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points. The basic ingredient for a tipping point 
is a positive feedback that, once a critical point 
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Tipping points in complex systems may imply risks of unwanted collapse, but also opportunities 
for positive change. Our capacity to navigate such risks and opportunities can be boosted by 
combining emerging insights from two unconnected fields of research. One line of work is 
revealing fundamental architectural features that may cause ecological networks, financial 
markets, and other complex systems to have tipping points. Another field of research is uncovering 
generic empirical indicators of the proximity to such critical thresholds. Although sudden 
shifts in complex systems will inevitably continue to surprise us, work at the crossroads of these 
emerging fields offers new approaches for anticipating critical transitions. 

is passed, propels change toward an alternative 
state (6). Although this principle is well under- 
stood for simple isolated systems, it is more chal- 
lenging to fathom how heterogeneous structurally 
complex systems such as networks of species, 
habitats, or societal structures might respond to 
changing conditions and perturbations. A broad 
range of studies suggests that two major features 
are crucial for the overall response of such sys- 
tems (7): (i) the heterogeneity of the components 
and (ii) their connectivity (Fig. 1). How these 
properties affect the stability depends on the na- 
ture of the interactions in the network. 

Domino effects. One broad class of networks 
includes those where units (or “nodes”) can flip 
between alternative stable states and where the 
probability of being in one state is promoted by 

bout 12,000 years ago, the Earth sud- 
denly shifted from a long, harsh glacial 
episode into the benign and stable Hol- 

ocene climate that allowed human civilization to 
develop. On smaller and faster scales, ecosystems 
occasionally flip to contrasting states. Unlike grad- 
ual trends, such sharp shifts are largely unpre- 
dictable (1–3). Nonetheless, science is now carving 
into this realm of unpredictability in fundamental 
ways. Although the complexity of systems such 
as societies and ecological networks prohibits ac- 
curate mechanistic modeling, certain features turn 
out to be generic markers of the fragility that may 
typically precede a large class of abrupt changes. 
Two distinct approaches have led to these in- 
sights. On the one hand, analyses across networks 
and other systems with many components have 
revealed that particular aspects of their structure 
determine whether they are likely to have critical 
thresholds where they may change abruptly; on 
the other hand, recent findings suggest that cer- 
tain generic indicators may be used to detect if a 
system is close to such a “tipping point.” We high- 
light key findings but also challenges in these 

emerging research areas and discuss how excit- 
ing opportunities arise from the combination of 
these so far disconnected fields of work. 
 
The Architecture of Fragility 
Sharp regime shifts that punctuate the usual fluc- 
tuations around trends in ecosystems or societies 
may often be simply the result of an unpredict- 
able external shock. However, another possibility 
is that such a shift represents a so-called critical 
transition (3, 4). The likelihood of such tran- 
sitions may gradually increase as a system ap- 
proaches a “tipping  point”  [i.e., a catastrophic 
bifurcation (5)], where a minor trigger can invoke 
a self-propagating shift to a contrasting state. One 
of the big questions in complex systems science 
is what causes some systems to have such tipping 

having neighbors in that state. One may think, for 
instance, of networks of populations (extinct or 
not), or ecosystems (with alternative stable states), 
or banks (solvent or not). In such networks, het- 
erogeneity in the response of individual nodes 
and a low level of connectivity may cause the net- 
work as a whole to change gradually—rather than 
abruptly—in response to environmental change. 
This is because the relatively isolated and differ- 
ent nodes will each shift at another level of an en- 
vironmental driver (8). By contrast, homogeneity 
(nodes being more similar) and a highly connected 
network may provide resistance to change until a 
threshold for a systemic critical transition is reached 
where all nodes shift in synchrony (8, 9). 

This situation implies a trade-off between lo- 
cal and systemic resilience. Strong connectivity 
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Adaptive capacity Resistance to change 
+  + 

Local losses Local repairs 
+  + 

Gradual change Critical transitions 
 
 
Fig. 1. The connectivity and homogeneity of the units affect the way in which distributed  systems with 
local alternative states respond to changing conditions.  Networks in which the components differ (are 
heterogeneous) and where incomplete connectivity causes modularity tend to have adaptive capacity in 
that they adjust gradually to change. By contrast, in highly connected networks, local losses tend to be 
“repaired” by subsidiary inputs from linked units until at a critical stress level the system collapses. The 
particular structure of connections also has important consequences for the robustness of networks, 
depending on the kind of interactions between the nodes of the network. 
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promotes local resilience, because effects of local 
perturbations are eliminated quickly through sub- A 
sidiary inputs from the broader system. For 
instance, local damage to a coral reef may be 
repaired by “mobile link organisms” from nearby 
reefs, and individual banks may be saved by 
subsidiary inputs from the larger financial sys- 
tem (10). However, as conditions change, high- 

 
High resilience 

 
B Low resilience 

 
ly connected systems may reach a tipping point 
where a local perturbation can cause a domino 
effect cascading into a systemic transition (8). 
Notably, in such connected systems, the repeated 
recovery from small-scale perturbations can 

C D E F 

give a false impression of resilience, masking 
the fact that the system may actually be ap- 

Time Time Time Time 

proaching a tipping point for a systemic shift. 
For example, before the sudden large-scale 
collapse of Caribbean coral systems in the 1980s 
evoked by a sea urchin disease outbreak, the 
reefs were considered highly resilient systems, 
as they recovered time and time again from de- 
vastating tropical storms and other local pertur- 
bations (11). In summary, the same prerequisites 
that allow recovery from local damage may set 
a system up for large-scale collapse. 

Robustness in different kinds of networks. In 
addition to the work on systems where units can 
switch between alternative states in a contagious 
way, there has been an increasing interest in 
understanding robustness of webs of other kinds 
of interactions. For instance, species in ecosys- 

G H 
 
 
 
 

State (t) State (t) 
 
Fig. 2. Critical slowing down as an indicator that the system has lost resilience and may therefore be 
tipped more easily into an alternative state. Recovery rates upon small perturbations (C and E) are slower 
if the basin of attraction  is small (B) than when the attraction basin is larger (A). The effect of this slowing 
down may be measured in stochastically induced fluctuations in the state of the system (D and F) as 
increased variance and “memory” as reflected by lag-1 autocorrelation (G and H). 

tems can be linked through mutualistic (+/+) 
interactions such as in pollinators and plants, or 
by competition (−/−) or predation (+/−). Rather 
than asking what causes the overall systems re- 
sponse to be catastrophic or gradual, most of 
these studies have focused on what topology of 
interaction structures makes the overall system 
less likely to fall apart when components are ran- 
domly removed. The answer turns out to depend 
on the kind of interactions between the units. 
Overall, networks with antagonistic interactions 
(e.g., competition) are predicted to be more ro- 
bust if interactions are compartmentalized into 
loosely connected modules, whereas networks with 
strong mutualistic interactions (e.g., pollination) 
are more robust if they have nested structures 
where specialists are preferentially linked in their 
mutualism to generalists that act as hubs of con- 
nectivity (12, 13). Empirical studies in ecology 
suggest that the structures predicted to be more 
robust are also found most in nature (13–15), but 
this is an active field of research where new in- 
sights are still emerging (16) and much remains 
to be explored. 

The challenge of designing robust systems. 
Work on ecological networks has led to the idea 
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that we might apply our insights in the function- 
ing of natural systems when it comes to design- 
ing structures that are less vulnerable to collapse. 

0 5 10 15 

State of the system 
0 5 10 15 

State of the system 

For instance, about half a year before the collapse 
of global financial markets in 2008, it was pointed 
out (17) that it could be helpful to analyze the 
financial system for the generic structural features 

Fig. 3. (A) Flickering to an alternative state as a warning signal in highly stochastic systems. In such 
situations, the frequency distribution of states (B and C) can be used to approximate the shape of the 
basins of attraction of the alternative states (D and E). The data in this example are generated with a 
model of overexploitation (38):  dx   = x(1 – x ) –     cx    

that were found by ecologists to affect the risk 

  with different additive and  
multiplicative dt 
stochastic terms (30) (we used K = 11). 

K 1 + x 



 

  

 

 

Field Phenomenon Indicator Signal References 
Chemistry Critical slowing down Recovery rate/ + (39) 
  return time   
Physics Critical slowing down Return time/ + (40) 
  dominant eigenvalue   
  Rate of change + (41) 
  of amplitude   
Engineering Critical slowing down Autocorrelation at lag 1 + (42) 
Tectonics Not specified Autocorrelation/ + (43) 
  spatial correlation   
Climate Critical slowing down Autocorrelation at lag 1 + (23, 44, 45) 
   0 (44, 46) 
  Detrended fluctuation analysis + (27, 44) 
   - (44) 
 Increasing variability Variance + (44) 
   0 (44, 46) 
 Skewed responses Skewness 0 (47) 
Ecology Critical slowing down Return time/dominant eigenvalue 

Autocorrelation at lag 1 
+ 
+ 

(22, 48–50) 
(22) 

  Spectral reddening 0 (48) 
  Spatial correlation + (48, 49, 51, 52) 
 Increasing variability Variance + (48, 49, 52, 53) 
   0 (22, 54) 
  Spatial variance + (48, 49, 55, 56) 
 Skewed responses Skewness + (48, 49) 
Microbiology Critical slowing down Autocorrelation at lag 1 + (57) 
  Variance + (57) 
  Return time + (57) 
  Skewness 0 (57) 
Physiology Critical slowing down Recovery rate/ + (58) 
  return time   
Epilepsy Critical slowing down Correlation + (59, 60) 
 Increasing variability Variance + (61) 
Behavior Critical slowing down Recovery rate/ + (62, 63) 
  return time   
Sociology Critical slowing down Autocorrelation at lag 1 +/0 (64) 
  Variance +/0 (64, 65) 
  Fisher information + (66) 
Finance Not specified Correlation + (60) 
 Not specified Shannon index + (67) 
 

 

 
of systemic failure. Building on such parallels 
between the architecture of ecological and fi- 
nancial systems, Haldane and May (18) have 
made specific recommendations to encourage 
modularity and diversity in the financial sectors 
as a way to decrease systemic risk. There are 
still obvious challenges in bridging from eco- 
systems and conceptual models to societal struc- 
tures, and much will be beyond our reach when 
it comes to “design.” For instance, the extremely 
fast global spread of information is an impor- 
tant feature of current social systems, and the 
worldwide connection of social-ecological sys- 
tems through markets implies a daunting level 
of complexity (19). Nonetheless, this line of 
thinking about features that affect robustness 
across systems clearly offers fresh perspectives 

 
on the question of how we can make the com- 
plex networks on which we depend more robust. 
 
Early-Warning Signals for Critical Transitions 
Although such insight into structural determi- 
nants of robustness and fragility can guide the 
design of systems that are less likely to go through 
sharp transitions, there are so far no ways in 
which these features can be used to measure how 
close any particular system really is to a critical 
transition. A new field of research is now emerg- 
ing that focuses on precisely that (20). 

Critical slowing down near tipping points. 
One line of work is based on the generic phe- 
nomenon that in the vicinity of many kinds of 
tipping points, the rate at which a system recovers 
from small perturbations becomes very slow, a 

 
phenomenon known as “critical slowing down” 
(Fig. 2). This happens, for instance, at the clas- 
sical fold bifurcation, often associated with the 
term “tipping point,” as well as more broadly in 
situations where a system becomes sensitive so 
that a tiny nudge can cause a large change (20). 
The increasing sluggishness of a system can be 
detected as a reduced rate of recovery from (ex- 
perimental) perturbations (21, 22). However, 
the slowness can also be inferred indirectly from 
rising “memory” in small fluctuations in the state 
of a system (Fig. 2), as reflected, for instance, in a 
higher lag-1 autocorrelation (23, 24), increased 
variance (25), or other indicators (26, 27). 

Not all abrupt transitions will be preceded 
by slowing down. For instance, sharp change 
may simply result from a sudden big external 
impact. Also, slowing down of rates can have 
causes other than approaching a tipping point 
(e.g., a drop in temperature). Therefore, slowing 

Table 1. Studies of early-warning indicators for critical transitions in different complex systems. (+) Cases 
in which early warning signals were detected by indicators; (0) cases in which transitions were not 
preceded by indicators; (–) cases of unknown or opposite effect. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Not specified Variance +  (68) 

down is neither a universal warning signal for 
shifts nor specific to an approaching tipping 
point. Instead, slowing down should be seen 
as a “broad spectrum” indicator of potential fun- 
damental change in the current regime. Further 
diagnosis of what might be coming up requires 
additional information. 

Changing stability landscapes in stochastic 
systems. In highly stochastic systems, transitions 
will typically happen far from local bifurcation 
points. This makes it unlikely that in such sto- 
chastic situations slowing down is a useful char- 
acteristic to measure. Nevertheless, the behavior 
of systems exposed to strong perturbation re- 
gimes can hint at features of the underlying 
stability landscape. When an alternative basin of 
attraction begins to emerge, one may expect that 
in stochastic environments, systems will occa- 
sionally flip to that state, a phenomenon referred 
to as “flickering” (20). Rising variance can reflect 
such a change. Moreover, under certain assump- 
tions, the probability density distribution of the 
state of a system can even be used to estimate how 
the potential landscape reflecting the stability 
properties of the system changes over time (28) 
or is affected by important drivers (29) (Fig. 3). 
The idea behind this approach is that even if 
stochasticity is large, systems will more often 
be found close to attractors than far away from 
them. The scope of this approach is different from 
that implied in work on critical slowing down. 
Slowing down suggests an increased probability 
of a sudden transition to a new unknown state. 
By contrast, the information extracted from more 
wildly fluctuating systems suggests a contrast- 
ing regime to which a system may shift if con- 
ditions change. Just as in the detection of critical 
slowing down, patterns in the data should be in- 
terpreted with caution. For instance, multimo- 
dality of the frequency distribution of states over 
a parameter range may be caused by nonlinear 
responses to other, unobserved drivers or from a 
multimodality of the distribution of such driv- 
ers. Also, the character of the perturbation regime 
may have a large effect. 



 

  

 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 

 
 

 
 

 
  

 

 
 

 
 

 

 
Observation 

 
Indicative of Prediction Options for Action 

 
would carry such a clear signal? 
Or would some integrative in- 

1  Architecture behind critical transitions  
 
Redesign system for more 

dicator over the entire network 
be best? Clearly, this is an open 
area of research, and much may 

Low diversity 
 

 
High connectivity 

Structure for 
resistance 
to change 

Possibility of 
critical 
transition 

gradual adaptive response 
 
Further strengthen the 
preferred state 

be gained by developing the dif- 
ferent lines of work into an inte- 
grative science for understanding 
and predicting fragility and tran- 
sitions in complex systems. Oc- 
casional radical transitions will 

2  Empirical indicators for upcoming transitions continue to surprise us. How- 
ever, the emerging field of re-  

Slow recovery a Close to equilibrium situations search that we have sketched 
 
 

High correlation 
 
 

High variance 

 
Critical 
slowing 
down 

Elevated 
chances of 
critical 
transition 

Prepare for anticipated 
change 
 
 
Reduce risk of 
unwanted transition 

may reduce the realm of sur- 
prise in transitions related to 
tipping points. 

Perhaps the most exciting 
aspect of this work is that it is 

b  Highly stochastic situations 
Identity and 

uncovering generic features that 
should in principle hold for any 

Multimodality Flickering probability 
of alternative 
states 

Use opportunity to 
promote desired transition 

complex system. This implies 
that we may use these approaches 
even if we do not understand all 
details of the underlying mech- 
anisms that drive any particu- 

Fig. 4. Different classes of generic observations that can be used to indicate the potential for critical transitions in 
a complex system. 

lar system. This is the rule rather 
than the exception, as we are 
far from being able to construct 
accurate predictive mechanistic 

Prospects, challenges, and limitations. Although 
research on empirical indicators of robustness 
and resilience is just beginning, there is already a 
fast-growing body of modeling as well as em- 
pirical work (Table 1). Nonetheless, major chal- 
lenges remain in developing robust procedures 
for assessment. One problem is that methods for 
detection of incipient transitions from time series 
tend to require long, high-resolution data (23, 30). 
As a picture of a spatial pattern can carry much 
more information than a single point in a time 
series, the interpretation of spatial patterns is a 
potentially powerful option. Like increased mem- 
ory in time series, correlation between neighbor- 
ing units can reflect slowing down (31). Similarly, 
spatial data can be used to infer how resilience of 
alternative states depends on key drivers (29). Var- 
ious aspects of spatial patterns may also change 
in specific ways near a critical point (31–36), but 
these patterns and their interpretation differ 
across systems in ways that are not yet entirely 
understood. 

A fundamental limitation is that the indicators 
cannot be used to predict transitions, as stochastic 
shocks will always play an important role in 
triggering transitions before a bifurcation point is 
reached. Also, interpreting absolute values of in- 
dicators as signaling particular levels of fragility 
so far remains beyond reach. Thus, indicators 
should be used to rank situations on a relative 
scale from fragile to resilient. Detecting early- 
warning signals in monitoring time series may 
seem an obvious application. However, this re- 
quires the rare situation of having high-resolution 
data for a system that moves toward a tipping 

point gradually (37). In addition to such chal- 
lenges in detection, there are still gaps in our 
understanding of how indicators will behave in 
more complex situations. Given these limitations, 
there is no “silver  bullet” approach. Instead, a 
diverse collection of complementary indicators 
and methods of applying them is emerging. A 
state-of-the-art overview linked to a Web site 
with open-source software for data analysis is 
published elsewhere (30) (www.early-warning- 
signals.org). 
 
Toward an Integrative Approach for 
Anticipating Critical Transitions 
So far, research on network robustness and work 
on empirical indicators of resilience have been 
largely segregated. However, connecting these 
fields opens up obvious new perspectives. First, 
there is complementarity in the existing approaches. 
The structural features that create tipping points 
and the different empirical indicators for their 
proximity offer alternative angles for diagnosis 
and potential action (Fig. 4). A smart combina- 
tion of approaches in a unified framework may 
therefore greatly enhance our capacity to antici- 
pate critical transitions. 

At the same time, linking these two vital 
fields may generate exciting new directions for 
research. For instance, an intriguing question is 
how early-warning signals for loss of resilience 
may best be detected in a complex network (e.g., 
of species, persons, or markets). Will particular 
nodes in the network reveal critical slowing 
down or other early-warning indicators more 
than others? Can we know a priori which nodes 

models for most, if not all, complex systems. 
So far, most work on generic indicators of re- 
silience has been carried out in ecology and cli- 
mate science (Table 1). However, social sciences 
and medicine might well be particularly rich fields 
for exploration. 

Developing sound predictive systems based 
on these generic properties poses major chal- 
lenges. However, the potential gains are for- 
midable. Empirically detecting opportunities 
where positive transitions in social or ecological 
systems can be invoked with minimal effort 
may be of great value. On the risk side, guide- 
lines for designing financial systems that are less 
prone to systemic failure, or ways to foresee crit- 
ical transitions ranging from epileptic seizures 
to the collapse of fish stocks or tipping elements 
of the Earth climate system, rank high in their 
importance to humanity. 
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Erratum  
Post date 23 November 2012 

 
 

Review: “Anticipating critical transitions” by M. Scheffer et al. (19 October, p. 344). In the 
print article, reference 44 was incorrect and reference 45 was mistakenly omitted. Reference 
44 should be: T. M. Lenton, V. N. Livina, V. Dakos, E. H. van Nes, M. Scheffer, Philos. Trans. R. 
Soc. London Ser. A 370,  1185  (2012).  Reference 45 should be: J. M. T. Thompson, J. Sieber, 
IMA J. Appl. Math. 76, 27 (2011). The references are correct in the HTML version online. 
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