INTRODUCTION

Sediment stabilization and coastal protection are key ecosystem services provided by seagrasses, aquatic angiosperms that colonize shallow marine habitats (Hemminga & Nieuwenhuize 1990, Fonseca 1996, Koch et al. 2009). Submerged plants increase bottom roughness, thus reducing near-bed velocity and modifying the sediment transport (Koch et al. 2006) and increasing wave attenuation (Kobayashi et al. 1993, Méndez & Losada 2004). In addition, seagrass rhizomes and roots extend inside sediment and contribute to its stabilization (Fonseca 1996).

Flume and in situ measurements have shown that water velocity is reduced inside meadows. In sparse canopies, turbulent stress remains elevated within the canopy, while in dense canopies turbulent stress is reduced by canopy drag near the bed (Luhar et al. 2008). The reduction in velocity due to seagrass canopies is lower for wave-induced flows compared to unidirectional flows, because the inertial term can be larger or comparable to the drag term in oscillatory flow (Lowe et al. 2005, Luhar et al. 2010). Except for intertidal systems, where currents are dominant, most seagrass meadows lie in wave-dominated habitats. Interaction between seagrass canopies and oscillatory flow has, however, been much less studied than the interaction with currents. Near-bed turbulence levels inside seagrass canopies are lower than those on sands under wave-generated oscillatory flows (Granata et al. 2001). Wave energy and sediment resuspension are also reduced by seagrasses (Terrados & Duarte 2000, Verduin & Backhaus 2000, Gacia & Duarte 2001).

Wave attenuation by seagrass canopies has been measured only in shallow systems where canopies occupy a large fraction of the water column (Fonseca & Cahalan 1992, Koch & Beer 1996, Mork 1996, Chen et al. 2007, Bradley & Houser 2009). *Posidonia oceanica*, which is the dominant seagrass species in the
Mediterranean Sea, forms extensive meadows in depths up to 45 m (Procaccini et al. 2003) and the canopy often occupies less than 20% of water column height. Although commonly assumed to occur (Luque & Templado 2004, Boudouresque et al. 2006), wave attenuation by P. oceanica meadows, or by any meadow occupying a small fraction of the water column, has not been accurately assessed in the field. In this study we evaluate the effect of a P. oceanica seagrass meadow on wave propagation under natural conditions. To quantify wave attenuation due to grass meadow on wave propagation under natural conditions, we measure wave heights and orbital velocities along a transect above the meadow for 3 storms.

Most coastal models introduce bottom effects through the equivalent roughness, k_b, and therefore it is practical to consider if such a characterization can apply to seagrasses. The equivalent roughness will be used to account for the effects of both the sandy bed and the meadow. Moreover, Bradley & Houser (2009) already suggested the use of an equivalent roughness to describe wave attenuation due to a canopy, but to date, no attempt has been made to relate this quantity to the drag coefficient which describes the drag associated with the individual blades. The underlying assumptions of our approach are, first, that the boundary layer is rough turbulent and, second, that water depth is much larger than the blade length.

MATERIALS AND METHODS

The bottom boundary layer is the region in which the velocity field drops from the value in the core of the fluid to zero at the bed. In a bottom covered by seagrass the boundary layer is modified by the canopy, which influences the mean velocity, turbulence and mass transport (e.g. Nepf & Vivoni 2000, Ghisalberti & Nepf 2002, Luhar et al. 2010). In this analysis, we assume that the seagrass exists within the bottom boundary layer and thus can be represented as a roughness. A list of symbols used in the analysis is given in Table 1.

The dimensionless parameter relating the velocity outside the boundary layer, u_b, and the bed shear stress transmitted to the combined seagrass and bottom, τ_b, is the wave friction factor defined as $f_w = \frac{2\tau_b}{\rho u_b^3}$, where ρ is the fluid density. The friction factor f_w depends on the Reynolds number, u_b^3/ν, and on the relative roughness, $k_b/\omega u_b$. Here, ν is the kinematic viscosity of the water, ω the wave angular frequency ($\omega = 2\pi/T$, with T the wave period), and k_b a length characterizing the bottom equivalent roughness. For bare beds, the equivalent roughness, k_b, is related to the sediment size and the bed form height. If the boundary layer is smooth (namely $k_b/\tau_b/\rho/\nu \leq 3.3$), then f_w depends mainly on the Reynolds number. Otherwise, if the boundary layer is rough ($k_b/\tau_b/\rho/\nu \geq 3.3$), the friction factor depends mainly on the relative roughness. At this point, we assume that the boundary with seagrass is rough, and we will later check this assumption.

Accounting for signs, the definition of f_w implies $\tau_b = \rho f_w u_b u_b$. Though this approach is valid as a first order approximation, it is known to be an oversimplification of the problem. For instance, it is well known that the shear under monochromatic waves is not in phase with velocity. This has led to modifications of the friction factor to introduce the phase lag (Nielsen 1992), and to redefine the friction factor as (Jonsson 1967) $f_w = 2\tau_{b,\text{max}}^2/\rho u_{b,\text{max}}^3$, where the subscript refers to the maximum value of the variable within a wave period. With this redefinition, for rough conditions, the friction factor proposed by Nielsen (1992) as a modification of the semi-empirical formula of Swart (1974) for sandy bottoms is:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Wave amplitude (m)</td>
</tr>
<tr>
<td>a_o</td>
<td>Orbital wave excursion (m s$^{-1}$)</td>
</tr>
<tr>
<td>a_s</td>
<td>Plant surface area per unit height (m)</td>
</tr>
<tr>
<td>b</td>
<td>Characteristic length of the plant (m)</td>
</tr>
<tr>
<td>c_l</td>
<td>Group velocity (m s$^{-1}$)</td>
</tr>
<tr>
<td>C_D</td>
<td>Drag coefficient</td>
</tr>
<tr>
<td>$C_{D, SG}$</td>
<td>Drag coefficient as defined by Sánchez-Gonzales et al. (2011)</td>
</tr>
<tr>
<td>E</td>
<td>Wave energy (J m$^{-2}$)</td>
</tr>
<tr>
<td>f_w</td>
<td>Wave friction coefficient</td>
</tr>
<tr>
<td>g</td>
<td>Acceleration of gravity (m s$^{-2}$)</td>
</tr>
<tr>
<td>h</td>
<td>Water depth (m)</td>
</tr>
<tr>
<td>H_{ms}</td>
<td>Root mean squared wave height (m)</td>
</tr>
<tr>
<td>$H_{ms,0}$</td>
<td>Incident root mean squared wave height (m)</td>
</tr>
<tr>
<td>$H_{ms, i}$</td>
<td>Computed wave heights (m)</td>
</tr>
<tr>
<td>$H_{ms, i}$</td>
<td>Measured wave heights (m)</td>
</tr>
<tr>
<td>k_p</td>
<td>Peak wave number (m$^{-1}$)</td>
</tr>
<tr>
<td>k_b</td>
<td>Bottom equivalent roughness (m)</td>
</tr>
<tr>
<td>γ</td>
<td>Wave attenuation coefficient (m$^{-1}$)</td>
</tr>
<tr>
<td>λ_p</td>
<td>Peak wave length (m)</td>
</tr>
<tr>
<td>l_c</td>
<td>Vegetation length (m)</td>
</tr>
<tr>
<td>N</td>
<td>Number of shoots per unit area (m$^{-2}$)</td>
</tr>
<tr>
<td>T_w, T_p</td>
<td>Wave period and wave peak period (s)</td>
</tr>
<tr>
<td>u</td>
<td>Fluid velocity (m s$^{-1}$)</td>
</tr>
<tr>
<td>u_b</td>
<td>Near-bottom orbital velocity (m s$^{-1}$)</td>
</tr>
<tr>
<td>x</td>
<td>Horizontal distance (m)</td>
</tr>
<tr>
<td>e_o</td>
<td>Rate of energy dissipation (J m$^{-2}$ s$^{-1}$)</td>
</tr>
<tr>
<td>ρ</td>
<td>Seawater density (kg m$^{-3}$)</td>
</tr>
<tr>
<td>τ_b</td>
<td>Bottom shear stress (N m$^{-2}$)</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity of water (m2 s$^{-1}$)</td>
</tr>
<tr>
<td>ω</td>
<td>Wave angular frequency (s$^{-1}$)</td>
</tr>
</tbody>
</table>
\[f_w = \exp \left\{ 5.5 \left(\frac{K_a \omega}{u_b} \right)^{0.2} - 6.3 \right\} \]

(1)

Recent work (e.g. Méndez & Losada 2004, Sánchez-González et al. 2011) suggests that the friction due to seagrasses can be determined in terms of the Keulegan-Carpenter number (i.e. KC = uT/b with u a characteristic velocity of the flow and b a characteristic length of the plant, usually the width). Assuming that the boundary layer generated by the vegetation is rough, and noting that KC\(^{-1}\) has the same functional form as the relative roughness \(K_cu/u_b\), we propose the use of Eq. (1) for \(f_w\) with \(K_cu\) being the equivalent roughness of the seagrass meadow.

Assuming that linear wave theory is valid and assuming straight and parallel bathymetric contours, the conservation of wave energy for random waves may be written as

\[\varepsilon = \frac{\partial (E c_g)}{\partial x} = -\varepsilon_D \]

(2)

with the energy \(E\) being \(E = \rho g H^2 \text{rms}/8\), with \(g\) the acceleration of gravity, \(H_{\text{rms}}\) the root mean squared wave height, \(\varepsilon_D\) the energy dissipation, and \(c_g\) the group velocity given by

\[c_g = \frac{\omega}{2K_p} \left[1 + \frac{2k_p h}{\sinh(2k_p h)} \right] \]

(3)

with the peak wave number, \(k_p = 2\pi/\lambda_p\), where \(\lambda_p\) is the wave length corresponding to the peak period \((T_p)\), and \(h\) the local water depth.

Previous theoretical, numerical and observational works on wave propagation over vegetated fields have dealt with the question of obtaining the dissipation term, \(\varepsilon_D\), in order to integrate Eq. (2) (Kobayashi et al. 1993, Méndez & Losada 2004, Bradley & Houser 2009). The dissipation term is

\[\varepsilon_D = \varepsilon_D u_b = \frac{1}{2} \rho f_w u_b u_b \]

(4)

with the overbar standing for time average. We define \(I_v\) as the canopy height and use linear wave theory to describe the time-varying wave-induced velocity at the top of the canopy, \(z = -h + I_v\). Then, following the procedure proposed by Méndez & Losada (2004) to handle irregular waves, Eq. (4) becomes

\[\varepsilon_D = \rho f_w \left(\frac{g k_p^3}{2\omega_p} \right)^3 \frac{\cosh^3(k_p I_v)}{\cosh^3(k_p h)} H_{\text{rms}}^3 \]

(5)

Alternatively, following Dalrymple et al. (1984), Méndez & Losada (2004) obtained the dissipation in terms of the blade drag coefficient, \(C_D\),

\[\varepsilon_D = \rho C_D a'_v N \left(\frac{g k_p^3}{2\omega_p} \right)^3 \frac{\sinh^3(k_p I_v) + 3\sinh(k_p l_v)}{\cosh^3(k_p h)} H_{\text{rms}}^3 \]

(6)

where \(N\) is the number of plants per unit of horizontal area, and \(a'_v\) is the plant area per unit height. A similar approach is used by Plew et al. (2005) to describe wave interaction with the suspended ropes of a mussel farm. By comparing Eqs. (5) & (6), the relationship between the friction coefficient \(f_w\) and the drag coefficient \(C_D\) follows, which for \(k_p l_v \ll 1\) reduces to

\[f_w = C_D a'_v I_v N \]

(7)

If the equivalent roughness \(K_c\) of a Posidonia oceanica meadow can be found, as we propose, the friction coefficient \(f_w\) (and, therefore, \(\varepsilon_D\)) can be computed through Eqs. (1) & (5). For irregular waves, we consider \(u_{\text{rms}},0\) as the corresponding velocity in Eq. (1). Once \(\varepsilon_D\) is estimated at each point, the wave height \(H_{\text{rms}}\) can be computed by integrating Eq. (2). We use a finite difference scheme for numerical integration.

The wave attenuation over a constant depth has received special attention in the literature. Assuming \(C_D\) constant in Eq. (6), Dalrymple et al. (1984) and Méndez & Losada (2004) analytically integrated Eq. (2) to get

\[H_{\text{rms}} = \frac{H_{\text{rms},0}}{1 + \gamma x} \]

(8)

with \(H_{\text{rms},0} = H_{\text{rms}}(x=0)\) and where the attenuation coefficient \(\gamma (m^{-1})\) is

\[\gamma = \frac{C_D a'_v N}{3\sqrt{\pi}} \frac{\sinh^3(k_p l_v) + 3\sinh(k_p l_v)}{\cosh^3(k_p h)} k_p H_{\text{rms},0} \]

(9a)

Similarly, for wave propagation over constant depth, if we assume constant \(f_w\), the above solution (Eq. 8) would also hold for our approach, now being

\[\gamma = \frac{f_w k_p}{\sqrt{\pi}} \frac{\sinh^3(k_p l_v)}{\cosh^3(k_p h)} k_p H_{\text{rms},0} \]

(9b)

Using the solution in Eq. (8), the wave attenuation per wavelength, \(1 - H_{\text{rms}}(x=\lambda_p)/H_{\text{rms},0}\) is \(1 - (1 + \gamma \lambda_p)^{-1}\). Depending from a different differential equation, Kobayashi et al. (1993) and Sánchez-González et al. (2011) obtain the following solution for the constant depth case

\[H_{\text{rms}} = H_{\text{rms},0} \exp(-\gamma x) \]

(10)

with \(\gamma\) given in Eq. (9) for Kobayashi et al. (1993) and a slightly different expression for Sánchez-González et al. (2011). Differences between Eqs. (8) & (10) are \(<10\%\) up to \(\gamma x \lesssim 0.5\).

Field measurements

Field measurements were carried out in Cala Millor, on the northeast coast of the island of Mallorca,
Mediterranean Sea (Fig. 1a−c). Cala Millor is an intermediate barred sandy beach formed by biogenic sediments with median grain values ranging between 0.28 and 0.38 mm at the beach front (Gómez-Pujol et al. 2007). The beach is in an open bay with an area of about 14 km². At depths from 6 to 35 m, the seabed is covered with a meadow of *Posidonia oceanica* (Infantes et al. 2009). The bay is microtidal, with a spring range of less than 0.25 m (Orfila et al. 2005), and the near-bottom mean currents during the period of study were small (<0.05 m s⁻¹). The bay is located on the east coast of the island, and is therefore exposed to incoming wind and waves from NE to ESE directions.

From 7 to 23 July 2009, 4 self-contained Acoustic Doppler Velocimeters ADVs (Nortek, Vector) with pressure sensors were deployed on a transect perpendicular to the coast at depths of 6.5, 10, 12.5 and 16.5 m and of total length 942 m (Fig. 1d). ADVs were mounted over galvanized iron structures, with the pressure sensors located at 80 to 100 cm above the bottom, i.e. just above the seagrass canopy (Fig. 2). Stability of the equipment was verified with compass, tilt and roll sensors (Infantes et al. 2011). Velocity data were collected at 80 to 100 cm above the bottom in bursts of 15 min every 2 h at a sampling rate of 4 Hz, sampling volume given as 14.9 mm and a nominal fluid velocity range of ±1 m s⁻¹. With this sampling rate we were able to capture waves with a period above 2 s. For waves with periods below 2 s, linear wave theory indicates that the velocities transmitted to the bottom are negligible compared to those corresponding to the peak period.

Root mean squared wave height (H_{rms}), horizontal components of velocity ($u_{b,rms}$ and $v_{b,rms}$), and peak period (T_p) were processed using Nortek (QuickWave v.2.04) software (Nortek 2002). Wave data were filtered to remove waves not approaching perpendicular to the beach. To exclude wave energy lost by white capping, we excluded wave records when mean wind velocities were higher than 10 m s⁻¹ (data from the Spanish Harbor Authority ‘Puertos del Estado’).

The area is subject to cyclogenetic activity throughout the year (Cañellas et al. 2007). Indeed, during the instrument deployment, 3 events with H_{rms} larger than 0.60 m at the deepest location (significant wave height, H_s, > 0.85 m) affected the area (Fig. 3a). Hereafter ‘storms’ refer to events where the signifi-
cant wave height is large, regardless of local wind conditions. The first storm began on 13 July and lasted 44 h with a maximum H_{rms} of 1.31 m. The second storm began on 18 July, lasted 16 h and reached $H_{rms} = 1.19$ m. The third storm began on 21 July, lasted 14 h and reached $H_{rms} = 0.74$ m. The equivalent roughness of the meadow, k_s, which is assumed to remain essentially constant for all storms, was calculated from the third storm and then used to compute, integrating Eq. (2), the wave attenuation for the first 2 storms. The computed wave attenuation was then compared to the corresponding experimental data.

Determination of equivalent roughness

As stated, the equivalent roughness k_s is a critical parameter for the characterization of the friction factor in rough turbulent flows. We expect it to be a function of the meadow morphology (number of shoots, shoot height and leaf width mainly), and it will be assumed to be constant during the experimental duration. This is a fair assumption since all measurements were done in summer over a short period of time (16 d). *Posidonia oceanica* leaf lengths and leaf widths were measured for 10 vertical shoots collected at locations 1 to 4 (Fig. 1, top). The mean shoot length, l_v, was 0.8 ± 0.1 m (mean ± SE) and leaf surface area per plant 211 ± 23 cm2 (mean ± SE), so that $a'_v = 0.0264$ m. Shoot density, N_s, was also measured at the same 4 locations, and was 615 ± 34 m$^{-2}$ (mean ± SE).

Velocities and wave heights measured along the transect during the third storm (21 July) were used to obtain k_s. Specifically, we found the value of k_s that minimizes the error

$$
\sum_{i=2}^{4} |H_{rms,i}^c - H_{rms,i}^m|^2
$$

between the observed and computed wave heights, where $i = 2, 3, 4$ correspond to moorings 2 to 4 (at $x = 337, 664$ and 942 m respectively). In Eq. (11), $H_{rms,i}^m$ are the measured values and $H_{rms,i}^c$ are the values computed by integrating Eq. (2) starting from the value measured at the first mooring, i.e. $H_{rms,1}^m$. In the numerical integration, the bathymetry was adjusted by fitting a third order polynomial to the depths at the 4 moorings (Fig. 1d).

The value of k_s minimizing the above error was computed for a total of 14 h corresponding to the third storm, and the average for all records was calculated. Once k_s was determined for the *Posidonia*
oceanica meadow, we computed \(f_w \) and wave attenuation for the other 2 storms, and compared the computed results with the field measurements to validate the model approach. To obtain \(f_w \) from Eq. (1) we always assumed purely oscillatory motion; this is a fair assumption for the experimental data since mean velocities are one order of magnitude lower than the oscillatory component.

RESULTS

During the 3 storms the measured \(H_{rms} \) decreased as the wave travelled onshore (Fig. 3a). The wave attenuation from mooring 1 to 4 was 30 to 60% in all 3 storms. In contrast, but as expected by linear wave theory, the corresponding near-bottom orbital velocities \((u_{b,rms}) \) increased at shallower depths (Fig. 3b). In Fig. 3, the lag between the peaks in \(H_{rms} \) and \(u_{b,rms} \) is due to the influence of the wave period, which changed within the storm.

Following the procedure described above, the equivalent roughness obtained during the third storm, on 21 July 21, is \(k_s (m) = 0.42 \pm 0.12 \). Using \(k_s = 0.42 \) m and Eq. (1) for \(f_w \), the computed values of \(\tau_b \) at all moorings ranged between 12.7 and 24.9 N m\(^{-2}\) for this storm, so that \(k_s \tau_b / \rho / \nu > 5.2 \times 10^4 \gg 3.3 \), as previously assumed (rough turbulent).

At midnight on 13 July, \(H_{rms} = 0.65 \) m was measured at mooring 1 (16.5 m depth). For this first storm, wave heights \(H_{rms} \) above 0.65 m were recorded for 44 h with maximum \(H_{rms} = 1.31 \) m. Measured \(H_{rms} \) normalized by the incident root mean squared wave height \((H_{rms,0}) \) at the 4 moorings is displayed for the middle 24 h of this storm in Fig. 4). The numerical integration of Eq. (2) and the uncertainty in the predictions, based on a 15% error in the measurement of the initial wave height and period, are also shown. Now the minimum computed \(k_s \tau_b / \rho / \nu \) is \(4.7 \times 10^4 \gg 3.3 \). As shown in Fig. 4, fairly good agreement is obtained between the measured and predicted \(H_{rms} \).

Note that \(H_{rms,4}^{in} \approx 0.5 \ H_{rms,1}^{in} \).

The second storm lasted 16 h starting on midnight of 18 July. Similar to Fig. 4, Fig. 5 presents the results for this event at 2 h intervals. The measured data are well represented by the predictions although.
some discrepancies appear at the shallow moorings. In this case $H_{\text{rms,4}} \approx 0.6 H_{\text{rms,1}}$ and $k_s \sqrt{\tau / \rho / \gamma} > 5.7 \times 10^4 (\gg 3.3)$.

For constant depth, given k_s and an incoming condition characterized by $H_{\text{rms,0}}$ and T_p, the wave attenuation can be computed integrating Eq. (2) and using Eqs. (6) & (1) to evaluate ε_D and f_w, as mentioned. For a wave of $H_{\text{rms,0}} = 1$ m and $T_p = 5.5$ s propagating over a depth of $h = 10$ m, Fig. 6 displays the wave attenuation across a 1000 m meadow. For the computation of f_w one can consider linear wave theory for the calculation of the near-bottom orbital velocity. Because the near-bottom velocity decreases as the wave attenuates over the meadow, f_w increases with distance over the meadow, according to Eq. (1), as shown in Fig. 6, so that the solution $H_{\text{rms}} = H_{\text{rms,0}} / (1 + \gamma x)$ in Eq. (8) is not valid.

For comparison purposes we consider the attenuation per wavelength. The attenuation per wavelength for $k_s = 0.42$ m is displayed in Fig. 7 for $H_{\text{rms,0}}$ between 0.5 and 1.5 m and T_p between 4 and 10 s, for 3 different depths. The values range from 0.2 to 3.5%. As a general trend, the greater the wave height and period, the greater is the attenuation per wavelength; also, the shallower the water depth, the greater is the attenuation.

DISCUSSION

We obtained an equivalent roughness that remained essentially constant during the experiments. The values were $k_s = 0.35 \pm 0.09$ m, $k_s = 0.39 \pm 0.09$ m and $k_s = 0.42 \pm 0.12$ m for 3 independent storms. Note, however, that k_s is likely to be a function of meadow geometry (blade length and shoot density), so these values cannot be confidently applied to meadows of different geometry.

This study suggests that for incident waves with $0.5 \leq H_{\text{rms,0}} \leq 1.5$ m and $4 \leq T_p \leq 10$ s propagating over a constant depth $h = 8$ m, the wave attenuation per wavelength for $k_s \approx 0.42$ m (corresponding to our
madow with \(N \approx 600 \) shoots m\(^{-2}\) and \(l_v \approx 0.8 \) m) ranges between 1.5 and 3.5\% (Fig. 7c). Bradley & Houser (2009), using the exponential expression Eq. (10), measured an exponential attenuation coefficient \(\gamma \) ranging from 0.004 to 0.02 m\(^{-1}\) for waves of peak period 1.5 in water depths \(h \approx 1.0 \) m (\(\lambda_p \approx 3.3 \) m), which is equivalent to an attenuation per wavelength of 1.3 to 6.4\%. These authors suggest a bottom equivalent roughness \(k_s \approx 0.16 \) m, which is consistent with the value obtained in this study \(k_s \approx 0.42 \) m. Recall that \(k_s \omega / u \), required to compute our \(f_w \), is related to KC as

\[
C_D = \frac{22.9}{KC^0.09}
\]

for \(15 \leq KC \leq 425 \). For comparison purposes, Fig. 8 shows the drag coefficient \((C_D) \) derived in this study versus the drag coefficient provided by Sánchez-González et al. (2011) \((C_{D,SG}) \). For the comparison we used the above reported meadow values \(a' \approx 0.0264 \) m, \(l_v \approx 0.8 \) m and \(N \approx 615 \) m\(^{-2}\) and also \(k_s = 0.42 \) m. The approach followed in the present study assumes that the water motion is mainly induced by waves. For our experiment, this is a reasonable assumption for the storms analysed since near-bottom orbital velocities measured by the ADVs are one order of magnitude larger than mean currents. In coastal environments where waves become nonlinear or currents and waves might be of the same order of magnitude, one has to explicitly solve the bound-
ary layer using a specific model (Grant & Madsen 1979, Orfila et al. 2007, Simarro et al. 2008).

Two aspects should be considered in detail for future research. First, the link between the equivalent roughness and meadow properties has to be further explored. Second, the limitation of this approach for increasing non-dimensional blade length (l_1/h) has to be assessed. Understanding the interaction between waves and bottom canopies such as Posidonia oceanica seagrass meadows is crucial for assessing the importance of these communities in coastal protection as well as to determine the final wave parameters which will drive sediment motion. This work shows that a $P. \text{oceanica}$ meadow reduces the wave height reaching the beach. Parameters such as k_s and C_D are necessary in order to run more precise wave propagation models over seagrass meadows. Moreover, for meadows that occupy a small fraction of the water depth, it may be appropriate to use relations for bare beds, specifically Eq. (1), to characterize the drag imparted by the canopy.

Acknowledgments. E. Infantes acknowledges the financial support received from the Spanish Ministerio de Educacion y Ciencia, FPI scholarship program (BES-2006-12850). G. Simarro is supported by the Spanish government through the Ramón y Cajal program. A. Orfila and G. Simarro are grateful for financial support from Spanish MICINN through project CTM2010-12072. M. Luhar was supported on grant number 0751358 from the U.S. National Science Foundation for executing the field work. Comments from 3 anonymous referees who helped to improve the work are gratefully acknowledged.

LITERATURE CITED

Grant WD, Madsen OS (1979) Combined wave and current interaction with a rough bottom. J Geol Res 84:C4

Editorial responsibility: Catriona Hurd, Dunedin, New Zealand

Submitted: July 18, 2011; Accepted: April 7, 2012
Proofs received from author(s): May 8, 2012