Hybrid Materials in Asymmetric Supercapacitors

Jullieth Suárez-Guevara^a, Vanesa Ruiz^a, Pedro Gomez-Romero^{a,b}

^a Centro de Investigación en Nanociencia y Nanotecnología,CIN2 (CSIC),UAB Campus 08193 Bellaterra, Spain. Phone: +34 935868531, Fax: +34 935868020.

^b MATGAS Research Center. UAB Campus, 08193 Bellaterra, Spain. Phone: +34 935929950. Fax: +34 935929951

Jullieth.suarez@cin2.es, Vanesa.ruiz@cin2.es, pedro.gomez@cin2.

In the present work electrochemical studies of a series of polyoxotungstate – active carbon hybrid materials are described. The electrochemical behavior of two polyoxometalate molecules, phosphotungstic acid (H₃PW₁₂O₄₀) and silicotungstic acid (H₄SiW₁₂O₄₀) have been studied to be used as negative electrode in asymmetric Supercapacitors (a-SCs). The strong chemisorption between polyoxometalates and carbon materials makes it possible to construct stable hybrid carbon structures. ^[1, 2]

The methodology followed to prepare hybrid materials was as described in ref. ^[3], where 1g of activated carbon (Super-DLC-30 kindly supplied by Norit Chemicals®) is added to 25 mL of a 10 mM aqueous solution of each of the heteropolyacids ($H_3PW_{12}O_{40}$ and $H_3SiW_{12}O_{40}$). The mixture is stirred for 24h at room temperature. Then, the suspensions is filtered, washed with deionized water, and dried at 100°C overnight. The amount of PW_{12} and SiW_{12} adsorbed is determinated by weight difference.

Cyclic voltammetry and galvanostatic charge-discharge tests were employed to do the electrochemical characterization of the hybrid materials. Two- and three-electrodes configurations, where platinum wire and Ag/AgCl were used as counter and reference electrode, respectively. A 1 M H_2SO_4 solution was used as electrolyte.

The cyclic voltammograms obtained in a three electrode configuration for a commercial activated carbon, AC, and for the AC/ SiW_{12} hybrid material are shown in Figure 1. Both materials show different stability ranges are stable in a different range of potential. The hybrid material showed a remarkable increased stability towards negative potentials (over potential for hydrogen generation). In an asymmetric configuration where AC is the positive electrode and AC/ PW_{12} is the negative one, the total cell voltage could be extended up to 1.6 V, thus increasing the energy density of the devices substantially.

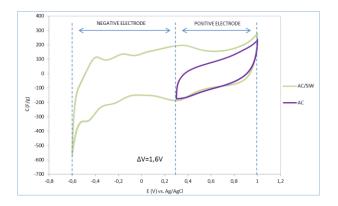


Figure 1.- Cyclic voltammograms obtained in a three -electrode configuration for an activated carbon (AC) and its corresponding hybrid material (AC/SiW12).

References

[1] Z. H. Kang , Y. Liu , C. H. A. Tsang , D. D. D. Ma , E. B. Wang ,S. T. Lee , Chem. Commun. 2009 , 413.

[2] S. Choi, J. Kim. Bull. Korean Chem. Soc. 2009, Vol. 30, No. 4.

[3] J. Alcañiz-Monge, G. Trautwein, S. Parres-Esclapez, J.A. Maciá-Agulló. Microporous and Mesoporous Materials. 2008. 115