
3
+ + H2 → H2 + H3

+ reaction. The electric dipole moment is calculated at the
level of coupled-cluster theory with single and double excitations and fitted in nine dimensions to an analytical
function. With it, the infrared predissociation spectrum is simulated, yielding a reasonable agreement with recent
measurements.
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I. INTRODUCTION

H3
+ plays a central role in astrophysics as the most abundant

ion in space and as the universal protonator [1–4], so that it
is frequently used as a spectroscopic probe of the dynamics
of ionospheres of outer planets [5,6]. It is then important to
know in detail the rate constants of the collisions in which H3

+
participates. Models to estimate the concentration of the cation,
as well as its vibrational structure and isotopic substituents,
are used to follow the dynamics of the system as a function
of solar fluence [7

D+ +
H2 proton-deuteron exchange reaction, and isotopic variants.
These reactions have been studied experimentally [16–21].
There are complementary spectroscopic H5

+ + hν → H3
+ +

H2 measurements [22–25] which provide information about
the H5

+ complex structure, energetics, and fragmentation
dynamics. These last processes can be viewed as half col-
lisions, allowing a complementary study of the density of
states involved in (full) collisions. Of particular relevance is
the determination of widths and density of the resonances
appearing at low energy, to justify the formation of long-lived
complexes supporting or not a statistical description of the
reaction.

From the theoretical point of view, there are many studies
characterizing this system at fixed geometries [26–34]. Several

*Corresponding author: octavio.roncero@csic.es

global potential-energy surfaces (PESs) of increasing accuracy
[35–41] have emerged in the last years. An energy diagram for
this system is shown in Fig. 1. Since the binding energy is very
low, the system becomes very anharmonic and delocalized.
In addition, the barrier for the exchange reaction is also
below the zero-point energy, so that all identical nuclei can
permute. The permutation symmetry constraints imposed by
nuclear-spin angular momenta are important, as first treated by
Quack [9] and later on by Oka [10], which were experimentally
confirmed by measurements in plasmas at 300–500 K [13,42].
All this makes it extremely difficult to perform complete
quantum calculations including the twelve degrees of freedom
(nine vibrational and three rotational), considering the whole
permutation group of symmetry. For this aim, proper coordi-
nates should be designed, like the democratic hyperspherical
coordinates developed recently by Kuppermann [43]. The use
of these coordinates requires the evaluation of the hyper-
spherical harmonics, still in development [44,45]. Another
set of symmetric coordinates was developed to study the
spectroscopy of H5

+ and isotopomers [36,46,47], with respect
to an equilibrium geometry. These coordinates were used
recently to study the predissociation dynamics [48] using a
reduced-dimensional model in an adiabatic approximation,
yielding very low predissociation rates.

One of the first simulations of the exchange reaction was
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FIG. 1. (Color online) Energy diagram of H5
+, obtained with the

PES of Ref. [40], using the zero-point energies calculated in this work
using the 7D model. Energies are in cm−1.

reaction been reported [49], for state-selected initial states, not
taking into account the permutation symmetry. It was found
that the reaction occurs without activation energy, showing
many resonant structures. The reaction probabilities were not
sensitive to the initial vibrational excitation of H3

+, but initial
rotational excitation can produce an important enhancement of
the reaction. The thermal rate coefficients obtained provided
a semiquantitative agreement with experimental data. All this
demonstrates the need of quantum studies to get deeper insight
into the reaction dynamics for this system.

Recently a shared-proton mode was used to describe the
infrared predissociation spectra of H5

+ and D5
+ [25]. The

simulations were done in full dimensions at zero total angular
momentum [25], using the reaction path Hamiltonian version
of the multimode method [50,51], leading to reasonable but
not completely satisfactory agreement with the experimental
data. The discrepancies with the experimental results [25]
could be attributed to the use of a normal-mode basis set to
describe large-amplitude motions, without taking into account
the predissociation dynamics of the excited levels reached
by infrared absorption. Due to the difficulty of including
full dimensions and predissociation dynamics, recently a
simple shared-proton model has been developed [52] using
two coordinates describing the motion of the central proton
between two H2 molecules, providing a reasonable physical
assignment of the experimental bands [25]. In this work
this simple model is extended to more degrees of freedom,
using the same PES [40], with the aim of characterizing the
resonances and the main vibrations involved. The electric
dipole moment is calculated at coupled-cluster ab initio level
and fitted to an analytical function. Calculations include a
configuration region which is broad enough to describe the
initial bound state. The vibrational levels are calculated for
different reduced-dimensional models for zero total angular
momentum, with an increasing number of degrees of freedom,
up to seven, using an iterative Lanczos method. Finally,
the predissociation dynamics is studied using a wave-packet
method, characterizing the resonances and simulating in-
frared predissociation spectra, using a three-dimensional (3D)
shared-proton model.

The paper is organized as follows. Section II describes the
theoretical methods used to study predissociation dynamics
and bound states. Section III describes the calculation and
fit of the electric dipole moment. Section IV is devoted to
explanation of the vibrational structure as a function of the
coordinates, considering several reduced-dimensional models,
from two to seven dimensions, and the dissociation energy.
In Sec. V are presented the predissociation dynamics and
the spectra, and they are compared to the experimental data.
Finally, Sec. VI collects the conclusions of this work.

II. THEORETICAL METHODOLOGY

For the study of the vibrational motions and predisso-
ciation dynamics of H5

+, we consider reduced-dimensional
approaches using the coordinates shown in Fig. 2. In these
coordinates, a central H nucleus is at the origin in between
two H2 molecules. These coordinates are not Jacobi-like, and
there is a kinetic coupling term between R1 and R2 [53,54].
We define a body-fixed frame with the z axis parallel to the
R1 vector, and R2 lying in the x-z plane. The Hamiltonian for
zero total angular momentum, J = 0, can be written as

Ĥ = ĥ1 + ĥ2 + T̂R1 + T̂R2 +
�

h̄2

2µ1R
2
1

+ h̄2

2µ2R
2
2
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+ T̂12 + V, (1)

where V is the PES of Ref. [40], µi are reduced masses
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FIG. 2. (Color online) Coordinates used to describe H5
+. r1 and

r2 are the internuclear vectors between atoms 1 and 2 and 3 and
4, respectively. R1 and R2 are the vectors joining atom 0 with the
center of mass of diatoms 12 and 34, respectively. γ is the angle
between R1 and R2, and θi and φi are the polar angles of vector ri .
For simplicity, in the figure φi are set to zero, so that all the atoms are
in the x-z body-fixed frame. The global minimum well configuration
corresponds to R1 = 2.4190 a.u., R2 = 1.6933 a.u., r1 = 1.450 a.u.,
r2 = 1.532 a.u., γ = π , θ1 = θ2 = π/2, and φ1 − φ2 = π/2.
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The Hamiltonian matrix elements are calculated on the fly,
without storing them. The eigenstates are obtained iteratively
using the conjugate gradient method [63,64] in an efficient
way. Due to the high-dimension problem we are dealing with,
the size of the matrices is rather big. For this reason the code has
been parallelized, in this case on the ri , γ , and θi coordinates.

A. Predissociation spectra

In the present treatment only zero total angular momentum,
J = 0, is considered. We approximate the electric dipole
transition operator simply as the pure electric dipole moment
for the ground electronic state of the system, i.e.,

d · e =
�

p,q

(−1)p e−p D1∗
pq(α,β,φ) dq(r1,r2,R1,R2,γ )

≈
�

q

dq(r1,r2,R1,R2,γ ), (8)

where dq is the q projection of the electric dipole moment in
the body-fixed frame defined above, and is expanded as

dq(r1,r2,R1,R2,γ ) =
�

λ� |q|
dqλ(r1,r2,R1,R2)Pλq(γ ). (9)

In the expression above, e is the polarization vector of the
incident light expressed in a space-fixed reference frame, with
projection ep. D1∗

pq(α,β,φ) are Wigner rotation matrices [55]
which relate the body-fixed and space-fixed frames.

For purely bound-bound transitions, the oscillator strength
is then calculated as

Ik,k′ ∝ hν
�

q

�
� ��	

k

�
�dq

�
��	′

k′
	��2

. (10)

Since this system is very weakly bound, it is possible to
produce its fragmentation into H2 + H3

+ by infrared transi-
tions. To account for this process, wave-packet calculations
are performed using a modified real Chebyshev propagator
[65–71]. The initial wave packet is defined as

�	′
q,k(t = 0) = dq�

	
k , (11)

where �	
k is the ground bound state of the system, q = 0,±1,

and 	′ = 	 + q. The wave packet is expanded as in Eq. (3),
so that the corresponding �

qk	′
v1,v2,
,ν1,ν2

(R1,R2,θ1,θ2,t) are
propagated by solving a linear system of coupled differential
equations similar to that written for the bound states in Eq. (4).
The main difference is that at each iteration the wave packet
is multiplied by an absorption function defined as e−α(Ri−Rabs

i )2

for Ri > Rabs
i and 1 elsewhere (with i = 1 and 2), where Rabs

i

is the distance in which the wave packet starts being absorbed.
The absorption spectrum is then defined as

Iqk(E) = hν

π�H



1 − E2
s

�

n

(2 − δn0) cos(−n arccos Es)

× �
�	′

qk (n = 0)
�
��	′

qk (n)
	
e−n/τ , (12)

where �	′
qk (n) corresponds to the nth Chebyshev it-

eration [�	′
qk (n = 0) = �	′

qk (t = 0)], Es = (E − E0)/�H ,
E0 = (Emax + Emin)/2, and �H = (Emax − Emin)/2, with
Emin (Emax) being the minimum (maximum) energy of the
Hamiltonian represented in the basis set used. The factor

e−n/τ is introduced to eliminate the oscillations appearing
from the contribution of bound states after a finite number
of iterations. This factor produces an artificial broadening of
the bound states and resonances. The broadening is governed
by the parameter τ , which depends on the maximum number
of iteration considered. This broadening is negligible if
sufficiently high τ and Chebyshev iterations are considered.
Here a τ value of 10 000–20 000 is typically assumed, for
100 000 Chebyshev iterations.

The total spectrum, in Eq. (12), gives all the absorption
contribution. The bound part of it can be eliminated by
projecting out the initial wave packet in the obtained bound
states, removing their contribution. This has been done for
the lower-dimensional models described below, but for higher
dimensions this procedure would involve the calculation of
several hundreds of states, which has the problem of the high
requirement of CPU time and numerical errors. Instead, we
calculate the flux of fragments in the two dissociative channels
considered, for a sufficiently long Ri = R∞

i distance. This is
accomplished, as usual in reactive scattering, as [70]

PR(E) ∝
�

i

�
dτi

2π

µiπ

× Im

�


 �	′∗
qk

�
R∞

i ,E
� d�	′

qk (Ri,E)

dRi

�
�
�
�
�
Ri=R∞

i

�

� , (13)

where it is done for the two coordinates Ri (i = 1,2) and the
integration is performed over all the coordinates except Ri and

�	′
qk (E) ∝ 1

π�H



1 − E2
s

�

n

(2 − δn0)

× cos(−n arccos Es)�
	′
qk (n). (14)

These wave functions, at selected energies, have as their main
contribution the energy of bound states, which can be used for
the assignment of resonances [72–74].

The assignment of different peaks obtained by wave-packet
calculations can be done either by comparing with the closest
discretized bound state or by performing a pseudospectral
analysis of the wave packet at given energies, calculating the
wave function at energy E as indicated in Eq. (14).

B. Reduced-dimensional models

H5
+ is weakly bound and very anharmonic so large grids

and/or basis sets are required to converge the bound states,
and even more to converge the wave-packet calculations.
It is therefore convenient to perform reduced-dimensional
calculations, which, in addition, may help to characterize the
vibrational structure of levels and spectra.

The most floppy motion is that associated with φ1 and
φ2. In fact, for the equilibrium geometry with γ = π , the
system behaves as a diatom + diatom system, and the potential
depends only on the φ1 − φ2 difference, as shown in Fig. 3 by
freezing all the degrees of freedom except φ1 and φ2. The
potential as a function of φ1 − φ2 presents a very shallow well
of 90 cm−1 for φ1 − φ2 = π/2, below the top of the barrier
appearing at φ1 − φ2 = 0,π . The ground monodimensional
bound state is only 44 cm−1 above the minimum, and it
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FIG. 3. (Color online) Bottom panel: Potential as a function of
φ1 − φ2, at the nuclear configuration of the global minimum with r1 =
0.767 Å, r2 = 0.8170 Å, R1 = 1.272 67 Å, R2 = 0.895 753 Å, γ =
π , θ1 = θ2 = π/2. Middle panel: Monodimensional eigenfunction,
with energy 44 cm−1. Top panel: Electric dipole moments.

is rather delocalized, as can be seen in Fig. 3. For the
equilibrium geometry φ1 + φ2 behaves as a free rotation
coordinate, with very low kinetic energy. Thus the inclusion
of this mode introduces a high density of states, making
the calculation of bound states and resonances extremely
complicated. Moreover, the electric dipole moment is rather
flat in these two angles, so that infrared excitation will not
excite these coordinates, which behave just as spectators. For
all these reasons, in the calculations presented below these
two angles will be frozen to φ1 = φ2 = 0, whose motion
corresponds to the so-called internal propellerlike rotation in
previous studies [36,46,75], where the same approximation
was made. To maintain the formalism it will be considered
that the potential is isotropic as a function of these two angles
and equal to the value of the potential for φ1 = φ2 = 0.

In what follows the reduced-dimensional models are built
as follows:

(a) 2D: (R1,R2) in which all angles are frozen at their
equilibrium values, and r1,r2 minimize the potential for each
R1,R2 distance. This is equivalent to the 2D treatment used
before [52], in which these coordinates were further modified
to account for the symmetric and antisymmetric vibrations.
Here we keep these coordinates to progressively include more
dimensions in the model.

(b) 3D: (R1,R2,γ ) as in the previous case but adding
the angle γ described in a basis of normalized Legendre
polynomials.

(c) 4D: (R1,R2,r1,r2) in which ri are described in a
vibrational basis set.

(d) 5D: (R1,R2,r1,r2,γ ) as in the previous one but including
a Legendre basis set to describe γ .

(e) 7D: (R1,R2,r1,r2,θ1,θ2,γ ).

When some coordinate is frozen, only the grid point
corresponding to the equilibrium geometry is considered,
with the corresponding kinetic-energy operator equal to zero.
For the angle γ , the potential is made isotropic with the
value at γ = π and the kinetic coupling term, in Eq. (5) is
approximated by

〈
|t̂12|
′〉 ≈ ∂2

∂R1∂R2
δ

′ . (15)

III. ELECTRIC DIPOLE

The electric dipole moment is needed for the calculation
of the spectrum and provides a good description of the charge
distribution of H5

+. Asymptotically, the H3
+ fragment presents

a 1/3 positive charge on each nucleus. Using a simplistic
model, one may think that when H2 approaches H3

+, the H
atom in the middle has to take most of the charge in order to
produce the proton exchange reaction H3

+ + H2 → H2 + H3
+.

As an example, the electronic dipole as a function of R1 is
shown in Fig. 4, for r1 = r2 = 1.44 a.u., θ1 = θ2 = π/2, φ1 =
φ2 = 0, γ = π , and R2 = 6.0 − R1 a.u., and referred to the
center of mass of the whole system. At this geometry, only
the z component of the dipole moment is nonzero. When the
proton is at the same distance between the two H2 molecules,
with R1 = 3 a.u., it is also at the center of mass of the system
and the dz component becomes zero.

The description of the charge distribution can be done
using the diatomics-in-molecules (DIM) and triatomics-in-
molecules (TRIM) models [40]. In these methods, an orbital
basis set is considered with one 1s function on four of the nuclei
and a fifth one with no electron. Five of these orbital functions
symmetrically distributed are considered, combined with two
singlet electronic spin functions. These models are also used
to represent the electric dipole moment, as has already been
done for collinear H3

+ [76]. In the TRIM spin-orbital basis set,
the matrix representation of the dipole moment d is diagonal.
This diagonal matrix is transformed to the electronic adiabatic
representation using the TRIM eigenvector matrix [76]. The
nondiagonal terms of the electric dipole in the final adiabatic
representation provide information about the electric dipole
moment responsible for electronic transitions, which are not
of interest in this work. The diagonal terms provide the electric
dipole, in particular that of interest here corresponding to
the ground electronic state. The ground TRIM eigenvector
provides the weight for each of the ten basis set functions,
associated with an electron hole in one of the nuclei, providing
a simple way to assign the charge of each hydrogen atom, and
thus the electric dipole, as shown in Fig. 4.

The TRIM dipole moment is rather good in the asymptotes,
and presents the same behavior as the one from ab initio
coupled-cluster theory with single and double excitations
(CCSD). In addition, the change of sign, occurring when the
central atom 0 is in the neighborhood of the center of mass,
is well reproduced. The slope of the TRIM dipole moment is
slightly different from the CCSD one, as shown in the bottom
panel of Fig. 4. Looking at the charges obtained with the
TRIM model, in the top panel of Fig. 4, it is clearly seen
that for R1 ≈ 1 a.u. (R2 = 5 a.u.), atoms 0, 1, and 2 have the
same charges, corresponding to H3

+, while for R1 ≈ 5 a.u.
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states. In fact, the ZPE is above the asymptotic potential-energy
value, what makes the wave functions very delocalized. The
harmonic approximation does not work well in this situation:
the calculated harmonic ZPE is 7652 cm−1, higher than the
one reported here, 7167 cm−1, which includes anharmonic
effects. The analysis of the vibrations is done by comparing
the first vibrational levels for different reduced-dimensionality
models, referred to the ground-state vibrational level, listed
in Table II. The 7D eigenvalues present a progression close
to those reported previously using another PES and sym-
metric coordinates [75]. There are deviations of the order of
100 cm−1, which is considered satisfactory, since the potentials
are different, and the difference between the ZPE values is
≈250 cm−1. Because of the anharmonicity of the system the
energies are very strongly dependent on the coordinates used,
especially when any of them is frozen. The close analogy
between the vibrational progressions obtained in the 3D, 5D,
and 7D models indicates that the 3D model already catches
some of the most important ingredients of the spectrum. These
dimensions correspond to a proton-shared model [52], with
a central proton vibrating in between the two H2 subunits,
producing changes in the electric dipole responsible for the
transitions.

For the analysis of bound states we use two sets of
coordinates, those used for the calculations and introduced in
Fig. 2, and hyperspherical coordinates. These last coordinates
are defined as ρ =

√
R2

1 + R2
2 and ξ = arctan(R1/R2), and

are directly associated with the symmetric and antisymmetric
stretching vibrations (s,a), related to the coordinates S1(A+

1 )
and S3(B+

2 ) defined in Refs. [36,46,48]. These hyperspherical
coordinates are appropriate for the assignment of the bound
states, as are those used before in the 2D model of Ref. [52],
leading to a rather similar description. Thus, the amplitude
densities for the five first 3D vibrational states, shown in Fig. 7,
are assigned to a given (s,a,b) set of quantum numbers. s and
a correspond to the symmetric and antisymmetric stretching
motions, and b refers to bending motion associated with γ .
These levels present a clear separation between even and odd
a values, with a central node at ξ = π/4.

The first excited state corresponds to an excitation of
the antisymmetric stretch, a = 1, vibration which is directly
related to dissociation. The second and third excited bound
states (marked with asterisks in the figure) are already
strongly mixed. They can be approximately assigned to the
first excitation of the symmetric mode, s = 1, and the first
excitation of the bending mode, b = 1. These two bound
states present a large amplitude for R2 = 5 a.u. and γ = π/6,
a configuration which corresponds to one of the minima in
the potential plotted on Fig. 6. This minimum is assigned to
the configuration where the central atom is 2 instead of 0. The
amplitude is very delocalized in the γ coordinate, showing that
at only 500–600 cm−1 the H3

+ subunit can rotate within the
whole complex. This allows any one of the H of H3

+ to be the
central atom. This motion is associated with the scrambling
mechanism [20] in collisions, in which any H atom can be
exchanged. Finally, the fifth bound state is assigned to an
excitation of the symmetric and antisymmetric stretches. We
can conclude that the lower-frequency vibrations correspond
to the motion of the central atom. The motions of the two H2
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FIG. 7. (Color online) Contour plots of the wave functions of the
first five 3D levels shown in Table II, as a function of two different
coordinates. Left panels: As a function of ρ =



R2

1 + R2
2 and ξ =

arctan(R1/R2) keeping γ = π . Right panels: As a function of R2 and
γ keeping R1 = 1.63 a.u. Contours are 1,0.1,0.001,etc. The energy of
each level (in cm−1) is in the left panels, with respect to the minimum
ZPE of the 3D model. Distances are in a.u. and angles in radians.

units are of higher frequency, similar to those of free H2, and
have amplitudes which do not change appreciably.

The vibrations associated with Ri within H3
+ in the H2 +

H3
+ asymptote are of much higher frequency. The symmetric

and antisymmetric vibration frequencies in H3
+ are ν1 ≈

3178 cm−1 and ν2 ≈ 2518 cm−1 [see the (0,00) and (0,11)
levels in Table I]. When the H2 fragment approaches H3

+,
the proton is delocalized between the two H2 subunits with a
much lower frequency, decoupled from the two H2 stretching
motions. Thus, the H2 distances increase when the proton
approaches them; the H-H distance is slightly longer in H3

+
than in H2. In this situation, the two stretching motions along
R1 and R2 become coupled.
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FIG. 8. (Color online) (a) Predissociation spectra for the ground vibrational state as a function of the excitation energy, obtained within
the 2D model using the dz component of the electric dipole, which is the only nonzero component at the nuclear configuration chosen. The
numbers appearing close to some peaks are the fitted half widths at half maximum (in cm−1). The arrows correspond to the vibrational energies
of the 1D H3

+ fragments, described by R1, r1, and θ1, the last two being frozen in this model. (b) Contour plots of the wave-function amplitudes
obtained according to Eq. (14) at the energies indicated, used for the assignment.

completely analogous to that made before in the adiabatic
approximation [52]. For example, the progression for a = 3,
formed by the peaks at ≈3848 and 4517 and the doublet

at 5451 cm−1, correspond to the (v,n) = (3,2), (3,3), and
(3,4) levels of Ref. [52], with energies 4343, 4899, and
5325 cm−1, which are shifted toward higher energies because
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of the adiabatic approximation. The experimental transitions
are at 3520, 3904, and 4232 cm−1, shifted between 300 and
1200 cm−1 toward lower energy, showing that something is
missing in the simulated spectrum, as will be discussed below.
The nonadiabatic effects manifest here also in the presence
of the doublet at ≈5451 cm−1. The widths of those levels
in this work are 38, 42, and 17 cm−1, respectively, while in
Ref. [52] they were 54, 58, and 48 cm−1, different because
of the golden-rule approximation used there. Nevertheless,
there is a semiquantitative agreement between the two sets of
widths, except for the third level mentioned, whose width is
shared in the doublet appearing because of the nonadiabatic
couplings. The energy separation among these levels is of the
order of those reported in experiments [22–25], for the energy
intervals 2000 � hν � 4500 and 6000 � hν � 8000 cm−1.
In the second energy intervals the peaks here appear at 6403,
7053, 7617, and 7969 cm−1 in this work, at 6686, 7272, and
7724 cm−1 in Ref. [52], and the experimental values are 6690,
7130, 7490, and 7770 cm−1 in Ref. [24]. The energy difference
between simulated and experimental transitions is of the order
of 200 cm−1 but can be used to assign qualitatively the ex-
perimental transitions, complementing previous assignments
made using the similarity of the peaks measured with the ν2

frequency of H3
+ [23–25].

B. Three-dimensional infrared spectrum

To compare more quantitatively with the experimental
results, several deficiencies of the simple 2D model should
be addressed. These problems can be summarized in the
abnormally high dissociation energy, 3379.6 cm−1 instead of
the ≈2400 cm−1 found experimentally, and the fact that dz

is the only nonzero component of the electric dipole moment
for the equilibrium configuration used in the 2D model. These
two deficiencies are improved when a 3D model with the
R1, R2, and γ coordinates is considered. Within this 3D model,
the asymptotic H3

+ levels are the same as in the 2D model,
but the dissociation energy decreases to 2308 cm−1, simply
because the ZPE of the ground level increases, as listed in
Table II. Also, in the planar configuration used, the dx com-
ponent is nonzero and contributes to the total spectrum. For
the 3D calculation we considered the small 90 × 90 radial grid
and 30 Legendre functions for the description of the γ angle.

The calculated spectra for perpendicular (dx) and parallel
(dz) transitions are presented in the two top panels of Fig. 9,
in the same units, and compared with the experimental
spectrum of Ref. [25]. The perpendicular spectrum dx has
lower intensity than the dz one, simply because the electric
dipole moment varies more rapidly along the z axis, where the
proton exchange between the two H2 molecules is produced.
Since along this motion the charges vary greatly, the electric
dipole also does, and it is the z component which carries most
of the oscillator strength.

The spectrum obtained for the parallel transition presents a
well-known similarity with the experimental one, especially
when considering the simplicity of the model. The first
experimental peak, appearing at 2603 cm−1, is transformed
into an intense band formed by very narrow peaks in the
simulation. These structures appear very close to the dis-
sociation threshold, 2408 cm−1 in this case. The simulated

higher-energy peaks show a better agreement with respect
to the experimental one, in position and intensity, and
even the widths. The experimental peak at 3520 cm−1 is
shifted to 3476 cm−1 in the simulations, only 44 cm−1. The
other two peaks at 4232 (4154) and 3904 (4003) cm−1 in the
experiments (simulations) are also in quite good agreement,
with a difference of 78 and 99 cm−1. Thus the inclusion of
the angle γ improves considerably the agreement between
simulated and experimental spectra with respect to the 2D
model discussed above. It simply seems that the intensities
of these two peaks are interchanged, possibly because of the
reduced-dimensionality model used.

The isolated peaks of the spectrum have been fitted to a
Lorentzian function, and their widths are given in the spectrum
in Fig. 9. They are slightly narrower than in the 2D case,
indicating that the dissociation is less efficient. The excitation
of the γ angle somehow deviates energy from the vibrational
motions, which are the ones that yield to dissociation. Some of
the resonances may be even narrower, since the time window
used introduces a broadening of ≈3 cm−1 in the bound-bound
transitions when using Eq. (12). In this regard, it should
be noted that the peaks appearing below 3000 cm−1 are
very narrow. This means that the simulated peaks present a
much higher intensity, while the integration in energy should
somehow reduce it.

The wave functions associated with the resonances present
higher complexity than the 2D ones, and the modes are more
mixed. When the bound part is associated with ρ < 5 a.u. in
the lower panels of Fig. 9, the radial nodal structure is not as
clean as in the 2D case, but still most of the resonances can be
attributed to three quanta in the asymmetric stretch a = 3. The
structure in the angular coordinate γ is much more complex
and complicated to assign, and is distributed over the whole
angular interval. This motion is associated with the scrambling
mechanism, since it would allow the central hydrogen to be
exchanged with any lateral one if all the dimensions were taken
into account, as illustrated in Fig. 6. However in the present
reduced-dimensionality model, the different minima are not
described symmetrically and hence the corresponding peaks
should be affected.

The 3D model applied to H5
+ seems to be rather realistic, in

spite of its simplicity, and allows the approximate assignment
of the observed transitions in the spectrum. The major change
in the electric dipole corresponds to the proton exchange
between the two H2 subunits, and it is the origin of the observed
vibrational progressions assigned in the simulated spectrum.
To check this model, it has also been applied to D5

+, whose
simulated spectrum is compared with the experimental one in
Fig. 10. The simulated spectrum is composed of three bands
of narrow peaks. Due to the increase of the mass, the wave
functions are more localized in the well and the rates for
dissociation smaller, producing a narrowing of the absorption
lines as compared with H5

+. In this case the difference between
experimental and simulated widths is larger than for H5

+. The
widths in both systems seem to decrease when the number
of degrees of freedom is increased. Part of the disagreement
is attributed to the rotational broadening, not included in the
present model.

The relative intensities are in an good approximate agree-
ment with the observed ones, although the positions are not
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These models are approximate with respect to the experi-
mental results, but allow a semiquantitative assignment. Also,
they provide a good physical interpretation of the spectra:
since the electric dipole moment has a weak dependence on
the remaining degrees of freedom, they are not excited and
can be considered as spectators in the absorption process.
Thus, the detected lines are scarcely related to the ν2 transition
of H3

+, since the PES is modified enormously when the
other H2 molecule approaches. Here, the spectrum is assigned
to an overtone of the antisymmetric stretch of the proton,
a = 3, which carries most of the oscillator strength for
the infrared transition. Thus, the three experimental peaks
would correspond to different symmetric stretching quantum
numbers s and a = 3.

The linewidths have been determined, varying from 1 to
50 cm−1 in the 2D model and from 1 to 10 cm−1 in the 3D
model. This decrease of the widths is due to the increase of
the number of degrees of freedom, allowing the energy to flow
toward nondissociative coordinates. Also, the lines calculated
for D5

+ are considerably narrower than for H5
+, as expected.

The widths affect the height of the peaks because the intensity
corresponds to integration over the energy interval covered by
them. The inclusion of the predissociation process is therefore

important to get the proper intensity ratios in the absorption
spectra.

The inclusion of all the internal degrees of freedom is now
being investigated by using computationally more efficient
techniques, such as multi-configuration time-dependent
Hartree [87]. The use of coordinates better adapted to treat
the high symmetry of the system, such as the hyperspherical
formalism recently developed by Kuppermann [43,45], is also
envisaged.
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