Pigment composition in three *Dinophysis* species (Dinophyceae) and the associated cultures of *Mesodinium rubrum* and *Teleaulax amphioxeia*

Pilar Rial 1, José Luis Garrido 2, David Jaén 3, Francisco Rodríguez 1*
1Instituto Español de Oceanografía. Subida a Radio Faro, 50. 36200 Vigo, Spain.
2Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas C/ Eduardo Cabello 6. 36208 Vigo, Spain.
3Laboratorio de Control de Calidad de los Recursos Pesqueros, Agapa, Consejería de Agricultura, Pesca y Medio Ambiente, Junta de Andalucía, Ctra Punta Umbría-Cartaya Km. 12 21459 Huelva, Spain.
*CORRESPONDING AUTHOR: francisco.rodriguez@vi.ieo.es

Despite the discussion around the nature of plastids in *Dinophysis*, a comparison of pigment signatures in the three-culture system (*Dinophysis*, the ciliate *Mesodinium rubrum* and the cryptophyte *Teleaulax amphioxeia*) has never been reported. We observed similar pigment composition, but quantitative differences, in four *Dinophysis* species (*D. acuminata, D. acuta, D. caudata* and *D. tripos*), *Mesodinium* and *Teleaulax*.* Dinophysis* contained 59-221 fold higher chl *a* per cell than *T. amphioxeia* (depending on the light conditions and species). To explain this result, several reasons (e.g. more chloroplasts than previously appreciated and synthesis of new pigments) were are suggested.
KEYWORDS: *Dinophysis, Mesodinium, Teleaulax, pigments, HPLC.*

INTRODUCTION

Photosynthetic *Dinophysis* species contain plastids of cryptophycean origin (Schnepf and Elbrächter, 1999), but there continues a major controversy around their nature, whether there exist are only kleptoplastids or any permanent ones (García-Cuetos et al., 2010; Park et al., 2010; Kim et al., 2012a).

Numerous protists have acquired the photosynthetic capacity through stable endosymbiosis or temporary sequestration of chloroplasts (Nowack and Melkonian, 2010), but in some cases the nature of such association is not fully understood (Johnson, 2011). In *Dinophysis*, kleptoplasty from *Mesodinium rubrum* remains the most likely hypothesis based on molecular data and on the acquisition and turnover trends of the “stolen” plastids (Hackett et al., 2003; Minnhagen and Janson, 2006; Minnhagen et al., 2011; Park et al., 2010). The suggestion that plastids in *Dinophysis* may be permanent, could also be supported by particular chloroplast features in *D. acuminata* (García-Cuetos et al., 2010), though recent studies demonstrated that plastids are structurally modified in *D. caudata* after enslavement from *Mesodinium* (Kim et al., 2012a). In the case of *M. rubrum*, sequestration of plastids from cryptophytes has also been established (Gustafson et al.,
Running head: Dinophysis pigment composition

2000; Hansen et al., 2012). Some authors (Hansen and Fenchel, 2006) referred have noted that Mesodinium plastids were larger than in cryptophytes but major structural modifications like Dinophysis have not been found (García-Cuetos et al., 2010). Photosynthetic pigments are chemotaxonomic markers of phytoplankton due to their selective distribution among taxa (Jeffrey et al., 2011). Pigment types are useful to trace the origin of secondary and tertiary plastids in dinoflagellates, and they often correlate with other phenotypic and/or molecular traits (Zapata et al., 2012). However, despite the current debate about the nature of plastids in Dinophysis, pigment composition in the three-culture system of Dinophysis has not been reported. HPLC pigment analyses were only performed in field samples from the Baltic Sea dominated by D. norvegica (Meyer-Harms and Pollehne, 1998), which showed a cryptophyte-like signature (alloxanthin and chl c2).

The achievement of cultivating Dinophysis (Park et al., 2006) in a three-culture system (including the ciliate Mesodinium rubrum fed with cryptophytes, typically Teleaulax sp.), opened the possibility of further work on the ecology and physiology of this genus. Based on that this finding, the culture of other photosynthetic Dinophysis species has been described (reviewed in Reguera et al., 2012).

We provide the first HPLC pigment data in cultures of three different Dinophysis species, their direct prey (M. rubrum) and the T. amphioxeia strain ingested by the ciliate. Our interest was to investigate if whether pigment composition could reveal distinct fingerprints as indicative of different plastid types in Dinophysis and/or Mesodinium.

Three Dinophysis species isolated in NW Spain (D. tripos VGO1062, Oct 2009), Station B1, Ría de Vigo; 42° 21,40'N 8° 46,42'W; D. caudata (VGO1064, Apr 2010), and D. acuta (VGO1065, Oct 2010); Station P2, Ría de Pontevedra; 42° 8,22’ N, 8° 51,36’ W) were cultured in diluted (1/20) L1-25 Si medium (Guillard and Hargraves, 1993) at 32 psus salinity, 12:12 L:D cycle at two light intensities (LL:70 and HL:200 μmol photons m²s⁻¹), in 50 mL glass flasks. The ciliate Mesodinium rubrum (AND-A0711; LCCRRPP, Spain) fed with the cryptophyte Teleaulax amphioxeia (AND-A0710) was added periodically as prey. Ciliate and cryptophyte strains were isolated in 2007 in the course of weekly sampling of the Andalusian Monitoring Programme (Huelva, SW Spain).

The three-culture system (Dinophysis/Mesodinium/Teleaulax) was maintained at least for a year, before running the experiments shown in this study. Samples for pigment analyses were taken <5 days after being inoculated into fresh medium, to ensure that Dinophysis cultures were actively growing and feeding on Mesodinium until sampling. To avoid contamination from Mesodinium or Teleaulax, Dinophysis cells were gently rinsed several times with fresh medium through a 20 μm
mesh immediately before filtration, and inspected by light microscopy. The same approach was used for *Mesodinium* using a 1 μm mesh to reduce *Teleaulax* densities until being devoid of these they were removed. For cell counts in growth experiments, Lugol’s fixed samples (final concentration 2%) were enumerated in a 1 mL Sedgwick-Rafter counting chamber (*Dinophysis* and *Mesodinium*) and a Neubauer-type hemocytometer (*Teleaulax*) in an inverted microscope. An additional aliquot for cell counts was taken after rinsing *Dinophysis* and *Mesodinium* cultures (immediately before filtering samples for HPLC analysis), to estimate pigment content per cell. Doublings per day \((k)\) and growth rates \((r)\) were calculated from the equations

\[
k = \log_2 \left(\frac{N_t}{N_0} \right) / \Delta t \]

and

\[
r = k \times 0.6931, \]

respectively. Filtration, extraction procedures and HPLC pigment analyses were performed following Zapata et al. (2000). Pigments were identified by comparison of the spectral information and retention time of chromatographic peaks against a library of chlorophylls and carotenoids isolated from phytoplankton cultures (Zapata et al., 2000).

HPLC pigment analyses in all the studied organisms showed chl \(c_2\), chl \(a\), alloxanthin, crocoxanthin and \(\beta,\epsilon\)-carotene as dominant compounds (Fig. 1). All these pigments have been previously reported in cryptophytes (Jeffrey et al., 2011). We did not detect monadoxanthin, a carotenoid found in some cryptophytes within the genera *Rhodomonas*, *Chroomonas* and *Cryptomonas* (Pennington et al., 1985). Thus, we did not find any pigment signature that could trace a different plastid (or the synthesis of any different pigment) in *Dinophysis* relative to *M. rubrum* and *T. amphioxeia*. However, in both light conditions assayed, *Dinophysis* spp. and *Mesodinium* displayed different pigment ratios to chl \(a\), specifically higher chl \(c_2\), when compared with *T. amphioxeia* (Table 1). Carotenoid ratios were similar in LL and HL conditions in all studied organisms, with lower allo xanthin ratios in *D. acuta*, particularly in HL.

Chl \(a\) per cell ratios were also determined in both light conditions in the studied organisms (excepting *Mesodinium* and *D. tripos* in HL). The available data showed that *Mesodinium* in LL contained ~60 times more chl \(a\) per cell than *Teleaulax*. Each *Teleaulax* cell contains a single plastid, whereas *Mesodinium* has been reported to harbour 6-36 plastids (Hansen et al., 2001). Therefore, our estimates of chl \(a\) per cell are somewhat greater but comparable to with a simple calculation on a plastid basis. We estimated 28.3 ± 0.4 pg chl \(a\) per *Mesodinium* cell (from the molar ratios in Table 1), somewhat lower than previous estimates of ~70 pg chl \(a\) cell\(^{-1}\) (10 days after the addition of cryptophytes; Gustafson et al., 2000). However, the *Mesodinium* strain in that study was also larger (22-29 μm by 22-36 μm) than ours (10.4-14.6 μm, n=16).
The chlorophyll a content per cell of *Dinophysis* spp. was much greater than expected if the plastids contained the same amount of pigments as in *Teleaulax*. In LL, estimates ranged from 144-221 fold higher than in *Teleaulax* (Table 1), with increasing values from *D. acuta* to *D. caudata* and *D. tripus*. Such variability in chl a per cell among *Dinophysis* spp. can be explained by their relative sizes (*D. acuta* is smaller (50-95 μm) than *D. caudata* (70-110 μm) and *D. tripus* (95-120 μm) (Reguera, 2003). In HL, the chl a per cell estimates in *Dinophysis* were just 59-70 higher (*D. tripus* values missing) than in *Teleaulax*, where a parallel decrease in chl a per cell was not observed.

In the available literature there are few references to the number of plastids in *Dinophysis* spp. Garcia-Cuetos et al. (2010) only reported the presence of two axial clusters of stellate compound chloroplasts in *D. acuminata*. Kim et al. (2012) mentioned 15-30 plastids in *D. caudata* after ingesting *Mesodinium*, but this number appeared to increase 21 h. after feeding on a single prey. We do not have any estimates about the number of plastids in our *Dinophysis* spp. but if the chl a per cell in *Teleaulax* were extrapolated (59-221 times higher in *Dinophysis* spp.), it would probably overestimate their true number of plastids. Even if more kleptoplastids than previously appreciated or their structural modifications (different thylakoid arrangement, elongation and clustering into stellate compound chloroplasts; Kim et al. 2012b), could help to explain these results, it seems that new synthesis of pigments could happen in *Dinophysis*. The ability to synthesize new pigments and replicate plastids has been confirmed in *Mesodinium* (Johnson et al., 2006; Moeller et al. 2011) and explained by the maintenance of functional prey nucleus nucleii (Johnson, 2011). But However, *Dinophysis* does not harbour a “kleptonucleus” and a different mechanism should operate. In this sense, Wisecaver and Hackett (2010) demonstrated that *Dinophysis* contains nuclear-encoded genes for plastid function which would allow a temporary control and regulation of kleptoplastids.

The quantitative differences invariable pigment ratios to chl a in *Dinophysis* or *Mesodinium* relative to *Teleaulax* could also be due to photoacclimation or physiological changes in their kleptoplastids. The molecular machinery and functional control over the original *T. amphioxeia* plastids are no longer the same in these new hosts (Johnson et al., 2007; Wisecaver and Hackett, 2010), even , and the if photoacclimation in *Mesodinium* has been recently confirmed (Moeller et al., 2011). influence on the overall photosynthetic dynamics is unknown. Similar studies are not yet available in *Dinophysis*, For instance, however, Kim et al. (2012) reported different plastid colour in *D. caudata* when maintained in LL (reddish, 10 μmol photons m$^{-2}$s$^{-1}$) and HL (green, 160 μmol photons m$^{-2}$s$^{-1}$). Once shifted back from HL to LL, kleptoplastids could not regain the reddish colour, suggesting and the authors suggested some photo-damage not repaired by *D. caudata* itself. In our study, we could n’t not detect any significant changes in plastid colour. These changes reported by Kim et al.
(2012b) could be associated with a higher degradation of phycobiliproteins (hydrophilic compounds not analysed by HPLC) relative to chl \(a \), which turns reddish cultures (like \(T. amphioxeia \) AND-0710) into pale green when reaching the late stationary phase.

In our study, the lower chl \(a \) content in HL vs LL cultures of \(D. acuta \) and \(D. caudata \) could be due to induced by photodamage or photoacclimation, as shown in \(Mesodinium \) (Moeller et al., 2011). But it would also agree with the kleptoplastid hypothesis and the apparent inability of \(Dinophysis \) to replicate plastids (Minnhagen et al., 2011), where faster growing HL cells could would dilute their plastids content relative to LL ones.

Regarding the effects of irradiance on accessory pigment ratios, the role of alloxanthin in cryptophytes as light harvesting or photoprotective pigment has not been yet elucidated. But with a few exceptions (Schlüter et al., 2000), higher irradiance promotes increasing ratios of alloxanthin to chl \(a \), suggesting a photoprotective function (Laviale and Neveux, 2011). Chlorophylls \(c \) are light harvesting compounds and, in overall, they tend to decrease in HL conditions relative to chl \(a \) (Rodríguez et al., 2006). Both effects were observed in our study (excepting lower alloxanthin:chl \(a \) in \(D. acuta \) HL and higher chl \(c_2 \):chl \(a \) in \(Mesodinium \) HL).

In conclusion, the presence of another type of plastid (of cryptophytes nature) in \(Dinophysis \) and \(Mesodinium \) could not be ruled out from this study. This is so because putative permanent plastids would be phylogenetically related with cryptophytes yielding a similar (if not identical) pigment signature in HPLC analyses.

The selective retention of two types of cryptophytes plastids by \(Dinophysis \) has been earlier demonstrated previously (Park et al., 2010), and even from multiple algal origins in the field (Kim et al., 2012b), although the nature of the latter (kleptoplastids or just food) could not be ascertained. Further cross-feeding experiments of \(Dinophysis \) with \(Mesodinium \) fed upon cryptophytes with different pigment composition (either lipophylic and/or hydrophylic compounds), would be very interesting to check if the turnover trends of these plastids correlate with major changes in pigment composition in \(Dinophysis \) and \(Mesodinium \).

ACKNOWLEDGEMENTS

We thank the crew of \(R.V. JM Navaz \) for seawater sampling and Ms. Noelia Sanz for technical work in HPLC analyses. We dedicate this work to the memory of our friend and colleague M. Zapata, who had also contributed in earlier versions of this manuscript.
FUNDING

This study was supported by MICINN (DIGEDINO Project, CTM2009-12988-C02-01/MAR) and Xunta de Galicia (PGIDIT-06 PXIB 602143PR project).

REFERENCES

Figure legends

Fig. 1. HPLC chromatograms in low light conditions (70 μmol photons m⁻² s⁻¹) of A) the cryptophyte *Teleaulax amphioxeia* AND-0710, B) the ciliate *Mesodinium rubrum* AND-0711 and C) the dinoflagellate *Dinophysis tripos* VGO1062.

Table legends

Table I. Growth rates (d⁻¹) and accessory pigment ratios to chl *a* (mole:mole) in the studied organisms. Chl *a* per cell ratios are femtmoles per cell. Below (between parenthesis) the average Chl *a* per cell in each condition vs average Chl *a* per cell in *T. amphioxeia* (LL). All values are expressed as average ± S.D (n=3). *n.a.* (data not available).
<table>
<thead>
<tr>
<th>Species</th>
<th>Growth rate (d$^{-1}$)</th>
<th>chl c_2</th>
<th>alloxanthin</th>
<th>crocoxanthin</th>
<th>β,ε-car</th>
<th>chl a per cell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teleaulax amphioxeia</td>
<td>LL</td>
<td>.98 ± .06</td>
<td>.094 ± .003</td>
<td>.767 ± .027</td>
<td>.104 ± .005</td>
<td>.054 ± .002</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>1.57 ± .25</td>
<td>.094 ± .001</td>
<td>.866 ± .033</td>
<td>.109 ± .001</td>
<td>.058 ± .002</td>
</tr>
<tr>
<td>Mesodinium rubrum</td>
<td>LL</td>
<td>.38 ± .06</td>
<td>.166 ± .001</td>
<td>.736 ± .180</td>
<td>.109 ± .008</td>
<td>.048 ± .007</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>.21 ± .03</td>
<td>.220 ± .007</td>
<td>.800 ± .050</td>
<td>.109 ± .007</td>
<td>.043 ± .002</td>
</tr>
<tr>
<td>Dinophysis caudata</td>
<td>LL</td>
<td>.08 ± .01</td>
<td>.141 ± .020</td>
<td>.747 ± .044</td>
<td>.088 ± .001</td>
<td>.048 ± .006</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>.29 ± .07</td>
<td>.119 ± .004</td>
<td>.856 ± .043</td>
<td>.072 ± .004</td>
<td>.054 ± .010</td>
</tr>
<tr>
<td>Dinophysis acuta</td>
<td>LL</td>
<td>.17 ± .10</td>
<td>.162 ± .001</td>
<td>.659 ± .029</td>
<td>.085 ± .004</td>
<td>.048 ± .007</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>.27 ± .19</td>
<td>.136 ± .033</td>
<td>.571 ± .038</td>
<td>.068 ± .010</td>
<td>.035 ± .008</td>
</tr>
<tr>
<td>Dinophysis tripos</td>
<td>LL</td>
<td>.17 ± .10</td>
<td>.153 ± .006</td>
<td>.686 ± .025</td>
<td>.084 ± .007</td>
<td>.043 ± .004</td>
</tr>
<tr>
<td></td>
<td>HL</td>
<td>.40 ± .09</td>
<td>.124 ± .006</td>
<td>.713 ± .021</td>
<td>.054 ± .002</td>
<td>.039 ± .001</td>
</tr>
</tbody>
</table>