Surprise maximization reveals

the community structure of complex networks

Rodrigo Aldecoa and Ignacio Marín

SUPPLEMENTARY INFORMATION

Supplementary Table S1. Cases where $S_{\max }>S_{\text {orig }}$ in the RC benchmarks with $\mathrm{R}=10$ \%

Small differences between $S_{\max }$ and $S_{\text {orig }}$ are due to the rapid degradation of small communities. In most cases, several algorithms find the $S_{\max }$ partition instead of the original one, strongly supporting the idea that the community structure has actually changed.

No. of algorithms	Algorithms	S $_{\text {max }}$	S $_{\text {orig }}$	Differences
4	CPM, RN, RNSC, SCluster	18616.55	18615.55	A community of 2 nodes is split into two
4	CPM, RN, RNSC, SCluster	18881.92	18879.94	A community of 3 nodes is split into two: 2 nodes + 1 node
4	CPM, RN, RNSC, SCluster	18442.72	18440.74	Two communities of 2 nodes are split into two
4	CPM, RN, RNSC, SCluster	19089.77	19088.78	A community of 2 nodes is split into two
4	CPM, RN, RNSC, SCluster	19187.13	19186.13	A community of 2 nodes is split into two
3	CPM, RN, SCluster	18312.46	18312.11	A community of 4 nodes is divided into two: $3+1$
(displayed in Figure 4)				

Supplementary Table S2. Algorithms not included in our study

Name	Strategy used by the algorithm	Reference	Reasons for not including the algorithm
AFG	Multiresolution Potts Model	 Gomez, S. New Journal of Physics 10, 23 (2008).	Ambiguous choice of the best partition. Too slow for good modularity optimization heuristics in our benchmarks
EM	Maximum Likelihood	 Eman, M.E.J. Phys. Rev. E 84, 036103 (2011)	Needs initialization. Not every nodes are assigned to a
single cluster			

