SIDUES OF A BRANCHED NONYL PHENOL LYMNAEA STAGINALIS L.

Lenoir', G.F. Severin', A. Behecht', K. Günther', and A. Kettrup'

F-Forschungszentrum für Umwelt und Gesundheit, D-85764 Neuhemerg, München, Germany; +49 089 3187 3371, e-mail: schirmann@fzk.de
alkalische Chemie, Forschungszentrum Jülich, 5 Jülich, Germany;
eno University, P.O. Box 333 Maseno, Kenya.

(1) are perceived to be more resistant to biodegradation have more estrogen-like toxicity behaviour than the (2). Some of them have also been identified to exist in compound mixture than the straight chain isomers. The metabolism of branched isomers in aquatic organisms is the mechanisms of toxicity of NP. A single branched (yl)-phenol, was synthesized in the laboratory and used in and metabolism in Lymnaea stagnalis L., following water over a period of 8 days at an average exposure (ppb). The results obtained clearly showed the transfer organs of the organism following uptake in water and life organs, especially in the heart and in the digestive gland/albumen. (BAF) values of 1106 and 637, respectively, were obtained by whole tissue analysis. The high concentration and in the heart shows that their cell membranes are more than the other organs. The accumulation of the residues in the heart and in the gonads (BAF), the digestive gland which is the major site of digestive age and excretion of fine particulate materials absorbs dosed toxicants from circulating blood whereas the may correspond to its central function which involves patients and excretory material in the blood.

HPLC and GC-MS after digestion with Pankreatin hydroxylated metabolite in the digestive gland/albumen in addition to the original isomer. A similar metabolite is also detected in faeces. Further in vitro metabolism understanding its biotransformation and toxicity in