped cells, indicating that Cdc42p is involved in controlling polarized cell 

growth. (B) Once polarity has been established, Rho1p is recruited to the growth or the 

division site, where it is activated by three GEFs, Rgf3p, Rgf1p and Rgf2p, each with a 

different localization. Mutations in those GEFs or failure to activate Rho1p produces 

shrunk or lysed cells. Thus, the main role of the Rho1p GTPase is to preserve cell 

integrity, probably by coupling actin organization and secretion to cell wall synthesis.  
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