1	Interpretive summary
2	Telling dairy goat's dietary oil apart
3	Martínez Marín et al.
4	Fatty acid (FA) analysis of milk fat samples were used to classify milk fats according to the
5	diet consumed through linear discriminant analysis. Milk samples were obtained from dairy
6	goats fed a control diet added with none or one of three plant oils: high oleic sunflower oil
7	regular sunflower oil and linseed oil. Out of 84 variables (82 FA and two FA ratios) used, 20
8	proved to be useful predictors. Only one of 112 milk samples was misclassified.
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26	TELLING DAIRY GOAT'S DIETARY OIL APART
27	
28	Short communication: Linear Discriminant Analysis and Type of Oil Added to Dairy
29	Goat Diets
30	
31	A.L. Martínez Marín*, P. Gómez-Cortés; A.G. Gómez Castro*, M. Juárez; L. Pérez
32	Alba*, M. Pérez Hernández*, M.A. de la Fuente‡¹
33	
34	* Departamento de Producción Animal (Universidad de Córdoba), Ctra. Madrid-Cádiz, km
35	396. Campus de Rabanales, 14014 Córdoba, Spain
36	
37	‡ Instituto de Investigación en Ciencias de la Alimentación (CSIC-UAM), Nicolás Cabrera, 9.
38	Universidad Autónoma de Madrid, 28049 Madrid, Spain
39	
40	¹ Corresponding author: mafl@if.csic.es (M.A. de la Fuente)
41	² Present address: Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853,
42	USA
43	
44	
45	
46	
47	
48	
49	
50	
51	

52 ABSTRACT

Gas chromatography fatty acid (**FA**) analysis of one hundred and twelve milk fat samples from dairy goats fed a basal diet with no added oil or the same diet added one of three vegetable oils (high oleic sunflower oil –**HOSFO**-, regular sunflower oil –**RSFO**- or linseed oil –**LO**-) were used to identify the type of diet consumed through linear discriminant analysis (**LDA**). Twenty variables (19 FA and one FA ratio) were selected as valid predictors out of 84 variables tested. The Mahalanobis squared distance was minimum between HOSFO and RSFO groups and maximum between control and LO groups. Crossvalidation showed that only one observation from RSFO group was misclassified into HOSFO group. We concluded that LDA is useful to classify milk fat samples from dairy goats according to the particular vegetable oil, among the three studied added to their basal diet.

Key Words: discriminant analysis, fatty acid, goat milk, vegetable oils

SHORT COMMUNICATION

68

92

69	Discriminant analysis is a multivariate statistical technique that can be used to build a
70	predictive model of group discrimination based on observed predictor variables and to
71	classify each observation into one of the groups. Linear discriminant analysis (LDA) has been
72	used successfully to differentiate milk and cheese from different species based on their
73	mineral content (Martín-Hernández et al., 1992) as well as to detect milk fat adulteration
74	(Ulberth, 1994; Gutiérrez et al., 2009).
75	
76	It is well established that supplementation of goat diets with fat sources rich in unsaturated
77	fatty acids (FA) substantially modifies the milk fat FA profile (Chilliard et al., 2007).
78	Accordingly, enabling the researchers to obtain information about the type of dietary lipids
79	consumed by the animals from milk fat FA data would be of great interest. The aim of this
80	work was to investigate the use of LDA to identify the type of plant oil consumed by goats
81	from data of their milk fat FA profile determined by gas chromatography (GC).
82	
83	Milk fat FA GC analysis (up to 82 FA and two FA ratios per sample, Table 1) involving 112
84	goat milk samples from 16 goats (Martínez Marín et al., 2011), 12 goats (Martínez Marín et
85	al., in press) and 12 goats (Martínez Marín et al., unpublished results) were used to perform
86	the discriminant analysis. The goats were all fed the same basal diet. All the analysis were
87	grouped into four classes (28 analysis in each class): no added fat basal diet (Control), c9-
88	18:1 rich diet (high oleic sunflower oil, HOSFO), c9c12-18:2 rich diet (regular sunflower oil,
89	RSFO) and 18:3n-3 rich diet (linseed oil, LO). Of the 28 analysis corresponding to each of
90	the oil added classes (HOSFO, RSFO and LO) 22 analysis corresponded to milk from goats
91	supplemented with 48 g of oil per day, and 6 corresponded to milk from goats supplemented

with 32 (three goats) or 66 (three goats) g of oil per day.

94

95

96

97

98

99

SAS 9.1.3 (SAS, 2004) was used to perform the statistical analysis. First, PROC STEPDISC was used to select the FA and ratios that would be included as predictor variables in the model. Probability to enter and stay in the model was set at 0.10 and 0.15, respectively. Following this, PROC DISCRIM was used to determine the coefficients for the optimal subset of FA and ratios included in the linear discriminant functions (**LDF**). In this procedure, the option CROSSVALIDATE was included to assess the robustness of the LDF obtained.

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

Nineteen FA and one ratio were selected as predictor variables (Table 2). Canonical discriminant functions 1 and 2 explained up to 89.2% of total variation between groups (**Figure 1**). The four FA with greater discriminating ability were 19:0, c9-17:1, t11t15-18:2 and 18:0 iso, and the ratio linoleic acid to α-linolenic acid (LA/ALA) in function 1, c9-18:1, t11-18:1, c9c12-18:2 and t9c12-18:2 in function 2, and c9-17:1, 18:0 iso, t5-18:1 and t9c12-18:2 in function 3. Pooled within canonical structure (**Table 2**) showed that none of the predictor variables had an absolute correlation value greater than 0.41 with any function. The higher correlation values between different FA and function 1 corresponded to 19:0, c8-16:1, t11-18:1, t9c12-18:2, t11c13-18:2, c9t11t15-18:3 and to the ratio LA/ALA. According to class means (Table 2) this function discriminated clearly the LO group. Some of the above cited milk FA (e.g. t11-18:1, t11c13-18:2 and c9t11t15-18:3) are known to be related to the intake of α-linolenic acid rich diets by dairy ruminants (Collomb et al., 2004; Chilliard et al., 2007; Gómez-Cortés et al., 2009). The best correlation values between different FA and function 2 corresponded to 20:0, c7-16:1, c9-17:1, t5-18:1, t11-18:1 and c9-18:1, and to the ratio LA/ALA. According to class means this function discriminated clearly the control group from groups HOSFO and RSFO. Known FA which decrease with oil treatments like those of microbial origin showed higher negative correlations values with function 2 (e.g. c9-17:1). On the contrary FA from direct or indirect dietary origin like t11-18:1, oleic acid or the LA/ALA ratio showed a higher than average positive correlation value with this function. The higher correlation values between different FA and function 3 corresponded to c9c12-18:2, 20:4n-6, t11-18:1, t5-18:1, c7-16:1 and c9-18:1, and to the ratio LA/ALA. According to class means this function discriminated well HOSFO from RSFO groups. The ratio LA/ALA and some FA with known direct or indirect origin in linoleic acid rich diets (e.g. c9c12-18:2, t11-18:1) were negatively correlated to function 3, while c9-18:1 was positively correlated, what suggests that HOSFO diets supplied more preformed c9-18:1 and/or stearic acid to the mammary gland.

Fisher's linear discriminant functions are shown in **Table 3**. The Mahalanobis squared distance was minimum between HOSFO and RSFO groups (26.99) and maximum between control and LO groups (146.26). The F-test of the distances was highly significant in all cases (P<0.0001). Only one observation from RSFO group was misclassified into HOSFO group, both in original and cross-validated classification matrices, resulting in 98.9% of original grouped cases classified correctly.

The discriminant analysis allowed us to identify 20 variables as useful predictors, out of the 84 variables used. The LDA was useful to classify milk fat samples according to the particular vegetable oil, among the three studied added to a basal diet from a number of FA quantified in milk fat.

The authors wish to thank the Ministerio de Ciencia e Innovación (Projects Ref. AGL2008-04805 and Consolider Ingenio 2010 Ref. CSD/2007/00063 FUN-C-FOOD), and the

142	Comunidad Autónoma de Madrid (Project Ref. S2009-AGR-1469 and S2009-AGR-1464) for
143	their financial support.
144	
145	REFERENCES
146	Chilliard, Y., F. Glasser, A. Ferlay, L. Bernard, J. Rouel, and M. Doreau. 2007. Diet, rumen
147	biohydrogenation and nutritional quality of cow and goat milk fat. Eur. J. Lipid Sci.
148	Technol. 109: 828-855.
149	Collomb, M., R. Sieber, and U. Bütikofer. 2004. CLA isomers in milk fat from cows fed diets
150	with high levels of unsaturated fatty acids. Lipids 39: 355-364.
151	Gómez-Cortés, Pilar, C. Tyburczy, J. T. Brenna, M. Juárez, and M. A. de la Fuente. 2009.
152	Characterization of cis-9 trans-11 trans-15 C18:3 in milk fat by GC and covalent adduct
153	chemical ionization tandem. J. Lipid Res. 50: 2412–2420.
154	Gutiérrez, R., S. Vega, G. Díaz, J. Sánchez, M. Coronado, A. Ramírez, J. Pérez, M. González,
155	and B. Schettino. 2009. Detection of non-milk fat in milk fat by gas chromatography
156	and linear discriminant analysis. J. Dairy Sci. 92: 1846-1855.
157	Martín-Hernández, C., L. Amigo, P.J. Martín-Alvarez, and M. Juárez. 1992. Differentiation of
158	milks and cheeses according to species based on the mineral content. Zeitschrift für
159	Lebensmitteluntersuchung und -Forschung A 194: 541-544.
160	Martínez Marín, A.L., P. Gómez-Cortés, A.G. Gómez Castro, M. Júarez, L.M. Pérez Alba, M.
161	Pérez Hernández, and M.A. de la Fuente. 2011. Animal performance and milk fatty acid
162	profile of dairy goats fed diets added differently unsaturated plant oils. J. Dairy Sci. 94:
163	5359-5368.
164	Martínez Marín, A.L., P. Gómez-Cortés, A.G. Gómez Castro, M. Júarez, L.M. Pérez Alba, M.
165	Pérez Hernández, and M.A. de la Fuente. Effects of feeding increasing dietary levels of

166	high oleic or regular sunflower or linseed oil on fatty acid profile of goat milk. Journa
167	of Dairy Science (in press).
168	SAS. 2004. SAS/STAT 9.1 User's Guide. SAS Institute Inc., Cary, NC.
169	Ulberth, F. 1994. Detection of milk fat adulteration by linear discriminant analysis of fatty
170	acid data. J. AOAC Int. 77: 1326-1334.
171	

Table 1. Fatty acids (mean±sd) and univariate test of equality between group means of the diet classes used in the study.

	Diets ¹					
	Control	HOSFO	RSFO	LO	P	
SFA						
4:0	2.469±0.194	2.601±0.301	2.643±0.414	2.624 ± 0.320	0.230	
5:0	0.022 ± 0.012	0.025 ± 0.011	0.021±0.010	0.026±0.019	0.459	
6:0	2.761±0.265	2.855±0.286	2.910±0.430	2.996±0.383	0.150	
7:0	0.041 ± 0.023	0.044 ± 0.021	0.037 ± 0.016	0.048 ± 0.035	0.457	
8:0	3.029 ± 0.383	3.106±0.366	3.183±0.611	3.355±0.443	0.118	
4-methyloctanoate	0.044 ± 0.025	0.043 ± 0.026	0.037 ± 0.020	0.046 ± 0.028	0.588	
9:0	0.088 ± 0.051	0.090 ± 0.041	0.075 ± 0.031	0.095 ± 0.061	0.511	
10:0	11.328±0.991	10.244±1.088	10.263±1.765	10.764±1.280	0.016	
methyldecanoate	0.071 ± 0.041	0.058 ± 0.034	0.051±0.026	0.063 ± 0.037	0.229	
12:0	5.218±0.950	3.926 ± 0.554	4.073±0.622	4.109±0.806	< 0.001	
methyldodecanoate	0.024 ± 0.012	0.023 ± 0.014	0.021 ± 0.009	0.023 ± 0.011	0.739	
13:0 iso	0.020 ± 0.008	0.018 ± 0.007	0.018 ± 0.005	0.016 ± 0.005	0.200	
13:0 anteiso	0.063 ± 0.032	0.038 ± 0.013	0.043 ± 0.015	0.042 ± 0.020	< 0.001	
14:0 iso	0.050 ± 0.010	0.046 ± 0.009	0.047 ± 0.014	0.043 ± 0.012	0.260	
14:0	10.387±0.866	8.635±0.646	8.813±0.914	8.560±1.014	< 0.001	
methyltetradecanoate	0.063 ± 0.033	0.048 ± 0.023	0.042 ± 0.016	0.050 ± 0.026	0.044	
15:0 iso	0.136 ± 0.020	0.122 ± 0.020	0.130 ± 0.029	0.119±0.017	0.049	
15:0 anteiso	0.278 ± 0.056	0.255 ± 0.069	0.250 ± 0.072	0.244 ± 0.056	0.287	
15:0	0.833 ± 0.231	0.724 ± 0.156	0.676 ± 0.143	0.713±0.210	0.029	
16:0 iso	0.145 ± 0.035	0.143 ± 0.095	0.125 ± 0.034	0.121±0.038	0.361	
16:0	32.562±2.834	24.944±3.588	24.31±3.199	24.270±2.831	< 0.001	
17:0	0.399 ± 0.056	0.377 ± 0.072	0.340 ± 0.076	0.358 ± 0.081	0.034	
18:0 iso	0.035 ± 0.015	0.030 ± 0.016	0.037 ± 0.018	0.027 ± 0.011	0.077	
10-keto-18:0	0.039 ± 0.018	0.312 ± 0.248	0.133±0.129	0.108 ± 0.060	< 0.001	
18:0	5.778±1.240	10.171±2.212	9.120 ± 1.878	8.389±1.708	< 0.001	
19:0	0.016 ± 0.015	0.017 ± 0.012	0.018 ± 0.015	0.047 ± 0.017	< 0.001	
20:0	0.111 ± 0.018	0.151±0.024	0.139 ± 0.020	0.112 ± 0.015	< 0.001	
21:0	0.026 ± 0.005	0.027 ± 0.005	0.026 ± 0.008	0.024 ± 0.007	0.635	
22:0	0.051 ± 0.012	0.082 ± 0.030	0.081 ± 0.022	0.047 ± 0.009	< 0.001	
MUFA						
c9-10:1/12:0 iso/11:0	0.392 ± 0.134	0.324 ± 0.085	0.326 ± 0.065	0.354 ± 0.099	0.062	
c9-12:1/13:0	0.223 ± 0.100	0.158 ± 0.046	0.159 ± 0.043	0.171 ± 0.061	0.003	
c9-14:1	0.216 ± 0.101	0.130 ± 0.051	0.158 ± 0.078	0.146 ± 0.073	0.002	
c9-15:1	0.054 ± 0.016	0.045 ± 0.014	0.047 ± 0.013	0.047 ± 0.012	0.126	
t8-16:1	0.049 ± 0.012	0.077 ± 0.033	0.078 ± 0.035	0.073 ± 0.021	0.001	
t9-16:1/17:0 iso	0.336 ± 0.067	0.361 ± 0.092	0.557 ± 0.185	0.600 ± 0.149	< 0.001	
c7-16:1	0.241 ± 0.035	0.292 ± 0.047	0.257 ± 0.050	0.271 ± 0.045	0.001	
c8-16:1	0.011 ± 0.003	0.010 ± 0.002	0.014 ± 0.003	0.030 ± 0.008	< 0.001	
c9-16:1/17:0 anteiso	1.321±0.321	0.926 ± 0.149	0.913 ± 0.235	0.884 ± 0.191	< 0.001	
c13-16:1	0.282 ± 0.110	0.154 ± 0.055	0.167 ± 0.071	0.184 ± 0.091	< 0.001	
c9-17:1	0.212 ± 0.046	0.167 ± 0.062	0.138 ± 0.033	0.144 ± 0.051	< 0.001	
t4-18:1	0.013 ± 0.007	0.037 ± 0.020	0.025 ± 0.013	0.022 ± 0.011	< 0.001	

t5-18:1	0.014±0.006	0.036±0.020	0.023±0.013	0.020±0.010 <0.001
t6/t7/t8-18:1	0.169 ± 0.048	0.448±0.173	0.364 ± 0.121	0.324±0.091 <0.001
t9-18:1	0.105 ± 0.046 0.195 ± 0.045	0.349 ± 0.101	0.372 ± 0.093	0.324 ± 0.091 < 0.001
t10-18:1	0.135 ± 0.043 0.330 ± 0.164	0.549 ± 0.101 0.584 ± 0.387	0.901 ± 0.843	0.413 ± 0.171 0.001
t11-18:1	1.011±0.425	1.767±0.756	3.597±1.832	$3.732\pm1.584 < 0.001$
t12-18:1	0.182 ± 0.053	0.372 ± 0.221	0.328 ± 0.104	$0.412 \pm 0.144 < 0.001$
c9-18:1	14.545±1.651	20.477±3.549	17.757±3.319	16.19±4.419 <0.001
t15/c11-18:1	0.306 ± 0.064	0.346 ± 0.101	0.360 ± 0.128	$0.571 \pm 0.224 < 0.001$
c12-18:1	0.139 ± 0.051	0.101 ± 0.039	0.287 ± 0.229	0.477 ± 0.224 < 0.001 0.477 ± 0.340 < 0.001
c13-18:1	0.038 ± 0.009	0.101 ± 0.035 0.042 ± 0.011	0.287 ± 0.225 0.051 ± 0.011	0.058 ± 0.018 < 0.001
t16/c14-18:1	0.175±0.036	0.228 ± 0.048	0.287 ± 0.064	0.441±0.108 <0.001
c15-18:1	0.055 ± 0.010	0.059 ± 0.012	0.076 ± 0.017	$0.324 \pm 0.171 < 0.001$
c16-18:1	0.020 ± 0.004	0.026 ± 0.005	0.030 ± 0.017	0.034 ± 0.011 < 0.001
c11-20:1	0.046 ± 0.010	0.020 ± 0.003 0.067 ± 0.017	0.063±0.017	0.050 ± 0.011 < 0.001
PUFA	0.010±0.010	0.007±0.017	0.003±0.017	0.03020.013 (0.001
t11t15-18:2	0.040 ± 0.014	0.044 ± 0.015	0.038 ± 0.014	0.063±0.038 0.001
t9t12/c9t13/t8c12-18:2	0.165 ± 0.034	0.162 ± 0.046	0.216 ± 0.048	$0.348 \pm 0.112 < 0.001$
t8c13-18:2	0.061 ± 0.010	0.065 ± 0.016	0.071 ± 0.020	$0.143 \pm 0.046 < 0.001$
c9t12-18:2	0.030 ± 0.008	0.032 ± 0.011	0.034 ± 0.014	0.043 ± 0.017 0.006
t9c12-18:2	0.031 ± 0.009	0.027 ± 0.006	0.039 ± 0.013	0.049 ± 0.020 < 0.001
t11c15-18:2	0.037 ± 0.012	0.056 ± 0.023	0.065 ± 0.038	0.936±0.561 <0.001
c9c12-18:2	1.725±0.272	1.411±0.329	2.203±0.838	1.684±0.532 <0.001
Other 18:2	0.063 ± 0.025	0.059 ± 0.016	0.050 ± 0.015	$0.086 \pm 0.031 < 0.001$
c9t11-18:2	0.616±0.246	0.839 ± 0.347	1.679 ± 0.837	1.660±0.638 <0.001
t9c11-18:2	0.013±0.007	0.017 ± 0.008	0.021 ± 0.013	0.016±0.007 0.016
t10c12-18:2	0.007 ± 0.004	0.008 ± 0.004	0.009 ± 0.005	0.008 ± 0.004 0.410
t11c13-18:2	0.011±0.006	0.011±0.006	0.012 ± 0.006	0.023±0.011 <0.001
t12t14-18:2	0.007 ± 0.003	0.007 ± 0.004	0.009 ± 0.006	0.017±0.008 <0.001
t11t13-18:2	0.006 ± 0.003	0.007 ± 0.004	0.007 ± 0.004	0.015±0.008 <0.001
t9t11-18:2	0.013 ± 0.006	0.017 ± 0.008	0.022 ± 0.014	0.019±0.009 0.016
16:2	0.009 ± 0.005	0.011 ± 0.005	0.009 ± 0.005	0.051 ± 0.034 < 0.001
18:3n-6	0.026 ± 0.008	0.024 ± 0.010	0.024 ± 0.007	0.043 ± 0.022 < 0.001
18:3n-3	0.163 ± 0.037	0.128 ± 0.028	0.142 ± 0.067	0.614 ± 0.291 < 0.001
c9t11t15-18:3	0.007 ± 0.003	0.007 ± 0.003	0.010 ± 0.009	$0.044 \pm 0.020 < 0.001$
c9t11c15-18:3	0.037 ± 0.009	0.036 ± 0.007	0.033 ± 0.008	$0.104 \pm 0.068 < 0.001$
20:2n-6	0.010 ± 0.005	0.010 ± 0.005	0.012 ± 0.006	0.011±0.004 0.369
20:3n-3	0.006 ± 0.004	0.008 ± 0.005	0.008 ± 0.005	0.009 ± 0.005 0.306
20:4n-6	0.136 ± 0.024	0.117 ± 0.020	0.145 ± 0.037	0.111 ± 0.020 < 0.001
20:5n-3	0.025 ± 0.006	0.023 ± 0.006	0.026 ± 0.010	0.039 ± 0.007 < 0.001
22:4n-6	0.026 ± 0.007	0.076 ± 0.049	0.043 ± 0.027	0.030 ± 0.011 < 0.001
22:5n-3	0.040 ± 0.009	0.035 ± 0.008	0.038 ± 0.015	0.045 ± 0.010 0.024
22:6n-3	0.021 ± 0.009	0.019 ± 0.008	0.026 ± 0.020	0.018 ± 0.009 0.127
RATIOS				
t10-18:1/t11-18:1	0.349 ± 0.161	0.346 ± 0.252	0.251 ± 0.188	0.119 ± 0.037 < 0.001
LA/ALA		11.138±1.720		2.988±0.797 <0.001

174 Control: basal diet without added oil; HOSFO, RSFO and LO: basal diet enriched with high

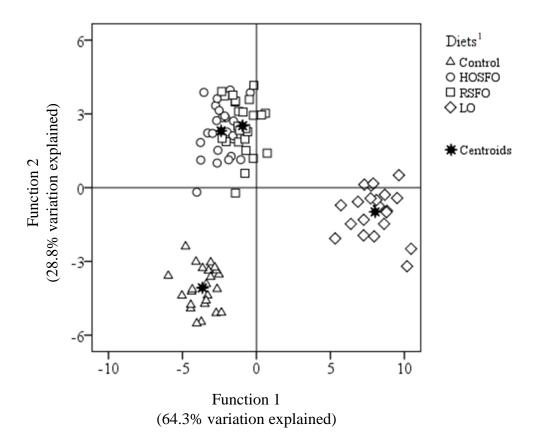
oleic sunflower oil, regular sunflower oil, or linseed oil, respectively.

Table 2. Total-sample standardized canonical coefficients and pooled within canonical structure

	Standardized canonical coefficients			Cano	nical stru	cture
	Function				Function	
	1 2 3		1	2	3	
4:0	-0.180	0.722	0.547	0.025	0.067	-0.016
14:0 iso	-0.011	-0.049	-0.727	-0.042	-0.029	-0.031
16:0 iso	-0.574	-0.365	0.472	-0.033	-0.022	0.054
18:0 iso	0.965	0.320	-1.133	-0.042	-0.001	-0.111
19:0	1.076	-0.104	0.190	0.191	-0.045	0.041
20:0	-0.043	0.608	0.460	-0.076	0.288	0.113
c7-16:1	-0.203	-0.442	0.288	0.021	0.104	0.168
c8-16:1	0.762	0.056	-0.096	0.390	-0.077	-0.069
c9-17:1	-1.046	-0.829	1.278	-0.080	-0.166	0.087
t5-18:1	-0.232	-0.262	1.024	-0.018	0.183	0.205
t11-18:1	0.634	1.249	-0.498	0.151	0.164	-0.236
c9-18:1	0.668	2.029	-0.123	-0.023	0.211	0.165
t11t15-18:2	-0.973	-0.398	0.743	0.092	-0.026	0.074
t9c12-18:2	-0.257	0.945	-0.918	0.133	-0.013	-0.139
c9c12-18:2	-0.464	-1.011	0.191	0.000	0.035	-0.291
t11c13-18:2	0.475	-0.470	-0.275	0.147	-0.030	0.026
c9t11t15-18:3	0.743	-0.645	0.429	0.317	-0.073	0.023
20:3n-3	0.026	0.595	0.503	0.034	0.042	0.032
20:4n-6	0.357	-0.483	-0.118	-0.068	0.004	-0.237
LA/ALA	-0.772	0.184	-0.315	-0.255	0.235	-0.408
Eigenvalues	20.34	7.84	3.43			
Canonical correlation	0.976	0.942	0.880			
% variance explained	64.35	24.80	10.85			
Class means						
Control	-3.654	-4.074	-0.253			
HOSFO	-2.390	2.312	2.505			
RSFO	-0.937	2.518	-2.478			
LO	8.022	-0.984	0.377			

Table 3. Coefficients of Fisher's linear discriminant functions for classifying milk fat samples

	Diets ¹				
	Control	HOSFO RSFO LO			
Constant	-197.712	-293.826	-252.267	-256.248	
4:0	87.435	105.961	97.035	88.928	
14:0 iso	-871.073	-1075.907	-760.097	-935.903	
16:0 iso	4.470	-26.318	-83.582	-127.807	
18:0 iso	-441.419	-432.658	24.476	299.977	
19:0	-176.505	-94.471	-54.180	656.837	
20:0	871.176	1131.872	1017.772	956.473	
c7-16:1	78.035	27.031	-13.538	-1.278	
c8-16:1	-64.094	170.676	526.629	1941.017	
c9-17:1	481.334	417.845	252.023	194.111	
t5-18:1	213.186	277.982	-135.904	-2.993	
t11-18:1	4.535	10.310	13.166	13.078	
c9-18:1	2.390	6.414	7.012	6.572	
t11t15-18:2	370.627	291.897	54.289	-183.546	
t9c12-18:2	-155.147	90.123	429.152	-206.191	
c9c12-18:2	-15.865	-27.826	-31.195	-31.328	
t11c13-18:2	-1267.342	-1695.760	-1429.482	-736.150	
c9t11t15-18:3	-245.105	-430.183	-540.298	398.369	
20:3n-3	2509.141	3604.659	3112.623	3024.257	
20:4n-6	-149.711	-261.963	-223.797	-50.861	
LA/ALA	1.461	1.250	1.402	-1.260	


187 Control: basal diet without added oil; HOSFO, RSFO and LO: basal diet enriched with high

oleic sunflower oil, regular sunflower oil, or linseed oil, respectively.

Figure 1. Canonical discriminant plot of the first two canonical variables

200

201

Control: basal diet without added oil. HOSFO, RSFO and LO: basal diet enriched with high
oleic sunflower oil, regular sunflower oil, or linseed oil, respectively.