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Abstract Three-body continuum problems are investigated for light nuclei of astro-

physical relevance. We focus on three-body decays of resonances or recombination via

resonances or the continuum background. The concepts of widths, decay mechanisms

and dynamic evolution are discussed. We also discuss results for the triple α decay

in connection with 2+ resonances and density and temperature dependence rates of

recombination into light nuclei from α-particles and neutrons.
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1 Introduction

Few-body problems, astrophysics and unstable nuclei are naturally linked through light

nuclei being formed in few-body recombination reactions in astrophysical environments.

The inverse reactions of few-body decays of light nuclei are equivalent through detailed

balance. The state of the art in few-body physics is that all two-body problems and

essentially all bound state three-body problems are fully solved. The next in line is

three-body continuum problems where lots of information presently accumulate from

kinematically complete and accurate measurements of nuclear decay processes. The

simplest of these examples are nuclear three-body decays of a (many-body) resonance.

A large variety of decay mechanisms is possible due to the continuous distribution of

energy and momentum between the three particles in the final state. We shall here
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Fig. 1 The real parts for θ = 0.1 of the lowest adiabatic potentials, including the three-body
potential, for the 0.856 MeV 9Be(5/2−)-resonance (horizontal full line) as function of ρ.

focus on genuine three-body continuum computations. We shall especially emphasize

the new concepts employed or discovered, and illustrate with examples of relevance in

nuclear astrophysics.

2 Definitions

The minimum needed for the discussions is the hyperradius ρ defined as the mass

weighted mean square radius coordinate:

mρ2 =
1

m1 +m2 +m3

∑

k

mk(rk −R)2 (1)

where m is an arbitrary mass, mk and rk are mass and position of the k’th particle and

R is the centre-of-mass coordinates. The total wave function is ψ = ρ−5/2∑

n fn(ρ)φn(ρ,Ω),

where Ω denotes the five angular coordinates. The differential equations for one radial

function fn are [1]

[

−
d2

dρ2
+
λ(ρ) + 15/4

ρ2
+Q(ρ)−

2mE

h̄2

]

fn(ρ) = couplings , Q(ρ) = 〈φ|
∂2

∂ρ2
|φ〉Ω ,(2)

where E is the energy, λ is obtained from the angular equations, and Q is the non-

adiabatic diagonal coupling strongly correlated to the variation of the angular wave

function.
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Fig. 2 Lowest adiabatic potentials for 9Be and 9B as a function of the hyperradius. The
inset shows the 9Be lowest potential with and without the rearrangement coupling term Q =

〈φ| ∂2

∂ρ2
|φ〉Ω .
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Fig. 3 The partial wave decomposition of the lowest adiabatic angular wave function for 9Be
(thick) and 9B (thin) as function of hyperradius ρ. The partial angular momenta lx and ly
correspond to the coordinates indicated in the figure. For lx = ly = 2 and lx = ly = 3 the
curves for 9Be and 9B can not be distinguished.
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3 Concepts in three-body decays

The key quantities are the potentials as functions of the hyperradius as shown in

Fig. 1 where one potential has an attractive pocket at short distance whereas all the

other potentials are repulsive. The resonance is caught in the pocket and its partial

lifetime, or width, is determined by the tunneling probability through the barrier. The

coordinate is ρ and a priori it is not clear that the width is determined by the barrier of

the hyperradial potential. The angular momentum and parity dependence now follow

these potentials which often lead to non-monotonous behavior. The behavior at short

distances is outside the three-body model and able to influence the widths substantially

in analogy to the effects of spectroscopic factors [2].

The resonance can change structure from small to large distance [3,4]. In Fig. 1

the two lowest potentials cross each other around ρ of 16 fm. The resonance then must

decide whether to maintain its structure determined by the lowest potential at small

distances or gain energy by changing structure. The compromise can be any continuous

division between these extremes. This dynamic evolution is seen in Fig. 2 for 9Be(1/2+)

where the inset shows that the barrier is entirely due to the Q-term in Fig. 2, see [5].

This implies that the entire width is due to angular restructuring and in fact therefore

responsible for the resonance character of this state. This is demonstrated in Fig. 3

where the partial wave decomposition in one Jacobi coordinate set is shown to change

drastically around ρ of 7 fm from a 5He+α to a 8Be+n structure. This is consistent

with the observation that the decay products emerge as arising fully from the latter

configuration [6]. In the example of Fig. 1 this means that the lowest energy is chosen

while the structure is changed at the level crossing. These examples show the concepts

of dynamic evolution and decay mechanism [7].

4 Rates and momentum distributions

The inverse process of three-body decay is the recombination of the constituent clusters

into the bound state of the nucleus for example by photon emission [8]. The most

prominent as well as most studied of these processes is the triple α process leading

to 12C. At low temperature the lowest 0+ resonance, the Hoyle state, is decisive for

the triple α rate which proceeds from the 0+ continuum via an E2-transition to the

2+ excited but bound state. The process from the 2+ continuum is dominated by E2-

transition directly to the 0+ ground state. The position of the lowest 2+ resonance is

then important but unknown or at least controversial.

In Fig. 4 we show the results of genuine three-body computations for different

positions of the lowest 2+ resonance. The rate varies by almost two orders of magnitude

when the energy is increased from 2 MeV to 5 MeV. The contribution is only significant

for temperatures above 2-3 GK. The more realistic uncertainty is seen in Fig. 5 where

we compare to the standard reference [9] and give the variation from the relatively small

2+ energy of 1.38 MeV to complete removal of the 2+ resonance. In the temperature

range of around 8 GK the uncertainty in the triple α rate then comes out to be around

a factor of three.

The large-distance structure of the resonance wave function provides the momen-

tum distributions of the particles after the three-body decay [10]. The probability

for emission of a particle as function of its energy is an important part of these dis-

tributions. However the complete information requires two energies for a given total
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Fig. 4 Reaction rate in the sequential case for different energies of the lowest 2+ resonance
in 12C. The energy increases from the upper curve to the lower from 1 MeV up to 5 MeV. The
dotted curve is the calculation where the contribution from the 2+ → 0+

1
transition has been

completely removed.
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Fig. 5 Reaction rate after the full three-body calculation when the 2+ resonance is placed at
1.38 MeV (thick solid line), when the resonance is removed from the calculation (thick dashed

line), when the full contribution from the 2+ → 0+
1

transition is excluded (thin solid line), and
when the Hoyle resonance is removed (dotted line). The thin solid curve is the calculation in
the sequential case when the energy of the 2+ resonance is 4.0 MeV. The open circles are the
rate from [9].
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Fig. 6 The computed Dalitz plots for 12C (1+, 2−, 4−)-resonances, compared to similar mea-
sured distributions. O.S. Kirsebom et al. Phys. Rev. C 81, 064313 (2010).

three-body energy. This gives rise to Dalitz plots which are two-dimensional proba-

bilities as functions of two independent energies of the three-body system. For 12C

decaying into three α-particles the choice could be energies of two different α-particles

for a given total resonance energy. We show computed examples in Fig. 6 for three

resonances compared to experimental distributions. The similarities are striking where

especially the zero points in the distributions are interesting. Some of these are un-

avoidable as inherent from the angular momentum, parity and symmetry of the wave

function. Other zero points reflect the dynamical evolution and the decay mechanism

and as such they are significant [11].

5 Recombination processes

The triple α process takes place when α-particles are present in a given volume. If

a mixture of neutrons and α-particles is present two other recombination processes

can also take place, that is creating 6He and 9Be consisting of one (two) α’s and two

(one) neutrons. The relative creation rates are important for the continuation of the

nuclear synthesis leading to different C-isotopes which in turn are the starting points

for nuclear synthesis into heavier nuclei [8]. The density dependence of these rates is

proportional to the number of particles involved in the given process where two (three)

identical components should be counted twice (thrice). The temperature dependence

is more complicated, depending for example on resonances, as seen in Figs. 4 and 5.

The density-temperature diagram is shown in Fig. 7 where Yα = Nα/(Nα + Nn)

is the relative fraction of α-particles. Very crudely, 12C is predominantly created when

the neutron density is low, correspondingly 6He is predominantly created when the

neutron density is high, and at intermediate densities the 9Be creation dominates. The

details of when and by how much the different processes contribute is not obvious. For

example at low α-density and low temperature the 9Be rate is larger than that of 6He.
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space. The curves correspond to a constant ratio of production rates of two nuclei.
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This can be traced back to the low-lying 1/2+ resonance in 9Be. These results emerge

from an interplay between recombination rates from individual three-body continuum

states of different angular momentum and parity.

It is well known that radiative capture is much less efficient than capture where

the photon is replaced by a particle of finite mass. In the environment, where neu-

trons and α’s are present with certain densities, there is always a finite probability of

finding a fourth particle to substitute the photon and ensure energy and momentum

conservation. This four-body recombination process is largest when the fourth particle

is a neutron because it is neutral (not pushed away by the Coulomb repulsion) and its

s-wave interaction with other neutrons is relatively large [12]. We compare nuclear and

electromagnetic recombination rates in Fig. 8 for creating 9Be as function of temper-

ature for the continuum states of different angular momentum. They are remarkable

similar but this is because we used a rather high neutron density to get contributions

of the same order. The nuclear process has one additional neutron density as factor

compared to the electromagnetic process. Thus at some density the processes must be

of similar size as shown in Fig. 8.

6 Summary remarks

We use the hyperspherical adiabatic expansion method to investigate three-body res-

onance structures, decay mechanisms, and recombination rates for selected systems

of light nuclei in stellar environments. We briefly discuss basic ingredients within

the method, that is effective potentials, three-body resonance structure, partial de-

cay widths, and momentum distributions of particles after the decay of the resonance.

We also investigate recombination of three nuclear clusters into bound states of a light

nuclei. We illustrate by examples of structure and decay properties of selected res-

onances in 6He, 9Be and 12C. Specifically we show results for the influence of the

2+ resonances in 12C on the triple α-rate. We show the temperature and density de-

pendence of the recombination rates from neutrons and α’s into 6He, 9Be and 12C.

We suggest an alternative route to bypass the A = 5, 8 gaps via nuclear four-body

recombination processes. The possible comparison to measurements is very favorable.
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