Effects of Neospora caninum Infection at Mid-Gestation on Placenta in a Pregnant Mouse Model


Abstract: Neospora caninum is one of the more-efficient transplacentally-transmitted organisms. The goal of the present study was to investigate the pathologic and immunologic changes that occur at the materno-fetal interface in pregnant BALB/c mice infected with N. caninum at mid-gestation. Parasite DNA was detected in feto-placentary units 3 days post-infection (PI). On day 7 PI, the DNA detection level and parasite burden were significantly higher in the placentas than in the fetuses, which may indicate that the parasite is mainly multiplying in the placenta during the initial infection. In the spleens of infected dams, we observed an increase in IFN-γ, IL-10, and IL-4. However, only IL-4 was upregulated in placentas from the infected dams; this may enhance susceptibility to N. caninum at the materno-fetal interface and favor transmission to the progeny. Finally, an increase in TNF-α expression in nested-PCR-positive placentas combined with necrosis may compromise the viability of the fetuses.

Neospora caninum is one of the more-efficient transplacentally-transmitted organisms, and vertical transmission is responsible for the spread of infection from an infected dam to her offspring during pregnancy (Dubey et al., 2006). The timing of placental and fetal infections during gestation is an important factor in determining the disease outcome in both mice (Long and Baszler, 1996; Quinn et al., 2002; López-Pérez et al., 2006) and in experimental bovine infections (Williams et al., 2000; Innes et al., 2001). In a previous study, we observed the successful vertical transmission of N. caninum infection in BALB/c mice during 3 gestation periods. We demonstrated that infection at mid-gestation had the most severe consequences for the pups when compared to infection in early or late gestation, and leads to the highest rate of vertical transmission, fetal mortality, stillbirth, and a decrease in litter size (López-Pérez et al., 2006, 2008). Therefore, the aim of this study was to investigate the pathologic and immunologic changes that occur at the materno-fetal interphase in pregnant BALB/c mice infected with N. caninum on day 7 of gestation.

Eight-week-old female BALB/c mice (Harlan Interfauna Ibérica, Barcelona, Spain) were mated for 1 night, and day 0 of gestation was determined by the presence of the vaginal mucoid plug (Lo´pez-Pe´rez et al., 2006, 2008). Pregnant BALB/c mice were infected subcutaneously with 2 × 106 N. caninum tachyzoites on day 7 of gestation. A group of pregnant mice was inoculated with PBS on day 7 of gestation and kept as an uninfected control group. Eight infected dams and 4 control animals were killed, at random, with CO2 gas at each time point. On day 10 of gestation (3 days PI), the complete feto-placentary unit was collected, while on day 14 of gestation (7 days PI), the fetes, resorptions, placentas, and maternal spleens were recovered. The fetal mortality (resorptions) was determined on day 14 of gestation on the basis of small fetal size (<3 mm) or a lack of discernible fetal tissue at an implant site containing placenta tissue (Long and Baszler, 1996). The percent of resorption per dam was calculated as R/(R + V) × 100 in every dam, where R is the number of resorbing fetuses and V is the number of viable fetuses per animal (Krishnan et al., 1996). The feto-placentary units, fetes, and resorptions were individually processed for PCR analysis. All of the collected placentas were divided in 2 portions: one-half was always assayed using PCR analysis and the other half was processed for either cytokine expression or histological analysis. Finally, the spleens from dams were collected for cytokine expression analysis.

A nested PCR was performed, as previously described, to detect parasite DNA in the tissue samples (Buxton et al., 1998; López-Pérez et al., 2006). In nested-PCR-positive samples, the N. caninum load was quantified by real-time PCR (Collantes-Fernández et al., 2002). Cytokine expression was determined by the presence of the vaginal mucoid plug (Lo´pez-Pe´rez et al., 2006, 2008). Therefore, the aim of this study was to investigate the pathologic and immunologic changes that occur at the materno-fetal interphase in pregnant BALB/c mice infected with N. caninum at mid-gestation.

A nested PCR was performed, as previously described, to detect parasite DNA in the tissue samples (Buxton et al., 1998; López-Pérez et al., 2006). In nested-PCR-positive samples, the N. caninum load was quantified by real-time PCR (Collantes-Fernández et al., 2002). Cytokine expression was determined by the presence of the vaginal mucoid plug (Lo´pez-Pe´rez et al., 2006, 2008). Therefore, the aim of this study was to investigate the pathologic and immunologic changes that occur at the materno-fetal interphase in pregnant BALB/c mice infected with N. caninum at mid-gestation.

The chi-square and Fisher F tests were used to compare fetal mortality and the rates of parasite detection. The Mann–Whitney U-test was employed to analyze differences in the percent of resorption among infected and uninfected dams. The differences in the parasite burden were analyzed by a non-parametric Kruskal–Wallis test. When statistical differences were found, a Dunn’s multiple comparison test was employed to examine all possible pairwise comparisons. The Student’s t-test was used to compare the differences in cytokine expression between infected and uninfected dams. All of the statistical analyses were performed using GraphPad Prism v.5.02 software (San Diego, California).

The infected dams showed no body weight changes when compared to the control group (data not shown), and no clinical signs that were compatible with neosporosis were observed. The consequences of infection on the outcome of gestation were evaluated by investigating the fetal mortality in infected animals compared to uninfected dams (Table I). On day 14 of gestation, resorptions were observed in 6 of 8 infected dams and in 3 of 4 uninfected dams. We found an increased fetal mortality (P = 0.671, χ2 = 0.18), and a higher percent of resorption per mouse (P = 0.255, U = 6.00, Mann–Whitney U-test), in the infected animals compared to uninfected dams, although no significant differences were found. To analyze the pattern of parasite transmission from dams to fetuses when infected with N. caninum DNA (Table II) and parasite load (Fig. 1) were evaluated in the placentas and feto-placentary units or fetuses. Neospora caninum DNA was detected in feto-placentary units at 3 days PI (day 7 of gestation) and in the placentas and fetuses at 7 days PI (day 14 of gestation), with all of the dams showing at least 1 positive placenta. On day 14 of gestation, there was a significantly higher N. caninum detection (P < 0.0001, χ2 = 31.22, χ2 test) and parasite load (P < 0.0001, χ2 = 68.98, Dunn’s multiple comparison test) in the placentas compared to the fetuses. No differences in the parasite presence (P = 1, Fisher F-test) and parasite load (P > 0.05, χ2 = 68.98, Dunn’s multiple comparison test) were observed among the viable fetuses and resorptions. Finally, parasite DNA was more-often detected (P < 0.0001, χ2 = 38.12) and a higher parasite burden was observed (P < 0.0001, χ2 = 68.98, Dunn’s multiple comparison test), in the placentas compared to the feto-placentary units. No parasite DNA

DOI: 10.1645/GE-2347.1

© American Society of Parasitologists 2010
was detected in feto-placentary units, placentas, or fetuses from control mice.

To investigate if the local immune response differed from the systemic response, and to ascertain whether the infection at mid-gestation was associated with immunological changes at the materno-fetal interphase, we also evaluated cytokine expression in the spleens and placentas on day 14 of gestation (Fig. 2). We found a significant increase in IFN-γ, IL-10, and IL-4 mRNA expression levels in spleens from the infected dams compared to uninfected animals (P < 0.001, r = 3.81–11.24). In fetal placentas, only IL-4 was modified after infection, and a significant increase in its expression was observed in the infected dams compared to uninfected animals (P = 0.042, r = 2.12). Finally, histological examination revealed multifocal areas of necrosis in both maternal and fetal sides of the placenta and minimal non-suppurative infiltrates. Necrosis and inflammatory infiltration were found in 39% (9/23) and 13% (3/23) of placentas, respectively. No lesions were observed in placentas from the control group.

The placenta may play a key role in the pathogenesis of neosporosis; in addition to being the natural barrier through which the parasite must cross to reach the fetus, the placenta can exhibit mechanisms of defense.

Toxoplasma gondii infection in mice. Our data have demonstrated the presence of parasites in feto-placentary units as early as 3 days PI (day 10 of gestation). Nevertheless, it is unknown if the parasite reached the materno-fetal interphase before day 3 PI because no mice were killed before this time. On day 14 of gestation (7 days PI), N. caninum DNA was detected in both the placentas and the fetuses. We found N. caninum DNA in a higher number of the placentas than in the fetuses, and the parasite burden in the placentas was also significantly higher than in the fetuses. Furthermore, parasite DNA was more-often detected in the placenta compared to the feto-placentary units, where an increase in the parasite load was also observed. In previous reports, in mice infected at late mid-gestation (day 10 of gestation), N. caninum tachyzoites were identified by immunohistochemistry in the placenta and fetus on days 6–8 PI (Long and Baszler, 1996; Rettigner et al., 2004). In a guinea pig model of Toxoplasma gondii infection, the placental parasite load was also time-dependent, and a higher parasite burden was found in the placenta compared to the fetuses in the early stages of the infection (Flori et al., 2003). Taken together, these findings may indicate that the parasite is mainly multiplying in the placenta during the initial infection. Although the parasite was detected in

Table II. Detection of N. caninum DNA by nested PCR in feto-placentary units, fetuses, resorptions, and placentas from mice infected on day 7 of gestation with 2 × 106 Nc-1 tachyzoites and sacrificed on days 10 (3 days PI) and 14 of gestation (7 days PI).

<table>
<thead>
<tr>
<th>Sample collected</th>
<th>No. samples*</th>
<th>Per litter†</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feto-placentary units</td>
<td>4/71 (5.6%)</td>
<td>5.0 (0.0–1.1)</td>
</tr>
<tr>
<td>Viable fetus</td>
<td>4/63 (6.3%)</td>
<td>0.0 (0.0–13.9)</td>
</tr>
<tr>
<td>Resorptions</td>
<td>1/12 (8.3%)</td>
<td>0.0 (0.0–0.0)</td>
</tr>
<tr>
<td>Placentas</td>
<td>35/60 (58.3%)</td>
<td>50.0 (44.4–83.0)</td>
</tr>
</tbody>
</table>

* Number of positive samples/total of samples analyzed (percentage).
† Median of positive samples per litter (minimum and maximum values).
placentas from the infected dams. The data are represented as individual placenta containing dead fetuses could more-precisely clarify the cattle, there was no evidence of infection of the placenta and, N. caninum from pregnant mice infected on day 10 of gestation (Long et al., 1996). In demonstrated necrosis with few infiltrating inflammatory cells in placentas infected dams containing live fetuses. Previous reports have also observed fetal resorptions because analysis of the local immune response result of infection (Rosbottom et al., 2008). However, we cannot discard observed in the placentomes of the cattle whose fetuses were killed as a consequence of an insufficient supply of oxygen–nutrition by the placenta (Buxton et al., 1982).

A minimal, non-suppurative infiltrate was found in placenta from infected dams containing live fetuses. Previous reports have also demonstrated necrosis with few infiltrating inflammatory cells in placentas from pregnant mice infected on day 10 of gestation (Long et al., 1996). In N. caninum-infected cattle carrying live fetuses, and in pregnant control cattle, there was no evidence of infection of the placenta and, consequently, no inflammatory response (Maley et al., 2006). Altogether, these results suggest that the study of the inflammatory response in the placentas containing dead fetuses could more-precisely clarify the pathogenesis of N. caninum in pregnant mice. In a previous study in cattle, a strong cytokine expression profile was observed in the placentomes of the cattle whose fetuses were killed as a result of infection (Rosbottom et al., 2008). However, we cannot discard the idea that a strong, type-1 immune response was responsible for the observed fetal resorptions because analysis of the local immune response was performed only in placentas containing live fetuses. Thus, further experiments are required to evaluate the importance of local and systemic immune response in fetal mortality.

In summary, this is the first report that describes the simultaneous analysis of parasite presence and load, the immune response, and the histopathological lesions in the placenta in BALB/c mice infected with N. caninum at mid-gestation.

This work has been supported by a grant from the Spanish Government (AGL2001-1362). Immaculada C. López-Pérez has been financed by the Spanish Ministry of Education and Science. This experiment complied with the current local animal protection laws of the European Union.

LITERATURE CITED


RETTIGNER, C., F. DE MEERSCHMAN, C. FOCANT, A. VANDERPLASSCHEN, AND B. LOSSON. 2004. The vertical transmission following the reactivation of a Neospora caninum chronic infection does not seem to be due to an alteration of the systemic immune response in pregnant CBA/Ca mice. Parasitology 128: 149–160.

